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АННОТАЦИЯ

Этой книгой издательство продолжает второе изда-
издание американского курса физики для средней школы (пер-
(первое издание вышло в 1965 г. в одной книге). В каждую
часть курса в этом издании дополнительно включен пере-

перевод соответствующей части из «Методического руковод-
руководства для преподавателей», содержащего разбор трудных
мест курса. Курс состоит из четырех частей: I. «Все-

«Вселенная», П. «Оптика и волны», III. «Механика»*

IV. «Электричество и строение атома». Части lull

вышли в 1973 г., часть IV выйдет в этом году.
Bill части «Механика» излагаются фундаментальные

законы динамики: закон Ньютона, законы сохранения

количества движения и энергии, и анализируются различ-

различные формы движений.
Книга явится полезным дополнением к существующим

учебникам по физике. Она рассчитана на широкий круг
читателей: учащихся средних школ, студентов технику-
техникумов, лиц, занимающихся самообразованием, представляет
большой интерес для преподавателей физики.
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ОТ РЕДАКТОРА РУССКОГО ПЕРЕВОДА

В третьей части курса физики Комитета содействия изуче-

изучению физики *) «Механика» излагаются основы динамики движе-

движения тел.

При изложении проблем динамики особое внимание обращено
на законы сохранения импульса и энергии. Однако правильное пони-

понимание и применение законов сохранения к решению широкого круга

проблем невозможно без выяснения роли различных сил и хорошего

знания законов движения.

С этой целью авторы начинают изучение динамики с рассмот-

рассмотрения (в гл. 19) закона Ньютона и различных сил, встречающихся
в природе.

В гл. 20 решается ряд динамических задач, в которых силовым

полем является поле тяжести Земли. Гл. 21 целиком посвящена дви-

движению планет.

Остальные четыре главы части III посвящены выводу важнейших

законов механики — законов сохранения количества движения и

энергии. Сохранение количества движения (в гл. 22) устанавливается
на базе обобщения результатов экспериментальных наблюдений, а не

выводится традиционно из второго и третьего законов Ньютона.

Гл. 23—25 содержат рассмотрение понятия энергии. Термин

«энергия» используется для обозначения широкого класса различных

характеристик движения и относительного расположения материи,
связанных одним законом сохранения.

Вводятся три формы энергии', кинетическая, потенциальная и

тепловая, с их помощью рассматривается переход энергии из

одной формы в другую и показывается, что общее количество ее

не изменяется.

*) См Ют редактора русского перевода», Физика, ч. /. Вселенная, перевод
с англ., под ред. А. С. Ахматова, «Наука», 1973, стр. 5.



Переработка текста III части Учебника во втором издании, так

же как I и II частей, не имела коренного характера. Авторы перера-
переработки сохранили без изменений основное содержание материала, по-

последовательность, методику и манеру изложения.

При замене и введении нового текста авторы ставили перед собой

лишь одну задачу: сделать его более обоснованным и более ясным для

восприятия учащимися.

Перевод третьей части курса в первом издании A965 г.) был

сделан А. С. Ахматовым, перевод нового текста, введенного в курс
в настоящее издание, выполнен Д. М. Толстым', перевод методи-
методического руководства к этой части курса сделан А. Н. Гордеевым.

А. С. Ахматов
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19 ЗАКОН ДВИЖЕНИЯ НЬЮТОНА

Автомобили мчатся по шоссейным дорогам, то появляясь, то

исчезая в общем потоке; пассажирские самолеты реют высоко над

нами; реактивные самолеты и искусственные спутники проносятся
по небу; звезды совершают свои постоянные кругообороты. Что

приводит каждое из этих тел в движение? Что поддерживает это

движение? Есть ли единая причина для всех видов движения? И яв-

является ли вообще необходимой та или иная причина?
До сих пор, изучая физику, мы главным образом стремились

создать метод систематического описания и анализа физических
явлений. Мы научились измерять величину атома, расстояния до

звезд, промежутки времени. Мы научились определять углы отра-
отражения и распознавать интерференцию волн по виду полос. В области

исследования движений такое систематическое описание наблюдений
называется кинематикой (мы рассматривали кинематику в гл. 5).

Но это только описание движения, без рассмотрения вопроса
о причинах движения. А одно лишь описание никогда не позволит

нам достигнуть того, к чему мы стремимся: открыть что-то новое,

контролировать движения, выйти за рамки простого описания того,

что происходит. Поэтому в данной части курса мы перейдем к сле-

следующему этапу: мы вскроем причины движений или причины изме-

изменений в характере движений. Этот раздел механики называется

динамикой.
Закон движения Ньютона, на котором теперь основано наше

понимание динамики, выходит за пределы кинематики. Например,
мы применяем его при проектировании ракет и при запуске искусст-
искусственных спутников. В данной части курса, познакомившись с зако-

законом Ньютона, мы применим его к движению Луны и планет. Подоб-
Подобно Ньютону мы найдем связь между временем, необходимым для
движения планет вокруг Солнца, и тяготением между этими телами.

В части IV курса мы применим этот же закон движения для изуче-
изучения электрических сил и для проникновения в субмикроскопический
мир. С помощью одного этого закона мы сможем изучить движение
во всем разнообразии его проявлений.
В сложных движениях разных тел, которые летают, падают и со-

совершают колебания, мы обнаружим немногие весьма простые черты.
С помощью закона Ньютона во всех этих различных движениях мы

обнаружим такие свойства, которые остаются неизменными, и мы



установим новые величины, которые сохраняются постоянными,
когда все другие изменяются.

Законы сохранения окончательно выводят нас за рамки меха-

механических представлений. Мы можем превращать механическую энер-
энергию в электрическую. Но для того чтобы понять, что такое энергия,
мы должны начать с изучения закона Ньютона.

19.1. Понятие о силе и движении

Вопрос о причинах движения возник в сознании человека более

двадцати пяти столетий назад, но наш современный ответ на этот

вопрос не был найден до времен Галилея A564—1642) и Ньютонам

A642—1727).
Начнем рассмотрение этого вопроса с точки зрения наших лич-

личных наблюдений. С чем мы связываем «причину движения»? Можно

ответить: с мускульной тягой или с толчком (рис. 19.1). Чтобы пере-
передвинуть пианино, вы должны его очень сильно толкать, тогда как

для перемещения листа бумаги по письменному столу вам достаточ-

достаточно лишь незначительного усилия. Эти тяговые и толкающие усилия

Рис. 19.1. Все вкды тяги и толчков называются силами.

мы называем силами. Отсюда и пошло понятие силы, применяемое
в физике. Позднее, с ростом наших знаний, понятие силы расши-
расширилось настолько, что охватило все причины движения. Притяже-
Притяжение гвоздя магнитом — это сила, так как магнит может изменить

движение гвоздя так же, как и мускульная сила.

Какова же связь между силой и движением? Предположим, мы

передвигаем доску по полу. Чтобы доска непрерывно двигалась,
мы должны все время прикладывать силу. Точно так же и лошадь

должна непрерывно тянуть телегу, чтобы телега катилась с постоян-

постоянной скоростью. Повседневный опыт создает впечатление, что необ-

необходимо непрерывно прилагать постоянную силу, чтобы удерживать
неизменным движение (движение по прямой линии с постоянной

скоростью; рис. 19.2).
Уже Аристотель C84—322г. дон. э.) пришел к выводу, что для

создания постоянной скорости необходима постоянная сила, откуда
следует, что при отсутствии силы тела должны оставаться неподвиж-

неподвижными.

Гипотеза о том, что при отсутствии внешних сил тела останавли-

останавливались бы и оставались бы в состоянии покоя, помогает нам понять

огромное количество наблюдаемых движений, но она не объясняет
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все движения, которые происходят в природе. Например, греки
знали, что тела падают с возрастающей скоростью без приложения
какой-либо очевидной внешней силы. Они были также знакомы

с движениями Солнца, Луны и звезд, которые движутся без каких-

либо толчков или тяги. По-видимому, существуют три вида движе-
движений. Мы должны объяснить не только движение тела, которое мы

толкаем, но и движения тел, падающих на земную поверхность,

Рис. 19.2. Движение с постоянной скоростью требует, по-видимому, приложения постоянной
по величине силы.

а также непрерывное движение небесных тел. Аристотель считал,

что обычная материя падает на земную поверхность потому, что

Земля является центром Вселенной, а материя обладает врожденным
свойством двигаться по направлению к этому центру. Он предпола-
предполагал, что небесная материя по своей природе коренным образом
отличается от земной материи и поэтому она подчиняется другим
законам. По Аристотелю, небесной материи присуще внутреннее
свойство восстанавливать силу, которая ей необходима для сохра-
сохранения постоянства движений.

Не следует думать, что бессмысленно давать отдельные объясне-

объяснения для трех различных типов наблюдаемых движений. И мы часто

поступаем так же. Когда мы наблюдаем, как кусок металла притя-
притягивает железные гвозди, мы говорим: это магнит, т. е. вид материи
иной, чем, например, дерево, и мы можем исследовать его магнит-

магнитные свойства отдельно от его немагнитных свойств. Когда мы наблю-

наблюдаем, как гребень притягивает наши волосы, мы говорим: он на-

наэлектризован, и мы объясняем его электрические свойства отдельно
от его обычных механических свойств. Конечно, мы стараемся, как

и греки, объяснить все, что мы наблюдаем, однако наряду с этим

у нас существуют другие цели, например, достигнуть наибольшей

простоты объяснений. Гораздо выгоднее дать объяснение с возмож-

возможно меньшим числом допущений, чем сооружать отдельные модели
для каждого нового наблюдения. Поэтому, поскольку мы в состоя-

состоянии это сделать, мы опишем дерево, магниты и наэлектризованные
гребни на основе одной-единственной модели и сделаем это на-

настолько просто, насколько возможно. Попытаемся также объяснить

все движения, прибегая лишь к одной теории, а не к трем,



Современный Аристотель вряд ли объяснил бы неизменный

характер движения небесных тел ссылкой на особый вид материи.
Мы можем отправить нашу собственную земную материю в небесные

сферы. Мир движений на Земле и непрекращающееся движение
планет в настоящее время объединены. Искусственные спутники
принесли нам отличные доказательства того, что нет никакого раз-
различия между земной материей и небесной. Наше понимание движе-

движений падающих тел, небесных тел и тел, которые мы толкаем и тянем

по земной поверхности, сейчас основано на одном-единственном

фундаментальном законе движения. Согласно этому закону были

спроектированы, построены и запущены искусственные спутники.
Их поведение является одним из многих доказательств того, что

закон движения Ньютона охватывает все три типа движений, опи-

описанных Аристотелем.

19.2. Движение в отсутствие силы

На протяжении двух тысяч лет со времен Аристотеля кажущееся
различие между движениями тел на земной поверхности и в мировом
пространстве являлось тормозом на пути развития динамики. Только
в XVII веке Галилей сделал первый большой шаг в деле создания

Скорость
увеличивается

Скорость Наклона нет.

уменьшается Яудегп ли изменяться

спорость ?

Рис. 19.3. Из наблюдения движения по наклонным плоскостям Галилей пришел к выводу
что движение по горизонтальной плоскости является движением с постоянной скоростью.

единого объяснения этих двух типов движения. Он утверждал, что

«любая скорость, сообщенная телу, устойчиво сохраняется до тех

пор, пока нет никаких причин к возникновению ускорения или

торможения,— условие, которое достигается лишь на горизонталь-
горизонтальных плоскостях, где сила трения доведена до минимума». Это же

положение включает и закон инерции Галилея. Кратко он гласит:

если на тело не действует никакая сила, оно сохраняет состояние
покоя или прямолинейного равномерного движения.

Каким же образом Галилей достиг такого поразительного вы-

вывода, столь отличного от свидетельств ежедневного опыта? Он изу-
изучал движение различных предметов по наклонной плоскости. При
этом он заметил, что «во всех случаях движения тела вниз по наклон-

наклонной плоскости имеется причина, вызывающая ускорение, а когда тело

движется вверх по наклонной плоскости, то имеется торможение»
(рис. 19.3). На основе этого опыта он и пришел к выводу, что когда
плоскость не имеет никакого наклона, то не должно быть ни ускоре-
ускорения, ни торможения: «Движение по горизонтальной плоскости

должно быть движением с постоянной скоростью».
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Конечно, Галилей знал, что такие горизонтальные движения

в действительности не могут быть установившимися, но его опыты

показали, что при наличии небольшого трения тела движутся в те-

течение долгого времени почти с постоянной скоростью, и на основе

этих наблюдений он пришел к убеждению, что трение создает силы,

которые останавливают тела в их горизонтальном движении, а при

Макальное Конечное
положение положение

z>. \ч Где конечное положение?

Рис. 19.4. Галилей наблюдал, что шар, двигаясь вверх по наклонной плоскости, стремится
подняться на свою первоначальную высоту независимо от наклона плоскости. При нулевом
наклоне шар никогда не достигает начальной высоты, поэтому движение по горизонтальной

плоскости должно быть вечным.

полном отсутствии трения тела продолжали бы двигаться бесконеч-

бесконечно. Поэтому он и сформулировал результаты своих наблюдений
для идеальных условий, при которых не действуют никакие силы.

Во второй серии опытов Галилей показал, что когда две наклон-

наклонные плоскости размещаются друг против друга (как показано на

рис. 19.4, а), то предмет, начиная движение с состояния покоя,

будет катиться вниз по одной плоскости и вверх по другой до тех

пор, пока почти не достигнет своей начальной высоты. Трение
препятствует ему подняться на эту высоту, которая, как это понял

Галилей, является пределом такого движения. Он сделал вывод,
что если уменьшить наклон плоскости, по которой тело движется

вверх (рис. 19.4, б), то расстояние, которое пройдет тело для того,

чтобы достигнуть своей исходной высоты, увеличится. Если, нако-

наконец (рис. 19.4, в)у наклон плоскости свести к нулю, так что вторая
плоскость займет горизонтальное положение, то предмет никогда
не достигнет своей начальной высоты. В этом случае шар катился

бы вечно. «Отсюда,— утверждает Галилей,— следует, что движение

по горизонтальной плоскости является вечным».

Опыты Галилея нельзя считать трудными; нет также никаких

указаний, что он выполнял их с особой тщательностью. Некоторые
из его опытов, например опыт, показанный на рис. 19.4, в и при-
приведший к заключению о вечном движении, не были реальными.
Это были воображаемые опыты, хотя и основанные на реальных
фактах. Именно в этом и заключается та комбинация мышле-

мышления и фактов, которая характеризует работу Галилея и которая

П



позволила ему открыть метод идеализации движений, несмотря на

огромное их разнообразие. Его закон инерции явился тем великим

сдвигом в науке, который позволил Ньютону создать наше совре-
современное понимание динамики.

Многие из движений, анализированных Галилеем, а также дви-

движения, позднее исследованные Ньютоном, были настолько идеали-

идеализированы, что не имели почти ничего общего с движениями реальных
систем в том виде, как мы их наблюдаем. Однако лишь благодаря
тщательной разработке этих идеализированных представлений Га-
Галилею и Ньютону удалось внести большой вклад в механику.

Рис. 19.5. а) Движение ползуна с твердой углекислотой по стеклу. Он скользил слева направо
го время последовательных вспышек света, происходивших 24 раза за 10 с. Внизу располо-
и ена сантиметровая шкала. Мы имеем здесь приближение к идеальному случаю движения
без действия силы. В равные промежутки времени перемещения ползуна почти одинаковы.
С) Ползун с твердой углекислотой расположен на гладкой поверхности стекла. Подобное уст-

устройство допускает движение почти без трения, в) Твердая углекислота превращается в пол-

ползуне в газообразную, которая устремляется наружу через отверстие в дне ползуна.

Таким образом, мы видим, что для правильного понимания основ

динамики нужно изучить самые простые движения, наиболее близ-
близкие к идеальным. Тогда и только тогда мы подготовим себя к тому,
чтобы суметь применить динамику к окружающему нас миру слож-

сложных явлений.
С помощью современного оборудования мы можем ставить опыты,

позволяющие нам осуществлять движения тел в отсутствие действия
на них ощутимых сил. Эти движения приближаются к идеальному
движению, рассмотренному Галилеем.

Чтобы получить импульсный фотоснимок, приведенный на

рис. 19.5, а, был использован ползун с твердой углекислотой, сколь-
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зящий по поверхности стекла на слое газообразной углекислоты.
Газовый подшипник такого типа почти полностью устраняет трение.
Применявшийся нами ползун показан на рис. 19.5, б. Он представ-
представляет собой тяжелый металлический диск с тщательно отполирован-
отполированной нижней поверхностью, несущий контейнер, наполненный

кусочками твердой углекислоты. Замороженная углекислота мед-
медленно превращается в газ, вытекающий через небольшое отверстие
в центре дна металлического диска (рис. 19.5, в). Таким образом
обеспечивается постоянное присутствие тонкого слоя газа между
металлическим диском и поверхностью стекла; ползун «плавает»

в газовом слое.

Снимок, приведенный на рис. 19.5, а, был получен посредством
последовательных вспышек света, производимых 24 раза за 10 с,
т. е. через каждые 10/24 с, во время скольжения ползуна по гладкой
поверхности стекла. Снимок показывает, что смещение ползуна
между двумя последовательными вспышками почти постоянно. Ско-

Скорость почти совсем не изменяется. Из подобного опыта можно под-

подсчитать, что если бы ползун был запущен со скоростью около 16 км/ч,
он «проплыл» бы расстояние около 800 м!

19.3. Изменение скорости под действием постоянной силы

Закон инерции Галилея говорит нам, что предмет, на который
не действуют никакие силы, движется с постоянной скоростью*
Если же скорость изменяется, мы делаем вывод, что какая-то сила

действует на этот предмет, Какова же связь между силой и измене-

изменением скорости?
Мы начнем исследование этого вопроса с наиболее простого опы-

опыта, который только можно себе вообразить. Приложим одну-единст-
венную силу к данному предмету, Чтобы свести к минимуму сторон-
сторонние влияния, воспользуемся тем же ползуном с твердой углекисло-
углекислотой и той же стеклянной поверхностью, при помощи которых мы

исследовали движение в отсутствие силы. Эта приложенная нами

теперь сила и будет той единственной силой, действие которой на

движение предмета нам нужно изучить,

Предварительно, однако, нам нужно каким-то образом убедиться
в том, что приложенная сила является постоянной. Для этой цели
мы используем петлеобразную пружину, прикрепленную к ползуну
(рис. 19.6, а). Общеизвестно, что сила, развиваемая пружиной, уве-
увеличивается при ее растяжении, При этом всякий раз, когда мы дан-

данную пружину растягиваем на определенную длину, она, видимо,

развивает одну и ту же силу. Допустим, что сила, вызванная пру-
пружиной, является одной и той же, если пружину растягивают на

одну и ту же длину (рис. 19.6, б).
Приведем теперь ползун в движение, растягивая (с помощью

нити) пружину таким образом, чтобы ее растяжение все время оста-

оставалось одним и тем же, и зафиксируем движение с помощью импульс-
импульсной фотосъемки. Результат такого опыта показан на рис. 19.7

(вспышки света происходили с промежутками в 10/24 с). На приве-
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денном снимке можно видеть последовательные положения ползуна,
а также видеть, что растяжение пружины оставалось постоянным.

Ползун начал двигаться прямолинейно в направлении приложенной
силы. Его движение можно проанализировать методом, изложенным

Рис. 19.6. а) Нерастянутая петлеобразная пружина до зацепления за ползун, б) Пружина

растянута. В тех случаях, когда пружина растягивается до одной и той же длины, можно

полагать, что растягивающая сила — одна и та же.

в гл. 5. Будем считать направление движения ползуна положитель-
положительным и отсчитывать его по оси х. Ясно видно, что в каждый последую-
последующий промежуток времени смещение ползуна Ах оказывается уве-
увеличенным. Следовательно, средняя скорость Ах/At (в направлении
слева направо) также возрастает. Измеряя последовательные сме-

смещения, можно количественно установить, как именно изменяется

Рис. 19.7. Импульсный фотоснимок, изображающий движение ползуна вправо. Вспышки света

повторялись через 10/24 с. Постоянство силы поддерживалось путем обеспечения постоянного

растяжения пружины. Смещения ползуна за последовательные промежутки времени изме-

измерены по черточкам, нанесенным на снимке, и представлены в табл. 19.1.

средняя скорость. Как показано в табл. 19.1, за каждые 10/24 с

после начала движения средняя скорость возрастала примерно на

5,8 см/с — на постоянную величину в пределах точности нашего

опыта. Разделив приращение скорости E,8 см/с) на приращение
времени A0/24с), находим, что средняя скорость изменялась в пос-

постоянном темпе, равном 14 см/с2. Поскольку средняя скорость изме-
изменялась в постоянном темпе в течение всего движения, можно при-
принять, что и мгновенная скорость изменялась в таком же постоянном

темпе. Таким образом, за любой промежуток времени At приращение
скорости v составляет Av = A4см/с2)Д/ в направлении слева на-

направо, причем скорости измеряются в см/с, а время — в секундах.
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ТАБЛИЦА 19.1

Данные опыта, изображенного

Порядковый
номер отрез-

отрезка времени

1

2

3

4

5

6

7

Положение нз

ОСИ X (В CM

к концу отрезка

времени)

4,1

10,4

19,2

30,4

44,0

60,1

78,6

> на рис. 19.7

Средняя скорость
на данном участке

Ax/At-v "(в см

на отрезок времени

между вспышками)

4,1

6,3

8,8

11,2

13,6

16,1

18,5

Приращение
средней скорости
Av (в см на от-

отрезок времени

между вспышками)

2,2

2,5

2,4

2,4

2,5

2,4

За нуль принято положение ползуна на оси х в момент первой вспыш-

вспышки. Положения на оси х представляют собой пути, пройденные ползуном

с момента первой вспышки до конца данного промежутка времени. Средняя
скорость, выраженная в сантиметрах на отрезок времени между последова-

последовательными вспышками, численно равна пути, пройденному за данный отре-
отрезок времени. В последнем столбце приведены приращения средней скорости
между последовательными отрезками времени. Мы видим, что в пределах

точности эксперимента величина Av оказалась постоянной и равной 2,4 см

на интервал между последовательными вспышками. Поскольку вспышки

происходили с частотой 24 вспышки в 10 с, изменение средней скорости
составляло B,4 см на вспышку)-B,4 вспышки в с) = 5,8 см/с между после-
последовательными промежутками времени, равными 10/24 с.

Конкретное значение величины Av/At= 14 см/с2, найденное в

этом опыте, обусловлено тем, что мы привели в движение данный

предмет с помощью данной силы. Если бы величина силы была дру-
другой или мы изучали бы движение другого тела, то коэффициент
пропорциональности также имел бы другое значение. Однако все

опыты, подобные только что описанному, показывают, что под

влиянием постоянной силы скорость изменяется прямо пропорцио-
пропорционально времени, в течение которого действует эта сила.

19.4. Зависимость изменения скорости от величины силы

Что произойдет, если к тому же телу мы приложим постоянную

силу другой величины? Попробуем приложить силу в два раза
большую и посмотрим, что из этого получится. Это простое пред-
предложение ставит перед нами новую задачу. Мы уже видели, что можно

применить пружину, исключающую участие человека в операции
приложения силы определенной величины, и это давало нам полную

уверенность в том, что в течение нашего опыта эта сила оставалась

постоянной. Как же нам использовать пружину для того, чтобы

приложить силу удвоенной величины?

Простейший способ удвоения силы подсказывается тем хорошо
известным фактом, что два человека толкают значительно сильнее,
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чем один. Так, чтобы сдвинуть с места застрявшую автомашину,

нужны два человека, так как один не в состоянии с этим справиться.
По аналогии мы можем использовать две пружины, чтобы получить

силу в два раза большую. Но при этом необходимо будет вторую

пружину подобрать так, чтобы она была идентична первой. Тогда,
конечно, при растягивании второй
пружины на такую же длину, что

и первой, она будет создавать ту
же силу тяги. Чтобы окончательно

убедиться в том, что силы равны,
повторим наш последний опыт с

новой пружиной. Если сила не от-

отличается от прежней, то ползун

ускоряется совершенно так же, как

раньше. Таким путем можно дока-

доказать, что новая петлеобразная пру-
пружина развивает такую же силу, как

и предыдущая.
Теперь мы имеем возможность

приложить к ползуну силу в два

раза большую, чем первая. С этой целью мы прикрепляем к нему
рядом две пружины и обе их натягиваем в одном направлении
(рис. 19.8). Убедившись в том, что каждая из этих пружин растя-
растягивается на такую же длину, как и в первом опыте с одной пружи-
пружиной, мы наблюдаем за движением тем же способом, что и раньше.
Однако в этом случае, оставляя все, как было прежде, мы удваи-
удваиваем силу, действующую на ползун.

Описанная выше методика разработана для удвоения силы, при-
прилагаемой к прежнему ползуну. Результат показан на рис. 19.9.

Рис. 19.8. Чтобы приложить удвоенную
силу, к ползуну присоединяют две оди-

одинаковые петлеобразные пружины.

Рис. 19.9. Ползун предыдущего опыта ускоряется вдвое большей силой. Промежуток времени
между последовательными вспышками по-прежнему 10/24 с.

Что же оказывается? Данные табл. 19.2, полученные так же,

как в предыдущем случае, но под действием удвоенной силы, пока-

показывают, что скорость растет вдвое быстрее. Вместо kv — A4 см/с2)At
имеем теперь Аи= B8 см/с2) Д/, где скорости по-прежнему измере-
измерены в см/с, а время — в секундах.

Дальнейшие аналогичные опыты показывают, что этот результат
имеет общий характер. Всякий раз, когда мы удваиваем силу, при-
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ложенную к определенному объекту, удваивается и коэффициент
пропорциональности, связывающий между собой величины Av и At.
Если возьмем силу в три раза большую, например, созданную тремя
одинаковыми пружинами, расположенными рядом, мы утроим вели-

величину указанного коэффициента. Из многих измерений подобного
рода мы делаем вывод, что изменение скорости тела за данный про-
промежуток времени пропорционально силе F, действующей на тело,

таблица 19.2

Данные опыта, изображенного на рис, 19.9

Порядковый
номер отрез-

отрезка времени

I

2

3

4

5

Положенив ня

оси х (в см

к концу отрезка

времени)

8,4

21,5

39,3

61,9

89,3

Средняя скорость
на данном участке

Ax/At=v (в см

на отрезок времени

между вспышками)

8,4

13,1

17,8

22,6

27,4

Приращение
средней скорости
Ау (в см на от-

отрезок времени

между вспышками)

4,7

4,7

4,8

4,8

Приведены результаты опыта, в котором приложенная сила была вдвое
больше, чем в первом опыте (см. табл. 19.1). Частота вспышек была по-

прежнему 2,4 вспышки в секунду. Можно видеть, что изменение сред-
средней и, следовательно, мгновенной скорости вдвое больше, чем в предыдущем
опыте.

Таким образом, мы установили два положения. Изменение ско-

скорости Av увеличивается с увеличением времени А/ и оно тем больше,
чем больше сила F. Мы можем эти два факта объединить в одном вы-

выводе: Av пропорционально произведению F • А/.

19.5, Инертная масса

Изменение скорости Av, вызванное данной силой F9 действующей
в течение данного времени А/, зависит от предмета, на который дейст-
действует сила. Приложение равных сил в течение одинакового проме-
промежутка времени к теннисному мячу и к слону приведет к меньшему
изменению скорости слона.

Так как большим телам труднее придать ускорение, чем малым,

принято пропорциональность между F At и Av выражать в следую-
следующей форме:

F At = mAv.

Коэффициент пропорциональности т зависит от предмета. Его вели-

величина растет с увеличением размеров тел, если они однородны.
Постоянная т называется инертной массой тела. Путем преоб-

преобразования указанного выше уравнения можно определить т для
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данного предмета как F At/Av. Как вытекает из экспериментов,
это отношение для данного тела постоянно; оно показывает, на-

насколько трудно изменить скорость тела. Как вы уже знаете, отно-

отношение Av/At является показателем изменения скорости или ускоре-
ускорением а в направлении действия силы. Следовательно, инертную массу
можно выразить как т = F/a. Чем больше сила, необходимая для
создания определенного ускорения, тем больше инертная масса

предмета.
Естественно, что нам хочется знать, является ли инертная масса —

эта своеобразная мера трудности, которую мы встречаем при попыт-

попытке ускорить движениетела,— новым свойством тела. Может быть, она

связана с чем-нибудь таким, что нам уже известно? Может быть,
это замаскированное хорошо знакомое свойство, или это особое соче-

сочетание уже известных свойств?

Для того чтобы ответить на эти вопросы, мы изучим зависимость

инертной массы от формы, размеров, состава и от других известных

нам свойств предмета.
Конечно, мы не будем действовать наугад. Приведенный выше

пример с теннисным мячом и слоном подсказывает, что целесообраз-
целесообразно начать рассмотрение вопроса с размеров тел. Однако дело не

только в одном объеме. Полому бутафорскому слону, которого

проносят на шествиях в последний день масленицы, не так трудно

придать ускорение, как настоящему. Поэтому давайте начнем наши

опыты с однородных предметов. Изучим действие сил на предметы
двойного размера, но из того же материала, что и предмет одинар-
одинарного размера. Для этого существует весьма простой способ: приме-
применяют два одинаковых ползуна. Мы можем решить, одинаковы ли

эти ползуны, воздействовав на них по отдельности одной и той же

силой на протяжении равных промежутков времени. Если каждый
из ползунов получит одну и ту же скорость, то, очевидно, они имеют

одинаковые инертные массы.

Приведем в движение два одинаковых ползуна, находящихся

рядом, прикладывая к ним одинаковые силы с помощью одинаковых

пружин. Оба ползуна движутся параллельно друг другу и при этом

каждый из них приобретает одинаковую скорость Av. Затем мы

накрепко соединим ползуны вместе и приведем их в движение с по-

помощью обеих пружин, действующих одновременно. Нетрудно пред-
предвидеть, что ползуны получат ту же скорость Ди, и опыт показывает,

что это действительно так. Теперь попытаемся привести в движение

соединенные между собой ползуны с силой, создаваемой только

одной пружиной. Эта сила равна половине предыдущей. Из такой
постановки опыта, как мы уже знаем, следует, что двойной ползун
должен получить скорость, равную половине той, которую мы полу-
получали, не уменьшая в два раза величину силы. Опыт снова подтверж-
подтверждает наши предположения. Таким образом мы приходим к выводу,
что если мы прикладываем стандартную силу к двум стандартным
ползунам, то скорость сдвоенного ползуна в два раза меньше ско-

скорости одиночного ползуна,
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Итак, в опытах со сдвоенным ползуном отношение F/a удваивает-
удваивается. Но это отношение определяет величину инертной массы тела;

следовательно, с помощью двух одинаковых ползунов мы удвоили
инертную массу. Эти опыты показывают, что масса прямо про-
пропорциональна размеру однородных тел. Дальнейшие опыты, в кото-

которых изучалось движение различного числа однородных тел одного
и того же размера, подтвердили этот вывод.

В газовых ползунах и подшипниках нет ничего магического.

Зависимость инертной массы от числа отдельных предметов мы

можем исследовать и иначе. Соединим, например, вместе ряд оди-
одинаково нагруженных моделей железнодорожных вагонов с колесами

на подшипниках, обладающих очень малым трением. Условия подоб-
подобных опытов не очень близки к идеальным (в смысле устранения
всех сил, исключая те, которые мы сознательно прикладываем с

определенной целью). Однако пропорциональность инертной массы

числу вагонов удается доказать с полной очевидностью.

Результаты наших опытов с ползунами одинаковых инертных
масс, пожалуй, можно было предвидеть. Практически вопрос о ве-

величине инертной массы возникает, когда мы исследуем и сравниваем
тела из различных материалов. Не существует, например, вполне

тождественных кусков серебра и золота. Однако мы можем подобрать
два куска этих металлов, имеющие одинаковые инертные массы,

для которых, следовательно, отношение F/a одно и то же. Но такие

куски, конечно, не будут одинаковыми по размерам и составу.
Таким образом, мы видим, что инертная масса вовсе не является

исчерпывающей характеристикой размеров тела: большое тело может

иметь меньшую инертную массу, чем маленькое тело, сделанное

из другого материала.
Что произойдет, если мы соединим кусок серебра и кусок золота

одинаковых инертных масс? Чтобы определить инертную массу
нового тела, мы проделаем ряд опытов: приведем новое тело в дви-

движение с помощью различных сил, действующих в течение одного

и того же периода времени At. При этом мы найдем, что F/a, т. е.

инертная масса нового тела, точно в два раза больше инертной массы

каждого из кусков металла. Итак, соединяя эти куски в один, мы

одновременно складываем и их инертные массы. В самом деле, если

мы возьмем любой кусок золота и любой кусок серебра и отдельно

измерим их инертные массы т1 и т2, а затем соединим эти тела, то

найдем, что их общая инерная масса т, измеренная как F/a, будет
равна сумме инертных масс этих двух кусков металла: т = т1 + т2.
Это остается верным для любых тел независимо от образующих их

веществ. Инертные массы аддитивны. Заключение об аддитивности

инертных масс приводит нас к выводу, что инертная масса не за-

зависит от формы предмета или химической природы его материала.
Мы, правда, не указали, каким образом были объединены куски
серебра и золота, но в этом и нет надобности. Если, например, мы

расплавим кусок металла и затем отольем его в любую избранную
нами форму, то отношение F/a при этом не изменится,
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Подставка-
ползун

Рис. 19.10. Прибор, применяв-
применявшийся в опыте, который пока-

показывает, что инертная масса не
изменяется в химических реак-

реакциях.

Пойдем теперь дальше. Проделаем опыт с колбой, содержащей
небольшое количество металлического магния. С помощью электри-
электрической искры можно воспламенить магний и получить сильную

вспышку света. Такими магниевыми лампами часто пользуются

фотокорреспонденты. Нас же интересует другое: металлический
магний при сгорании соединяется с ки-

кислородом и образует окись магния, т. е.

другое тело. Опыт с этой лампой мы

проделаем так: прежде всего измерим ее

инертную массу, затем воспламеним в ней

магний, который превратится в окись

магния, а затем вновь измерим инертную
массу лампы. Мы найдем, что инертная
масса при этом не изменится. Следова-
Следовательно, образование химического соеди-

соединения в лампе не повлияло на величину

инертной массы.

Проделаем еще один опыт. Поместим

отдельно растворы углекислого натрия

(кристаллической соды) и хлористого
кальция в закрытый сосуд (рис, 19.10).
Измерим инертную массу этой системы;

затем наклоним сосуд так, чтобы вещества вступили в реакцию
с образованием углекислого кальция (нерастворимое белое твердое
вещество) и раствора столовой соли. Когда мы вновь измерим инерт-
инертную массу, мы не найдем никаких изменений.

Что же мы узнали об инертной массе? Она увеличивается про-
пропорционально количеству вещества в предмете. При соединении

различных кусков вещества инертные массы складываются адди-
аддитивно независимо от природы материалов компонентов. Наконец,
инертная масса сохраняется неизменной в химических реакциях,

19.6. Инертная и гравитационная массы

Свойства инертной массы напоминают нам свойства массы, из-

измеренной на весах (см. гл. 7). Когда весы находятся в равновесии,
мы говорим, что имеем на каждой чашке весов равные массы.

Массы, измеренные таким образом, называются гравитационными
массами, потому что при равновесии гравитационное притяжение
Земли действует одинаково на каждую из масс. Фактически Земля

не играет здесь никакой роли, и свойство, которое мы измеряем,
является свойством одного лишь тела. С равным успехом весы дейст-
действуют и на вершине горы, где земное притяжение на каждый предмет
гораздо слабее. Точно так же весы действовали бы и на Луне, где

массы, которые мы сравниваем, притягивались бы еще слабее.

Единственно важным обстоятельством при измерении гравитацион-
гравитационной массы является то, что мы сравниваем гравитационные притя-
притяжения, действующие на два тела, находящиеся в одном и том же

месте относительно других тел во Вселенной,
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Между измерениями, с помощью которых определяются грави-
гравитационные и инертные массы, нет никакой связи. Для того чтобы

измерить инертную массу, мы прикладываем к телу силу и находим

его ускорение. Силы тяготения не имеют никакого отношения к

этим измерениям и не используются в них. С другой стороны, когда
мы измеряем гравитационную массу на весах, находящихся в равно-
равновесии под действием сил тяготения, всякие движения тел отсутст-
отсутствуют, но для этих измерений необходимо наличие сил тяготения.

Два измерения вряд ли могли бы отличаться друг от друга более
полно. И тем не менее свойства гравитационной массы поразительно
напоминают свойства, которые мы только что установили для инерт-
инертной массы. Гравитационная масса данного вещества пропорциональ-
пропорциональна его количеству. Гравитационные массы любых веществ склады-
складываются. Гравитационная масса сохраняется в химических реакциях.

Аддитивность масс того и другого вида и сохранение их в хими-

химических реакциях наводят на мысль о том, что гравитационная и инерт-
инертная массы должны быть пропорциональны друг другу для каждого

данного предмета. Эту пропорциональность можно проверить, если

измерить инертную и гравитационную массы различных предметов,
в том числе предметов различного состава. Такие опыты проводились
много раз. В пределах наиболее высокой точности измерений, кото-

которой мы располагаем, инертные массы всех предметов оказались

пропорциональными их гравитационным массам.

Эквивалентность инертной и гравитационной масс — их экс-

экспериментально установленная пропорциональность
— делает очень

удобным применение одной и той же единицы измерения для той
и другой массы. Стандартной единицей гравитационной и инертной
масс является килограмм,— это цилиндр из сплава платины,

хранящийся в Севре и тщательно защищенный от всяких внешних

влияний. Для того чтобы найти инертную массу т некоторого
предмета в килограммах, мы придаем с помощью одной и той же

силы ускорение предмету и стандартному килограмму (массе ms)t
Мы знаем, что т

— Fla и ms
= F/as, откуда

m/ms = as/a.

Так как ms= 1 кг, то масса т в кг определяется по отношению

as/a. Например, если какая-то сила сообщает массе в 1 кг ускорение
1/2 м/с2, а другому предмету

—

ускорение 2 м/с2, то масса этого

предмета равна 1/4 кг.

Нередко весьма трудно создать идеальные условия, в которых,
приложив некоторую силу к предмету, мы могли бы быть уверены
в том, что никакие неизвестные силы не повлияют на результирую-
результирующее движение. Однако измерять инертную массу каждого интере-
интересующего нас предмета этим прямым путем нет никакой нужды.
Вследствие эквивалентности инертной и гравитационной масс изме-

измерение гравитационной массы дает нам сведения и об инертной массе.

О различии между ними не следует беспокоиться, слово «масса»

мы обычно применяем по отношению к ним обеим,
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19.7. Закон Ньютона. Динамическое измерение величины силы.

Единицы измерения
Соотношение FAt^tnAv показывает, какова связь изменения

скорости Av с инертной массой /п, с силой F как причиной движения

и со временем Д*, в течение которого действует сила. Этим соотно-

соотношением выражается закон движения Ньютона*). Зная массу пред-
предмета, мы можем использовать закон Ньютона двумя путями. Мы
можем предсказать изменение скорости предмета, если знаем силу

F и время Д^, в течение которого она действует; или мы можем

определить силу путем наблюдения за изменением скорости пред-
•мета. Когда мы измеряем ускорение тела и, зная его величину,

определяем силу, действующую на тело, закон Ньютона удобно
записывать следующим образом:

F — mAv/At, или F — tna.

Формула ясно показывает, что сила пропорциональна ускорению.
В этой формуле причина движения находится в одной ее части,

а инертная масса тела и характеристика его движения
— в другой.

Предположим, что мы наблюдаем один и тот же предмет в двух

разных опытах. Допустим, что во втором опыте увеличение скорости
втрое больше, чем в первом. Это приводит к выводу, что сила,

действующая во втором опыте, в три раза больше силы в первом
опыте. Иначе говоря, мы используем ускорение а = Av/At данного
предмета как меру действующей на него силы. Точно так же мы

использовали ускорение раньше, устанавливая равенство сил, создан-
созданных двумя одинаковыми пружинами, на основании равенства ускоре-
ускорений, которые под их действием получил один и тот же предмет.

Теперь мы располагаем динамическим методом для определения
как инертных масс, так и сил. Начнем с массы в один килограмм.
Силу, сообщающую массе в 1 кг ускорение в 1 м/с2, мы примем за

единицу силы. Эту силу называют ньютоном. Для того чтобы изме-

измерить другую массу, мы определяем ее ускорение, когда на нее дейст-
действует сила 1 ньютон (сокращенно: 1Н). Мы видели, что инертная
масса равна Fla. Следовательно, если сила равна 1Н, то масса

в килограммах равна т = 1 Н :а, где а выражается в м/с2. При этом

способе мы применили стандартную массу, чтобы получить стан-

стандартную силу. Затем мы применили стандартную силу и отношение

m = Fla для измерения интересующих нас масс других предметов.
Это же соотношение мы можем использовать для определения

других сил. По формуле F = та мы можем найти любую силу, кото-

которая действует на одну из известных нам масс, путем измерения уско-
ускорения, создаваемого этой силой. Ускорение в м/с2, умноженное на

массу в килограммах, дает силу в ньютонах.

*) То, что мы называем законом Ньютона, часто называют его вторым зако-

законом, а закон инерции Галилея, являющийся частным случаем общего закона,
иногда называют первым законом Ньютона. Эти названия не меняют сути дела,

однако иной раз их важно знать, чтобы вы могли понять, что именно кто-то имеет

в виду, когда он, например, говорит: «Согласно первому закону Ньютона».
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19.8. Переменные силы и закон Ньютона

Мы рассмотрели закон движения Ньютона в особых частных

условиях. Для упрощения задачи мы массам, находящимся в состоя-

состоянии покоя, сообщали ускорение с помощью постоянной силы. А если

изменять величину силы, действующей на тело во время движения?
Останется ли неизменной найденная нами зависимость между силой

и ускорением или нет?

Допустим, что мы действуем на предмет, находящийся перво-
первоначально в состоянии покоя, постоянной силой в течение определен-
определенного промежутка времени. Пока на него действует сила, предмет

будет увеличивать скорость. С прекращением действия силы исчез-

исчезнет и ускорение; тело будет двигаться с постоянной скоростью.
Если мы снова приложим к нему силу, тело снова будет двигаться

с ускорением. Допустим, мы прикладываем силу в направлении,

противоположном движению. При этом мы должны считать, что

ускорение будет действовать в направлении силы. Так как оно

противоположно движению, то предмет должен замедлять свое

движение, вместо того чтобы увеличивать скорость. Опыты пока-

показывают, что замедление равно F/m, где F — сила, am
—

инертная
масса.

Находится ли тело в покое или плавно движется в пространстве
с той или иной скоростью, например со скоростью 105 м/с, сила

будет придавать ему ускорение а = F/m. Нет никакой необходимости

измерять скорость, которую получит тело в этих условиях. Неза-

Независимо от того, как изменялось движение тела в прошлом и каково

его движение в настоящий момент, сила заданной величины, дейст-
действующая в направлении движения, всегда будет создавать одно
и то же ускорение.

Уравнение
F At = т Av

показывает, что можно выделить любой больший или меньший

промежуток времени Д^ и найти приращение скорости Av за это

время; величина Av будет при этом зависеть только от инертной
массы т и приложенной силы F безотносительно к тому, как изме-

изменялось движение тела до или после промежутка времени А/.
Все явления, рассмотренные в этом разделе, были изучены экс-

экспериментально с очень высокой точностью. Когда мы, однако,
наблюдаем за массами, движущимися с весьма большими скоростя-
скоростями, становятся заметными незначительные отклонения от закона

Ньютона. Когда скорость приближается к 108 м/с, отклонения от

закона Ньютона достигают нескольких процентов. Уравнение
FAt~mAv уже не отражает правильно наблюдаемые явления.

Таким образом, расширяя диапазон наблюдений, мы приходим
к выводу, что закон Ньютона необходимо видоизменить. Его сле-

следует расширить и притом таким образом, чтобы в его новой форме
он давал возможность описать поведение тел при больших скоростях
движения. С другой стороны, его формулировка должна оставаться

23



такой же, какой она была, когда мы изучали поведение тел при
низких скоростях. Эйнштейн и другие ученые указали ту более

общую форму закона Ньютона, которая одинаково хорошо удовле-

удовлетворяет условиям движения как при малых, так и при очень больших

скоростях. Это видоизменение не опровергает закон Ньютона, оно

включает и расширяет его.

19.9. Как складываются силы? Результирующая сила

До сих пор мы изучали движение предмета, на который действо-
действовала лишь одна сила. Что произойдет, если на один и тот же предмет
будут действовать две или несколько сил? Вспомним опыт с ползу-

ползуном, который мы приводили в движение с помощью двух одинако-
одинаковых пружин, расположенных одна возле другой. Применяя это

устройство, мы установили, что сила, действующая на ползун,
в два раза больше силы, развиваемой одной пружиной, и ускорение,
полученное ползуном в этих условиях, в два раза больше ускорения,
созданного одной пружиной. Ускорение, следовательно, пропор-

пропорционально сумме сил двух отдельных пружин.
Мы можем также растянуть две одинаковые пружины на одина-

одинаковую длину в противоположные стороны (рис. 19.11). Ползун
останется в покое и не получит
никакого ускорения. Например,

/у

F

Рис. 19.11. Две силы, равные по вели-
величине и противоположные по направле-
направлению, действуют на ползун. Результи-

Результирующая сила и наблюдаемое ускорение
равны нулю

Рис. 19.12. Сила Ft, равная ЗН, действует
вправо, а сила FXt равная 1Н, — влево. Скла-

Складывая их подобно смещениям, получаем сум-

сумму F* равную 2Н, действующую вправо. Это
и есть результирующая сила, фигуриру-

фигурирующая в законе Ньютона.

если вы с товарищем будете тянуть с одинаковой силой книгу каж-

каждый в свою сторону, то книга не получит никакого ускорения. Благо-

Благодаря тому что вы тянете книгу в разные стороны, силы, приложен-
приложенные к ней, в сумме равны нулю. Ясно, что результирующая
сила, изменяющая состояние движения тела, возникает при сумми-
суммировании сил таким же путем, каким мы производили суммирование
векторов в части I курса. Две силы, равные по величине и противо-
противоположные по направлению, взаимно уничтожаются, и одну из них

можно считать равной другой с обратным знаком.

В тех случаях, следовательно, когда силы действуют на предмет
в противоположных направлениях, ускорение предмета пропорцио-
пропорционально сумме сил, взятых с противоположными знаками соответст-
соответственно их направлениям. Когда на ползун действует сила в 1 Н
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влезо, а сила в 3 Н действует на него вправо, то ползун движется

вправо с таким ускорением, как если бы на него действовала одна

сила в 2 Н. Общая сила в 2 Н является суммой отдельных сил,

действующих так, как это показано на рис. 19.12. Вообще, когда

на предмет действует любое число сил, мы находим, что закон

движения Ньютона выполняется, а наблюдаемое ускорение возни-

возникает как результат действия ре-

результирующей силы.

Нет необходимости всегда

прикладывать две силы в одном

Рис. 19.13. Две силы равной величины дейст-

действуют под углом друг к другу. Предмет получает

ускорение в направлении пунктирной линии,

делящей пополам угол между направлениями
этих двух сил. Мы приходим к заключению, что

результирующая сила направлена вдоль указан-
указанной линии.

Рис. 19.14. Векторное сложение двух
сил, показанных на рис. 19.13. Сумма
этих сил является результирующей си-
силой, которая определяет как величину,
так и направление ускорения данной

массы.

направлении или в противоположные стороны; их можно, конечно,

прикладывать и под углом друг к другу. Каковы будут тогда на-

направление и величина результирующей силы? Допустим, что мы

действуем на тело двумя равными силами с помощью двух одинако-

одинаковых пружин, как это показано на рис. 19.13. Мы находим, что тело

движется с ускорением вдоль линии (на рисунке она показана пунк-

пунктиром), делящей на две части угол между направлениями этих

двух сил. Следовательно, результирующая сила направлена вдоль

пунктирной линии. Отсюда легко сделать вывод, что результирую-
результирующая сила является векторной суммой двух сил, развиваемых двумя

пружинами. Опыты показывают, что это именно так. Ускорение,
созданное двумя пружинами (рис. 19.13), определяется по формуле
F—ma, где F — величина вектора, который мы получаем, если

каждую отдельную силу изобразим вектором, а затем сложим их

вместе так, чтобы получить вектор общей результирующей силы

(рис. 19.14). Точно так же, когда две силы не равны или когда имеется

больше двух сил, величина и направление результирующей силы

определяются векторной суммой отдельных сил. Эта общая сила

определяет величину ускорения в соответствии с формулой a=F/m,
Подведем теперь итоги тому, что мы изучили до сих пор. Мы

начали с измерения ускорений, которые тела, находившиеся перво-
первоначально в состоянии покоя, получают под действием только одной
силы. Это привело нас к закону движения Ньютона. Затем мы иссле-

исследовали, что происходит с телом, которое уже движется, если на

него будет действовать сила в направлении движения или в противо-
противоположном направлении. Мы нашли, что закон Ньютона продолжает
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выполняться. Вслед за этим мы изучили, что происходит с телом,

если на него действует несколько сил. И снова оказалось, что закон

Ньютона выполняется, как если бы одна общая сила действовала
на тело. Эта сила является векторной суммой всех сил, действую-
действующих на тело.

19.10. Векторная природа закона Ньютона
Закон Ньютона имеет значительно более общий характер, чем

мы это показали.

До сих пор мы рассматривали действие результирующей силы

только в направлении движения предмета или в противоположном
направлении. В результате действия этих сил изменялась скорость
предмета, но не направление его движения. Однако силы можно

прилагать и в любых других направлениях. Мы можем, например,
сместить движущийся шар с его траектории толчком, перпендику-
перпендикулярным к направлению его движения. С помощью такого рода опы-

опытов мы приходим к общему выводу о том, что силы изменяют вектор

скорости, характеризующий движение предмета, или по величине,

или по направлению, или же одновременно изменяют обе эти харак-

характеристики движения. Сила сама по себе является векторной величи-

величиной, а закон Ньютона связывает ее с другим вектором
—

вектором
скорости. Мы должны писать этот закон так:

FAt = m Av,
или

F = m

где а— вектор ускорения. В следующей главе мы приведем некото-

некоторые из доказательств векторного характера закона Ньютона и об-

обсудим некоторые выводы, которые из него вытекают,

19.11. Силы в природе
Когда мы прикладываем к предмету некоторую силу, мы не

можем быть уверены в том, что она является единственной силой,
действующей на предмет (рис. 19.15).

Иногда нам не сразу становится ясным происхождение сил,

действующих на предмет. Силы могут возникать в результате дви-
движения предмета. Например, ветер, воздействуя на поверхность
воздушного шара, может создать силу, что вынудит нас тянуть
воздушный шар в противоположном направлении, чтобы он не

улетел. Даже когда мы в спокойном воздухе перемещаем воздушный

шар, воздух создает силу, противоположную движению. Когда

воздушный шар движется, то его ускорение не определяется только

той силой, которую мы прикладываем. Ускорение определяется

результирующей силой. Если эта сила равна нулю, то и ускорение
равно нулю, воздушный шар движется с постоянной скоростью.
Мы можем измерить силу, созданную ветром, дующим с постоян-

постоянной скоростью и приводящим в движение воздушный шар. Для этого

надо измерить растяжение пружины, прикрепленной к веревке,
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Рис. 19.15. Сила, которую мы прикладываем
к предмету, может оказаться не единствен-

единственной действующей на него силой.

удерживающей воздушный шар на месте. Эта сила увеличивается
с увеличением скорости ветра, что нас не удивляет, так как мы

хорошо знаем: чем быстрее ветер
— тем он сильнее. Таким образом,

чтобы найти результирующую силу, сообщающую воздушному
шару ускорение, когда мы его тянем в спокойном воздухе, мы долж-

должны из величины прикладываемой нами силы тяги вычесть силу со-

сопротивления воздуха.
Силы трения становятся более заметными, когда мы изучаем

внешнее трение твердых тел и пытаемся, например, сдвинуть ка-

какой-либо предмет, лежащий на

столе. В противоположность тем

силам торможения, которые воз-

возрастают при увеличении скоро-
скорости, например при движении с

ускорением воздушного шара в

воздухе, силы трения часто почти

не зависят от скорости.
Несомненно, что именно пов-

повсеместное участие сил трения в

различных движениях привело в

свое время греков к выводу о

том, что для поддержания движения с постоянной скоростью
необходимо действие некоторой силы. Эта сила равна по вели-

величине и противоположна по знаку силам трения и сопротивле-
сопротивления воздуха, а их равнодействующая равна, следовательно, нулю.

Понятие о силе, как о причине движения, является особо ценным

потому, что дает нам возможность предсказать, какое движение

произойдет в данной ситуации. Одни и те же силы возникают всякий

раз, когда возникают одни и те же ситуации. Некоторые силы не

зависят от движения; такова, например, сила тяготения, или вес

тела. Как мы увидим в следующей главе, это одна и та же сила неза-
независимо от того, движется ли тело или покоится. Если мы знаем
наше географическое положение, то знаем и то, какую силу тяготе-
тяготения следует ожидать в данном месте, а следовательно, можно пред-
предсказать движение падающего предмета. Другие силы зависят от

скорости движения одного тела по отношению к другому.
Одной из важнейших проблем, с которыми мы сталкиваемся,

является проблема изучения сил природы. Зная эти силы, мы сможем

предсказывать движения, что, в свою очередь, даст возможность

конструировать механические машины и аппараты.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1*. В чем заключается различие между кинематикой и динамикой?
(Раздел 19.1.)

2*. Нужно ли было Галилею измерять время, чтобы произвести экстрапо-
экстраполяцию, приведшую его к закону инерции? (Раздел 19.2.)

3. Шарик, находившийся в покое на левой наклонной плоскости (см. рис. 19.4)
на высоте 10 см от самой нижней точки, освобождается и катится вниз.
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а) Если нет трения, то как высоко по вертикали поднимется он по правой
наклонной плоскости?

б) Если правая наклонная плоскость имеет подъем 1 см по вертикали на каж-

каждые 10 см горизонтального направления, то как далеко по этому направлению

прокатится шарик, поднимаясь по наклонной плоскости?

в) Если наклонная плоскость имеет подъем только 0,5 см по вертикали на

каждые 10 см горизонтального направления, то как далеко уйдет шарик?
4*. Шарик из оконной замазки, который заставляли кататься кругом по

внутренней поверхности круглодонного чашеобразного сосуда, быстро' скаты-

скатывается в середину дна и там останавливается, как только прекращают вращать
чашу. Стальной же шарик сделал бы по инерции не один оборот, прежде чем

скатиться в середину дна. Каково было бы движение шарика в «идеальном» случае
после остановки чаши? (Раздел 19.2.)

5. Почему опасно вести машину по обледеневшему шоссе?
6*. Если шарик катится со скоростью 20 см/с и на него не действует никакая

сила, то какова будет его скорость через 5 с? (Раздел 19.2.)
7*. Используя табл. 19.1, найдите, какое значение имела бы средняя ско-

скорость в восьмом промежутке времени, если бы ползун продолжали тянуть с

помощью петлеобразной пружины? (Раздел 19.3.)
8*. Пусть ползун ускоряется так, что сначала он имеет скорость 10 см/с,

в конце последующей секунды — 12 см/с, в конце следующей — 14 см/с и т. д.
Что можно сказать о действующей на ползун силе? (Раздел 19.3.)

9. Некоторое тело тянут по ровной горизонтальной поверхности с помощью

пружины, растяжение которой поддерживают все время постоянным. При этом

было установлено, что те4 получило ускорение
75

25

15 см/с2. Найдите ускорение, которое получит
тело, если на него будут действовать две раз-
размещенные рядом пружины, точно такие же, как

и первая, и растянутые на ту же длину (см. рис.
19.8.)

10. Предмет, на который действует постоян-

постоянная сила, движется, почти не встречая сопро-
сопротивления трения. Через 0,3 с его скорость воз-

возрастает с 0,2 до 0,4 м/с. Во втором опыте вели-

величина силы изменяется, и за тот же промежуток
времени скорость предмета возрастает с0,5 до
0,8 м/с.

а) Каково отношение второй силы к пер-
первой?

_j | б) Если бы во втором опыте сила действова-

6 8 -

ла на пРеДмет в течение 0,9 с, то как измени-

"Число резиж лась бы в этих условиях его скорость? (Помните,
что силы направлены в сторону движения.)

Рис. 19.16. К задаче И. \\щ Брус тянут по горизонтальной поверхно-
поверхности за 2, затем за 4, 6 и, наконец, за 8 рези-

резинок. Все резинки одинаковы и растягиваются одинаково во всех опытах.

График на рис. 19.16 дает зависимость получающихся значений ускорения от

числа параллельных резинок.
а) Какое заключение следует из того, что зависимость выражается прямой

линией?

б) Что выражает отрезок, отсекаемый на горизонтальной оси?

в) Можно ли воспользоваться графиком на рис. 19.16 для того, чтобы пред-

предсказать ускорение в случае, если брус тянут с помощью одной такой же резинки,

растягиваемой в такой же степени?

г) Положим, что опыт повторяется с заменой поверхности, по которой тянут
брус. Как это скажется на виде графика?

12*. Предположим, что рис. 19.7 соответствует движению справа налево.
В каком направлении должна действовать для этого сила? (Раздел 19.4.)

13*. Автомобиль получает ускорение 3 м/с2. Каково будет его ускорение при
тех же условиях, если он буксирует второй, такой же, автомобиль? (Раздел 19.5.)
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14. Почему закрыта колба, изображенная на рис. 19.10? Приготовьтесь к

ответу на этот вопрос в классе.

15. Почему мы так педантично различаем гравитационную и инертную массы,
вместо того чтобы говорить об одной массе, поскольку они эквивалентны?

16*. Два предмета ускоряются в отдельности одинаковой силой. Предмет Л

получает ускорение 20 см/с2, а Б — 60 см/с2. Каково отношение:

а) их' инертных масс;
б) их гравитационных масс? (Раздел 19.6.)
17*. Картонная коробка уравновешивается на весах двумя консервными

банками. Определенная сила сообщает картонной коробке ускорение 2 м/с2.

Какое ускорение сообщит та же сила одной из консервных банок? (Раздел 19.6.)
18*. Тело, имеющее массу 0,5 кг, движется с ускорением 4 м/с2. Какая дей-

действует на него сила? (Раздел 19.7.)
19*. Покоящемуся полукилограммовому мячу мальчик за 0,2 с сообщает

скорость б м/с. Какова средняя сила, с которой он действует на мяч? (Раздел 19.7.)
20, Сила 5 Н сообщает массе т± ускорение 8 м/с2, а массе т2 — ускорение

24 м/с2. Какое ускорение под действием той же силы получат обе массы, если их

соединить вместе?
21. На рис. 19.17 представлен график скорости прямолинейного движения

предмета массой 2 кг в зависимости от времени. Постройте график силы в зави-

зависимости от времени.

/77,

Ь 8 12 16 20

Рис. 19.17. К задаче 21. Рис. 19.18. К задаче 23.

22. Тело массой 3 кг движется по гладкой горизонтальной поверхности со

скоростью v0. В некоторый момент времени t= 0 на это тело в направлении, про-

противоположном движению, начинает действовать сила 18 Н. За время, в течение

которого тело проходит 9 м, эта сила уменьшает наполовину величину v0. Сколько

для этого потребуется времени? Какова величина v0?
23. На рис. 19.18 изображены массы т1 и т2. В момент t—0 масса т1 поко-

покоится, а /л2 движется со скоростью v0. Можно ли подобрать такую постоянную по

величине и направлению силу, одинаковую для обеих масс, которая, будучи
приложена к ним одновременно, к некоторому моменту доведет их скорость до
одинакового значение? Попытайтесь аргументировать ответ количественно и

затем проверьте заключение, написав соответствующие уравнения. Рассмотрите
все случаи: т1<т2, m1= m2 и тх> т2.

24." Вы наблюдаете предмет, который движется так, что пройденное им рас-
расстояние прямо пропорционально f3, где t — время.

а) Какой вывод вы могли бы сделать относительно величины ускорения?
Является ли оно постоянным? Увеличивается? Уменьшается? Равно нулю?

б) Какой вывод вы можете сделать относительно действующих сил? Приго-
Приготовьтесь к обсуждению этого вопроса в классе.

25*. Если на предмет действуют несколько различных по величине и направ-
направлению сил, в каком направлении он будет ускоряться? (Раздел 19.9.)

26*. Каково было бы ускорение ползуна на рис. 19.11 при массе 0,5 кг, силе

Ft=Q Н н силе F2= 10 Н? (Раздел 19.9.)
27*. Положим, что на рис. 19.13 F1— F2 = 2,0 Н. Какова равнодействующая

сил, приложенных к ползуну? (Раздел 19.9.)
^

28. Блок массой 8 кг начинает движение из состояния покоя по горизонталь-
горизонтальной поверхности стола под действием постоянной силы 2 Н. Установлено, что
это те чо прошло расстояние 3 м за 6 с.
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Канал

Ff32QH
Рис. 19.19. К задаче 30.

а) Каково ускорение тела?
б) Каково отношение приложенной силы к массе?

в) Так как ваш ответ на вопрос по п. б) не совпадает с ответом по п. а) (по
крайней мере, он не должен совпадать), то какие бы вы смогли сделать выводы в

отношении этого движения? Если возможно, приведите в связи с вашим выводом

численную характеристику.
29. Два человека хотят повалить дерево при помощи каната, привязанного

вблизи вершины. Если они будут пользоваться одним канатом, то дерево упадет
на них своей вершиной. Чтобы предотвратить это, они привязали два каната

длиной по 10 м к той же самой точке и отошли
в стороны, находясь друг от друга на рас-
расстоянии 10 м. Если каждый будет тянуть с

силой 300 Н, то с какой силой канаты будут
действовать на дерево?

30. Двое мужчин и мальчик тянут лодку

вдоль канала. Мужчины тянут с силами Ft
и F2, величины и направления которых пока-

показаны на рис. 19.19. Требуется найти величину
и направление наименьшей силы, которую
должен приложить к лодке мальчик, чтобы

удерживать лодку на середине канала.
31*. Чтобы передвигать холодильник по

полу с постоянной скоростью, требуется сила
в 200 Н. Чему равна сила трения, испытываемого холодильником? (Раздел 19.9.)

32. Сила сопротивления воздуха при движении воздушного шара пропорцио-
пропорциональна квадрату скорости. Пусть для данного воздушного шара эта сила выра-
выражается в ньютонах формулой Fconp= 0,2 и2, где v — скорость в м/с. Допустим,
что детский воздушный шар имеет массу 10 г, включая и массу газа внутри шара.

а) Постройте графики ускорения как функции скорости, когда к шару при-
приложена сила 1,8 Н и когда действует сила 7,2 Н.

б) Какова максимальная скорость, которую получит шар в том и другом
случае?

в) Если бы масса шара равнялась 5 г, то как бы это повлияло на величину
максимальной скорости?

г) Как будет влиять на максимальную скорость шара увеличение его объема?

33. Аристотель учил, что для поддержания постоянной скорости движения
необходимо действие постоянной силы. Отсюда он пришел к выводу, что при от-
отсутствии такой силы тела остаются в покое.

а) Назовите несколько примеров, в которых постоянство силы определяет
постоянство скорости.

б) Как вы объясните в свете закона Ньютона приведенные вами в п. а) при-
примеры?

34. Какое определение дали бы вы единице массы, если бы в результате меж-
международного соглашения эталон массы в Севре был заменен на эталон силы в виде,
например, эталонной пружины?



ГЛАВА

20 ДВИЖЕНИЕ У ПОВЕРХНОСТИ ЗЕМЛИ

В этой главе мы приступим к изучению сил природы. Мы будем
изучать их, или наблюдая движение тел, на которые они действуют,
или, когда это возможно, уравновешивая их уже известными нам

силами. Например, одной из самых знакомых всем сил является

сила тяжести, которая притягивает тела, находящиеся на поверх-
поверхности Земли, по направлению к ее центру. С изучения этой силы

мы и начнем.

20.1. Вес и поле тяготения Земли
В гл. 7 мы узнали, что предметы на поверхности Земли притя-

притягиваются к ее центру. Различные тела притягиваются с разной
силой. Величина силы притяжения ч * /

#

Земли, действующей на предмет, на-

называется весом предмета. Его можно . | *

измерить, подвесив предмет к пружи-
"^

\ Ч
.

, r\t
"**

не со шкалой, проградуированной в
^ ^^ 3бШЯ ^J.

ньютонах.

Если мы измерим вес стандартной ^ / * \^/ >ч

килограммовой массы где-нибудь на f
поверхности Земли, то он окажется у ^
примерно равным 9,8 Н. В действи-
действительности вес предмета на земной i

ПОВерХНОСТИ НеСКОЛЬКО Меняется ОТ Рис. 20. 1. Поле тяготения Земли.

К MeCTV. ЭТО НеЗНаЧИТеЛЬНОе ИЗ- Внутренний ряд векторов представ-
xv XVIV.V-1J. v^iw xiwuu^niv^uiiw^ по

ляет величину и направление поля

В Весе ОДИНаКОВО ДЛЯ ВСеХ тяготения на поверхности Земли.

предметов. Например, на Северном №% *l%*??^^ **!?№
ПОЛЮСе МаССа 1 КГ ВеСИТ 9,83 Н, ТОГДа (радиус Земли равен 6.10«м).

как на экваторе ее вес составляет

9,78 Н. На полюсе масса 2 кг весит 19,66 Н, а на экваторе 19,56 Н.
Обе массы меняют вес на 0,5% при перемещении их с полюса на

экватор. Но в одном и том же месте вес массы 2 кг всегда ровно вдвое
больше веса массы в 1 кг. Поэтому сила тяготения Z7, действующая
на предмет с гравитационной массой mgy может быть выражена так:

где g— коэффициент пропорциональности между силой тяготения

и массой. Величина массы не зависит от ее положения на земной
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поверхности: если две массы уравновешены на рычаге (с плечами

равной длины) в одном месте на Земле, то это равновесие сохранится
и в любом другом месте. Поэтому мы приходим к выводу, что коэф-
коэффициент пропорциональности ^незначительно изменяется на земной

поверхности от места к месту, но в данном месте он одинаков для

всех масс.

Коэффициент g есть сила тяготения, действующая на единицу
массы. Это вектор с размерностью Н/кг. Мы можем измерить его

для большого числа точек земной поверхности и составить таблицу.
Такая совокупность физических величин, зависящих от положения,
называется полем; в частности, сила тяготения рассчитанная на

единицу гравитационной массы для совокупности различных точек,
как-либо расположенных относительно Земли, называется полем

тяготения Земли. На рис. 20.1 изображена часть поля тяготения

вокруг Земли, а табл. 20.1 дает величины g в некоторых местах

земной поверхности.
таблица 20.1

Значения g в некоторых местах земной поверхности

Место

Северный полюс

Гренландия
Стокгольм

Брюссель
Банф
Нью-Йорк

Ши-

Широта

90°

70°

59°

51°

51°

41°

Высо-

Высота, м

0

20

45

102

1376

38

Н/кг

9,832
9,825

9,818
9,811
9,808
9,803

Место

Чикаго

Денвер
Сан-Франциско
Зона Панамско-
Панамского канала

Ява

Новая Зеландия

Широта

42°

40°

38°

9°

6° южн.

37° южн.

Высо-
Высота, м

182

1638

114

6

7

3

Н/'кг

9,803

9,796

9,800

9,782

9,782

9,800

20.2. Свободное падение

Как движется предмет в поле тяготения g Земли? Предположим,
что тело падает. Его движение определяется результирующей дейст-

действующих на него сил и величиной его инертной массы. Результирую-
Результирующая сила F, действующая на падающее тело, выражается векторной
суммой силы тяготения Fg = mgg (вес тела) и сопротивления воз-

F

Согласно закону движения Ньютона, ускорение тела пропор-
пропорционально результирующей силе и обратно пропорционально его

инертной массе miy т. е.

Сопротивление воздуха для тел, более или менее плотных, незна-

незначительно при малых скоростях, поэтому им можно пренебречь по

сравнению с весом тела. В этих условиях имеет значение только

сила тяготения, и ускорение должно быть равно
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Эта формула может показаться странной. Ведь отношение mg/mi9
как установлено в гл. 19, одинаково для всех тел. Следовательно,
ускорение не должно зависеть от массы тела.

И действительно, если измерить тг и mg в еди-

единицах стандартного килограмма, то они окажут-
окажутся равными друг другу, т. е. тё1тг = 1. Из это-

этого следует, что для свободно падающего тела

Иными словами, мы можем утверждать, что все

предметы, движущиеся только под действием поля
тяготения Земли, ускоряются одинаково, если

они находятся в одном и том же месте этого

поля. Мы можем измерить напряженность поля

тяготения g в данной точке вблизи Земли, из-

измеряя ускорение какого-либо тела, проходящего
эту точку в „свободном падении.

Мы привели теоретические соображения, а

что мы наблюдаем в действительности? Все тела,
достаточно плотные (большая масса на единицу
объема), в одном и том же месте действительно
падают с одинаковым ускорением. Величина

ускорения, с которым они падают в любом месте

вблизи поверхности Земли, приблизительно рав-
равна 9,8 м/с2. При этом безразлично, будем ли мы

измерять ускорение в лаборатории на нижнем или

на верхнем этаже здания, начало ли тело падать

из состояния покоя или после того, как оно было

подброшено с определенной вертикальной ско-

скоростью.
Тщательные измерения пути, пройденного

падающим телом, на фотографии (рис. 20.2), по-

полученной методом импульсной фотосъемки, дали

результаты, приведенные в табл. 20.2. Снимки

производились с интервалом в 1/30 с. Эти ре-

результаты подтверждают наш вывод о том, что

поле тяготения вблизи поверхности Земли вы-

вызывает ускорение падающих тел, равное пример-
примерно 9,8 м/с2 и направленное вертикально вниз.

Мы ограничили свои рассуждения компакт-

компактными, плотными предметами потому, что сопро-
сопротивление воздуха для них минимально. Но если

бросить мячик для пинг-понга, то он пролетит
лишь очень небольшое расстояние, двигаясь уско-
ускоренно, а вслед за этим сила сопротивления возду-
воздуха уравновесит силу его притяжения к Земле,
и мячик начнет двигаться с постоянной скоростью. Вообще сопротив-
сопротивление воздуха возрастает с увеличением скорости. Поэтому, если
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Рис. 20.2. Импульсный
фотоснимок падающе-
падающего бильярдного шара.
Масштаб рейки—в сан-

сантиметрах.



ТАБЛИЦА 20.2

К анализу движения, изображенного на рис. 20.2

Номер
интервала

1

2

3

4

5

6

7

8

9

10

11
11

Пройденный
путь Ах, см

7,70

8,75

9,80

10,85

11,99

13,09

14,18

15,22

16,31

17,45

1 ft ^9

Средняя ско-

скорость V, СМ/С

231

263

294

326

360

393

425

457

489

524

Изменение сред-
средней скорости Av,

см/с

32

31

32

34

33

32

32

32

35

32

Ускорение
Av/At, м/с*

9,6

9,3

9,6

10,2

9,9

9,6

9,6

9,6

10,5

9,6

Среднее ускорение 9,8

Значения ускорений, приведенные в таблице, постоянны в пределах
погрешностей наших измерений. Несмотря на то что положения шара
отсчитывались по находящейся рядом с ним линейке, последние значащие
цифры чисел в графе Ад: весьма неточны; доли миллиметра определены
лишь приближенно. Мы, однако, не округляли эти числа, чтобы избежать
увеличения ошибок при дальнейших вычислениях. Обратим внимание на то,
что в графе скорости мы оставили только три значащие цифры.

тело падает с достаточной высоты, оно приобретает такую скорость,
что сопротивление воздуха становится равным его весу. После этого
тело продолжает падать с постоянной скоростью. Эту постоянную
конечную скорость мы будем называть предельной скоростью падаю-
падающего тела. (Задача: что будет происходить, если бросить вниз элект-

электролампочку со скоростью, большей ее предельной скорости?)
Мы можем проверить, действительно ли отклонения от свобод-

свободного падения вызываются сопротивлением воздуха. Для этого

надо произвести эксперимент в вакууме. Оказывается, что

в безвоздушном пространстве все предметы, независимо от их формы
или плотности, в данном месте земной поверхности падают с одина-

одинаковым ускорением. Более того, поскольку g не меняет существенно

ни своего направления, ни своей величины, за исключением тех

случаев, когда мы передвигаемся на расстояния, соизмеримые с раз-
размерами Земли, ускорение можно считать одним и тем же для пред-
предметов, падающих в пределах комнаты, большого здания, города
или даже государства. В районе, в пределах которого поле тяготе-

тяготения Земли g практически постоянно и где действует только сила

34



тяготения Земли, все предметы падают с постоянным ускорением,
равным g. Начиная движение из состояния покоя, они за время
t приобретают скорость, направленную вертикально вниз и равную

при этом они проходят расстояние

выражаемое площадью под кривой на графике «скорость
(рис. 20.3). Снова воспользовав-

воспользовавшись импульсной фотосъемкой
(рис. 20.2), можно показать, что

расстояние d, если движение на-

началось из состояния покоя, увели-
увеличивается по закону gt2/2.

время»

А
Л
л
А
А

/

1 2

Время, с

Рис. 20.3. График изменения скорости сво-
свободно падающего тела. Вертикальное смеще-
смещение или расстояние, пройденное падающим
гелом, выражается площадью под кривой,
». е. площадью треугольника с основанием t

и высотой gt. Эта площадь равна gi2i2.

Рис. 20.4. Импульсный фотоснимок движе-
движения двух мячей, один из которых брошен
горизонтально, а другой одновременно с

первым начинает падать вертикально. Про-
Продольные полосы на снимке соответствуют
расстоянию 15,2 мм. Интервал между вспыш-

вспышками — 1/30 с.

20.3. Движение тела, брошенного горизонтально. Векторный ха-

характер закона движения Ньютона.

Ускорение тел, падающих под действием силы тяжести, в от-

отсутствие других сил всегда одинаково. Имеет ли это место, если тела

движутся в поле тяготения Земли по направлениям, отличным от

вертикального?
На рис. 20.4 приведена импульсная фотография двух падающих

мячей. В одно и то же мгновение один мяч начал падать из состояния

покоя, а второй был брошен горизонтально. Мы видим, что по вер-
вертикали перемещения обоих мячей одинаковы, несмотря на то, что

по горизонтали их перемещения различны. Мы видим также, что

горизонтальное движение происходит с постоянной горизонтальной
скоростью, подобно движению по инерции. Наличие силы, направ-
направленной вниз, не изменяет горизонтального движения, а наличие
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горизонтального движения не искажает действия силы, направлен-
направленной вниз и вызывающей вертикальное движение. Наши наблюдения
показывают, что горизонтальное и вертикальное движения не за-

зависят друг от друга. Каждое является результатом действия соот-

соответствующей составляющей вектора силы: вертикальная состав-

составляющая FB = tng и поэтому вертикальное движение происходит
по закону свободного падения; горизонтальная составляющая

FT = 0 и поэтому горизонтальное движение протекает без ускорения.
В конце предыдущей главы мы нашли, что результирующая

сила F, действующая на тело, является вектором. В гл. 6 было по-

показано, что ускорение а — тоже вектор. Отсюда следует, что нью-

ньютоновский закон движения является векторным законом. Если сила

F действует в направлении движения, то направление ускорения
а связано с силой уравнением F = та. В предыдущей главе мы,

однако, не рассматривали ни одного движения, в котором результи-
результирующая сила F действовала бы под углом к скорости V. Поэтому
позволительно спросить: выполняется ли закон движения Ньютона
и в тех случаях, когда F и v имеют разные направления? Направле-
Направлено ли ускорение в направлении силы и в этом случае? Одинаково ли

ускорение для сил одинаковой величины, но разного направления?
Движение тела, брошенного горизонтально, представляет собой

первый рассматриваемый нами случай, когда направления F и v

различны. Наблюдения показывают, что сила тяготения Земли

Fвызывает одинаковое вертикальное ускорение независимо оттого,
имеется ли горизонтальное движение или нет.

Хотя этих наблюдений и недостаточно для доказательства, что

F = та, тем не менее они говорят о том, что закон Ньютона в этой

простой форме не зависит от направления движения. Рассмотрев
путь тела, брошенного горизонтально, мы перейдем к опытам с дру-
другими силами, направление которых не совпадает с направлением
движения. Мы найдем, что векторный закон F = та остается спра-

справедливым во всех случаях.

20.4. Движение тела, брошенного горизонтально. Определение
траектории

При изучении движения тела, брошенного горизонтально, мы

встречаемся с новой проблемой. Раньше мы рассматривали динамику
прямолинейного движения тел под действием результирующей силы,
совпадающей по направлению с направлением движения. Однако
на рис. 20.4 мы уже встретились со случаем, когда один из мячей

двигался по кривой. Одной из задач динамики является определе-
определение траектории движения в случае криволинейного движения.

Если мы знаем положение и скорость тела в какой-либо момент

времени, то пройденный путь как функцию времени можно опреде-
определить из величины силы, действующей на предмет, на основании зако-

закона движения Ньютона. Однако при вычислении траектории движения
тела, брошенного горизонтально, нет необходимости всякий раз
основываться на законе Ньютона и силе земного тяготения. Мы
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можем определить траекторию, складывая известные нам верти-
вертикальное и горизонтальное движения. (Как мы видели в предыдущем
разделе, каждое из этих движений происходит независимо от другого
в соответствии с законом Ньютона и с известной нам силой тяготения

Земли.) Для нахождения этой траектории мы выбираем горизонталь-
горизонтальную ось (ось х) и вертикальную ось (ось у) так, чтобы начало коор-
координат х = 0, у = 0 находилось в точке,

откуда тело начинает свое движение (рис.
20.5). Мы знаем, что если бросить мяч с го-

горизонтальной скоростью v0, он продолжает
двигаться в направлении х с этой же скоро-
скоростью. Через время / координата х положе-

положения мяча будет равна x^ = vot. Мы также

знаем, что движение по вертикали вниз

есть свободное падение. Поэтому координа-
координата у через время / будет равна у = ¦—gt2/2
(знак минус говорит о том, что движение

мяча направлено вниз, а не вверх). Эта
система уравнений содержит всю необхо-

необходимую информацию о движении тел, бро-
брошенных горизонтально с начальной скоро-
скоростью v0. Наличие переменной t в обоих

уравнениях показывает, что они описывают

движение одного и того же тела.

Траектория движения тела представляет

кривую, которая может быть выражена урав-

уравнением, связывающим вертикальную коор-

координату у с горизонтальной х для одного и того же момента времени.
Чтобы найти это уравнение, исключим время t из обоих уравнений
у =—gfV2 и х =vot. Из второго уравнения находим: t=x/v0; под-

подставив это выражение вместо t в первое уравнение, получаем

Рис. 20.5. Траектория движе-
движения горизонтально брошен-
брошенного мяча с рис. 20.4, по-

построенная в прямоугольной
системе координат. Масштаб

по осям — в метрах. В лю-

любой момент времени t коор-

координата мяча x=vot (где ио=
= 2 м/с), а координата у=
= gt2/2. Например, для t=
= 0,38 с *=0,75 м и у=

= —0,7 м.

Уравнение
у =
— = -g (x/vQy/2 = -

является уравнением траектории тела. Как показано на рис. 20.5,
эта траектория является параболой с вершиной в той точке, откуда
тело начало двигаться горизонтально.

На рис. 20.6 приведено несколько возможных траекторий, соот-

соответствующих различным начальным горизонтальным скоростям и0.
Мы видим, что при большой горизонтальной скорости получается
довольно пологая параболическая кривая; тело, брошенное гори-
горизонтально, проходит большое расстояние в горизонтальном направ-
направлении, прежде чем оно сколько-нибудь значительно снизится. С дру-
другой стороны, при малых величинах v0 кривизна параболы более

выражена; тело проходит меньшее расстояние по горизонтали за

время, необходимое для падения до определенной высоты,
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Мы рассмотрели задачу движения тела, брошенного горизон-
горизонтально. Более общим является случай тела, брошенного с начальной

скоростью v0 под некоторым произвольным углом к горизонту.
Такое движение можно рассмотреть аналогичным образом* Мы снова

воспользуемся независимостью вертикального и горизонтального
движений друг от друга. Разлагая вектор начальной скорости v0,

0,5

—2

Рис. 20.6. Несколько траекторий тела, брошенного горизонтально. Обратите внимание на

то, что форма параболы зависит от начальной горизонтальной скорости v0.

находим его горизонтальную и вертикальную составляющие, Гори-
Горизонтальная составляющая скорости все время остается постоянной,
тогда как вертикальная равномерно изменяется согласно формуле

Расчеты снова приводят к параболической траектории, причем
дальность полета вновь определяется величиной горизонтальной
составляющей скорости. Единственное отличие заключается в том,

что вершина параболы не находится в начале координат.
Движение тела, брошенного горизонтально, напоминает то, что

мы уже установили в гл. 6. (Рис. 20.4 полностью совпадает с рис.
6.18.) И все же имеется существенное различие. В части I мы имели

дело только с описанием самого движения (кинематикой), тогда

как здесь мы рассматривали силу, которая являлась причиной
движения (динамика). Зная силу тяготения mg и закон Ньютона
в векторной форме, мы имеем возможность предсказать и описать

движение. При изучении динамики других движений мы также

будем опираться на кинематику. Поэтому, если вы повторите прой-
пройденные разделы, начиная с 6.6 до 6.8, вам легче будет понять даль-

дальнейшие разделы этой главы,

20.5. Отклоняющие силы и движение по окружности
Тело движется по кривой, потому что действующая на него сила

имеет составляющую, перпендикулярную к направлению движения.
Составляющая силы, действующая в направлении движения, изме-

изменяет величину скорости, но не меняет ее направления. Сила, пер-
перпендикулярная к направлению движения, отклоняет тело,брошенное
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горизонтально, так, что его траектория становится криволинейной.
Эта сила приводит к появлению нормального ускорения, под влия-

влиянием которого, как это показано на рис, 20.7, изменяется направле-
направление вектора скорости без изменения его величины.

Когда тело, брошенное горизонтально, движется по параболе,
действующая на него сила тяготения Земли имеет составляющие как

в направлении движения, так и перпендикулярно к нему. Направ-
Направление скорости изменяется, потому что перпендикулярная состав-

составляющая силы вызывает появление нормального ускорения, а вели-

величина скорости изменяется,
так как составляющая си- v

лы в направлении движе-
ния вызывает ускорение,
няппяяттрннпр иппль тпярк-- Рис* 20*7* Изменение скорости тела, когда перпен-
НапраВЛеННОе ВДОЛЬ ТраеК- дикулярно к направлению его движения действует

ТОрИИ. сила. Эта сила изменяет направление движения, не

D гчФл^пооттаттоплАпитто влияя на величину скорЪсти. После того как на

Е> ЭТОМ разделе ВСе ВНИМа- теЛО в течение времени At действовала сила F,

НИе МЫ СОСреДОТОЧИМ ТОЛЬКО
величина v' остается равной величине v.

на изменении направления
движения. Поэтому рассмотрим лишь такие движения, в которых

скорость постоянна, а изменяется только направление движения.

Направление движения есть направление вектора скорости.

Простейший случай движения с изменением направления мы имеем

при равномерном вращении вектора скорости.Равномерное вращение
всем хорошо знакомо. Стрелки часов, диск проигрывателя, сама

Земля — все эти тела вращаются равномерно. В части I (рис. 6.29)
мы уже встречались с картиной последовательных положений век-

вектора, соответствующей равномерному вращению. Как создать такое

равномерное вращение? Предположим, мы равномерно толкаем тело,

все время под прямым углом к направлению его движения. Посколь-

Поскольку нет составляющей силы, действующей в направлении движения,
не возникает и ускорения в этом направлении, скорость тела остается

постоянной, в то время как направление движения меняется. Если
величина силы постоянна, то направление траектории за равные
промежутки времени будет изменяться одинаково и траектория
должна быть окружностью. Всякий раз, когда тело, двигаясь с по-

постоянной скоростью, описывает окружность, вектор скорости равно-

равномерно поворачивается на 360°.
Таким образом, мы пришли к важному выводу, что сила постоян-

постоянной величины, перпендикулярная к направлению движения, за-

заставляет тело двигаться по окружности с постоянной скоростью,
Сила и ускорение тела направлены к центру окружности, а вектор
скорости направлен по касательной к окружности в каждой
ее точке. Радиус-вектор, определяющий положение тела в каждый
данный момент времени, направлен из центра окружности, имеет

постоянную длину и равен радиусу этой окружности (рис. 20.8).
Выведем теперь две весьма полезные математические фор-

формулы для величины ускорения. Поскольку движение происходит
с постоянной скоростью v и тело за время Т проходит длину
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окружности 2nR, то

Т называется периодом движения. За это время вектор скорости v

совершает полный оборот и совпадает со своим первоначальным
положением. Этот вектор вращается равномерно, оставаясь все

время перпендикулярным к радиусу, и при этом величина его не

меняется. Следовательно, вектор скорости вращается равномерно
с тем же периодом Т (рис. 20.8, б).

vAt

Рис. 20.8. а) Движение тела по окружности с постоянной скоростью. Радиус-вектор R, опре-
определяющий положение тела, равномерно вращается. За период времени Г тело пройдет рас-
расстояние vT=2tiR. б) Изменение вектора скорости тела. Вектор v вращается так же, как и R,
но под углом 90° к нему. За короткий промежуток времени А* скорость изменяется на вели-

величину а Atf. За один оборот конец вектора v проходит расстояние aT=2nv. в) Изменение вектора
ускорения, которое всегда перпендикулярно к вектору скорости, г) Круговая траектория дви-
движения тела. Направления векторов ускорения здесь показаны такими же, как и на рис. в),
но их начала совпадают с положениями тела. Вектор ускорения всегда направлен от тела к

центру вращения.

Из рис. 20.8, б видно, что вектор скорости (как уже отмечалось

в гл. 6) совершает движение по кругу за счет перпендикулярного
к нему ускорения точно так же, как радиус-вектор вращается благо-

благодаря перпендикулярной к нему скорости. Конец вектора скорости
описывает за время Т окружность, радиус которой равен v, а длина

2kv; величина ускорения, которое производит это изменение на-

направления скорости, равна
a = 2nv/T.

Объединяя последние два уравнения, мы можем исключить Т или

v и выразить ускорение в виде

a = v2/R, или a = 4

Эти формулы будут весьма полезны при изучении движения спут-
спутников, планетных систем, а также в атомной физике.

Вектор ускорения перпендикулярен к вектору скорости, а вектор
скорости перпендикулярен к радиус-вектору /?. Эти два прямых
угла составляют в сумме 180°. Следовательно, направление вектора
ускорения противоположно направлению R (рис. 20.8, в). Зная
направление а и его величину, определяемую последней формулой,
мы можем написать следующее векторное соотношение:

а = — 4я2/?/Г2.
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Если представить себе, что начало вектора а связано с движущимся

телом, то окажется, что вектор а направлен от тела к центру кривой,
по которой тело движется (рис. 20.8,г). По этой причине такое

ускорение называется центростремительным (направленным к цент-

центру) ускорением.
Теперь вернемся к силе, которая вызывает это ускорение. Закон

Ньютона F =та определяет связь между силой и ускорением. Поэ-

Поэтому, зная математическое выражение для ускорения через радиус
R и период Ту мы можем получить выражение для силы, определяю-
определяющей равномерное движение по окружности. В результате получаем

Величину силы можно выразить также через скорость v и радиус R:

Помните, что F направлена к центру окружности и что эта сила

называется центростремительной. Последнее уравнение фактически
верно для любой траектории, где F является перпендикулярной
отклоняющей силой, a R — радиусом кривизны (радиусом окруж-
окружности, которая совпадает с малым участком траектории вблизи

рассматриваемой точки).
Мы можем проверить наши уравнения экспериментально. На рис*

20.9 показана установка, предназначенная для опытов с ползуном.

Ползун покоится на горизонтальном плоском стекле. Один конец

нити прикреплен к подшипнику в центре стола, а другой — к пет-

петлеобразной пружине, укрепленной на ползуне.
В начале опыта ползун получает небольшой толчок, который при-

приводит его во вращательное движение* На рис. 20.10 приведена

импульсная фотография движения ползуна. Вспышки света произ-

производились 2,4 раза в секунду и были прекращены до того, как был

зарегистрирован полный оборот. Расстояния между последователь-
последовательными положениями ползуна показывают, что скорость была практи-
практически постоянной. Пружина на диске растянута, как это можно

видеть, сравнивая снимок с рис. 20.9. Степень растяжения остается

неизменной во время движения диска, и по ней мы можем опреде-
определить силу, которая заставляет диск вращаться по окружности.

Измеренное растяжение петлеобразной пружины показало, что

сила составляла 2,4 Н. Продолжительность прохождения 10 интер-
интервалов от начального положения до конечного положения равна
10 интервалов- A/2,4)с/интервал* За это время ползун переместился
на угол в 286°. Таким образом, время полного оборота состав-

составляет 10 -A/2,4) • 3607286° =5,2 с. Радиус был равен 0,44 м, а масса

ползуна с пружиной — 3,9 кг. Используя эти значения в нашей

формуле центростремительной силы F, заставляющей ползун дви-
двигаться по окружности, получаем

F — /#<"*Jt~^
_

C,9 кг) 4я2 @,44 м) _9 .„

t~
Г2

~"

E,2 сJ
"^'4Н'
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Рис. 20.9. ^ стансгка рля измерения центростремительной силы, действующей на тело, дьи-
жущееся по окружности. Ползун находится в покое; сила отсутсвует;„пружина не растянута.

Рис. 20.10. Ползун, движущийся по окружности с постоянной скоростью. Обратите внимание
иа то, что пружина растянута на одну и ту же величину, что указывает на постоянство дейст-

действующей силы.



Мы видим, что проделанный опыт подтверждает, в пределах точности

измерений, нашу формулу центростремительной силы.

Предположим, что нить разорвалась. Ползун больше не будет
двигаться по кругу, так как центростремительная сила отсутствует.

Поскольку на ползун не действует никакая внешняя сила, он дви-

движется по прямой с постоянной скоростью. Это движение показано

Рис. 20.11. Импульсный снимок ползуна, совершающего движение по окружности, получен-
ный при частоте вспышек 2,4 в секунду Когда ползун достиг верхнего положения, привязан-
привязанная к нему нить была пережжена. Ползун стал двигаться по прямой с той скоростью, кото-

которую он имел в момент разрыва нити.

на рис. 20.11. Обратите внимание на то, что ползун после разрыва
нити начинает двигаться по касательной к его первоначальной кру-
круговой траектории, а не по радиусу окружности.

20.6. Спутники Земли
Только на расстояниях, небольших по сравнению с радиусом

Земли, сила веса тела постоянна по величине и направлению. Когда
мы сообщаем телу очень большую скорость, которую можно в на-

настоящее время получить с помощью ракет, оно может улететь так

далеко, что нельзя уже будет пренебречь изменением направления
силы тяготения. Поскольку Земля — почти сферическое тело, мы

приходим к заключению, что сила тяготения всегда направлена
к ее центру. Но с точки зрения наблюдателя, находящегося вне

Земли, направления к центру Земли противоположны для любых

двух точек, расположенных на концах земного диаметра (см,
рис. 20.1).
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Если тело брошено горизонтально с необходимой начальной ско-

скоростью, оно будет двигаться по круговой орбите вокруг Земли с по-

постоянной скоростью. Однако поскольку при запуске очень трудно
точно выдержать заданное направление движения и величину на-

начальной скорости, искусственные спутники фактически движутся
по эллиптическим орбитам (см. следующую главу). Мы рассмотрим
только частный случай движения спутника по круговой орбите,
поскольку он сравнительно просто описывается математически.

Спутники Земли, которые были успешно запущены, являются

многоступенчатыми ракетами. Последняя ступень ракеты отделяется
на большой высоте, где сопротивление воздуха незначительно. Нет

существенных различий в динамике движения искусственного спут-
спутника и естественного спутника

— Луны. Отличаются лишь радиусы
их орбит, в результате чего и периоды их вращения (т. е. время
одного оборота вокруг Земли) также различны.

Подсчитаем период вращения спутника Земли. При вращении
по кругу ускорение a=v2/R и, поскольку центростремительной
силой является сила тяготения Земли, ускорение спутника должно
быть равно ускорению g поля тяготения. Следовательно, скорость
спутника выражается формулой

= g, или v2 = gRf

где R — радиус окружности, a g — ускорение поля тяготения там,

где находится спутник. Предположим, что спутник находится на

расстоянии 400 км над Землей. Тогда R = радиус Земли +400 км =

=6,8* 106 м, a g на этой высоте равно приблизительно 8,6 м/с2*
Поэтому

ua = g# = 8,6.F,8.10e)Ma/ca, и-7,6.103 м/с = 7,6 км/с.

Для того чтобы получить период 7\ мы учитываем, что длина

окружности 2nR есть расстояние, покрываемое за один оборот при
постоянной скорости v. Поэтому

2nR = v-T, или T = 2nR/v.

Мы можем определить период спутника, подставив численное зна-

значение R = 6,8 • 106 м и величину v = 7,6 • 103 м/с, которую мы только

что рассчитали. Получаем

Г = 2яF,8.106)/G,6.103) = 5,6.103 с = 93 мин.

Произведенные нами расчеты периода и скорости искусственного
спутника потребовались в свое время для вывода на орбиту первого
спутника Земли. Еще Ньютон высказал предположение о возмож-

возможности запуска спутника с высокой горы с вычисленной выше ско-

скоростью в соответствии со схемой, изображенной на рис. 20.12.
Возможность обсуждать такие проекты с уверенностью в их осуще-
осуществимости является триумфом развития динамики Галилея, Нью-
Ньютона и других ученых,
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Почему же тогда в XVII столетии первый искусственный спутник
не был выведен на орбиту? Вы и сами смогли бы ответить на этот

вопрос. В то время не было достаточно мощных орудий и ракет.
Понимание человеком научных законов зачастую опережает тех-

технику. Практическое применение

научного достижения требует
много времени и труда.

Иногда бывает наоборот —
техника опережает науку. Те-

Теперь, когда наша техника дала

нам возможность создать искус-
искусственные спутники, мы сможем

провести новые наблюдения над

Вселенной. Прежде некоторые
из этих наблюдений были для

нас недоступны из-за атмосферы
Земли, которая наподобие за-

занавеса скрывает от нас многие

тайны космоса. Новые данные

принесут нам новые знания о

космических лучах, о плотности

материи в межпланетном про-
пространстве и помогут уточнить на-

наши представления о Вселенной.
В конечном счете наука и техни-

техника идут рука об руку
— одно по-

помогает другому.

Рис. 20.12. Рисунок из книги Ньютона «Sys-
«System of the world» (введенный в более поздние

издания <rPrincipia»), демонстрирующий тра-
траектории тела, брошенного с вершины высо-

высокой горы горизонтально с различными ско-

скоростями. Из рисунка видно, что Ньютон по-

понимал, что для запуска тела на орбиту вок-

вокруг Земли оно должно обладать достаточно
большой скоростью. Траектории, оканчиваю-

оканчивающиеся в точках D, E, F и G, соответствуют
увеличению горизонтальной скорости тела.

Ньютон понимал, что сопротивление возду-
воздуха будет препятствовать движению спутни-
спутников вблизи Земли. Он указал, что спутни-

спутники смогут существовать продолжительное

время только за пределами земной атмос-

атмосферы.

20.7. Движение Луны
Луна — спутник Земли. Мы

можем вычислить ее центростре-
центростремительное ускорение, исходя из

следующих наблюдений. Период
обращения Луны вокруг Земли равен 27,3 дней, или 2,3 • 108 с,
а расстояние от Земли до Луны примерно равно 3,8 • 108 м.

Величина ускорения, направленного от Луны к Земле, равна
а = 4я2#/Г2 = 4я2C,8-108 м)/B,3-106 сJ-2,7.10 м/с2.
Это ускорение значительно меньше ускорения спутника вблизи

поверхности Земли. Сравнивая его с g = 9,8 м/с2, мы видим, что

сила тяготения уменьшилась приблизительно в 2,7 • 104 раз. Умень-
Уменьшение поля тяготения по мере увеличения расстояния между телами

было, как мы это увидим в следующей главе, одним из тех явлений,
которые привели Ньютона к открытию закона тяготения.

20.8. Простое гармоническое движение
Если мы растягиваем пружину, то она тянет назад с силой,

пропорциональной растяжению. Если же мы сжимаем пружину,
то она развивает отталкивающее усилие, пропорциональное вели-
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Сжатие растяжение

чине сжатия (рис. 20.13), Если к растянутой пружине подвесить

некоторую массу и затем отпустить ее, то масса начнет колебаться

под действием силы, развиваемой пружиной* При малых растяже-

растяжениях или сжатиях (пока мы не выходим за пределы линейной части

графика) эта сила подчиняется урав-
уравнению

F= — kx.

Здесь k — существенно положитель-
положительная постоянная, а х—смещение мас-

массы от положения равновесия (прини-
(принимаемое положительным при растяже-
растяжении и отрицательным при сжатии пру-
пружины). Знак минус означает, что сила

направлена в сторону, обратную сме-

смещению, и потому является возвраща-
возвращающей силой, которая стремится вер-
вернуть систему в положение равновесия.

Подобные линейные восстанавливающие силы всегда приводят
к колебательному движению, называемому простым гармоническим
колебанием. Рассмотрим это движение. Если бы при этом мы осно-

основывались на законе Ньютона, то нам пришлось бы решать сложную
математическую задачу. Однако закономерности гармонического

Рис. 20.13. Зависимость силы, созда-
создаваемой пружиной, от ее растяжения
вли сжатия. Когда растяжение пру-
пружины невелико, сила прямо пропор-
пропорциональна величине растяжения,

Кривую в этой области можно ап-

вроксимировать прямой линией, кон-

концы которой показаны пунктиром.

jJtyWWWWWWWVKZWVWW
Рис. 20.14. Возвратно-поступательные колебания массы на пружине можно сопоставить с
изменением одной из компонент движения массы на вращающемся диске. Для этого надо
выбрать диск соответствующего радиуса и вращать его с нужной скоростью.

движения могут быть выведены и из рассмотрения кругового дви-

движения, как мы это сейчас и покажем. Вращение тела в некоторой
плоскости выглядит очень похожим на простое возвратно-посту-

возвратно-поступательное гармоническое колебание, если рассматривать его, на-

направив луч зрения по касательной к этой плоскости. Чтобы получить
представление об этой аналогии, попробуйте быстро перемещать
ваш большой палец равномерно по горизонтальному кругу на уров-
уровне глаза. Прямолинейное движение, которое вы увидите, является

простым гармоническим колебанием, таким же, как движение тела,

соединенного с пружиной (рис. 20.14)*
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Чтобы изучить это движение, вернемся снова к тому основному
свойству векторов, которое позволяет представить любое плоское

движение как сочетание двух независимых движений, направленных
под прямым углом друг к другу. Мы опишем равномерное движение

по окружности с помощью этих ортогональных составляющих.

Затем мы подробно рассмотрим одну из этих составляющих, а также

найдем силу, связанную с движением, описываемым этой состав-

составляющей*
На рис* 20.15 изображена ок-

окружность, по которой с постоянной

Рис. 20.15. Масса т движется по окруж-
окружности с постоянной скоростью. Это дви-
движение можно рассматривать как состоя-

состоящее из двух взаимно перпендикулярных
составляющих: горизонтальной и верти-
вертикальной. Нас интересует горизонталь-

горизонтальное движение по оси х.

Рис. 20.16. Радиус-вектор R и вектор го-
горизонтальной составляющей движения х об-
образуют стороны прямоугольного треуголь-
треугольника. Центростремительная сила F и ее го-
горизонтальная составляющая Fa являются

сторонами другого прямоугольного тре-
треугольника. Треугольники подобны, так кан

угол между R и х равен углу между F и Fm
(/? параллельно F и х параллельно F^.

скоростью движется тело массой т. Рассмотрим горизонтальную
составляющую этого движения. На рис. 20.16 изображен прямо-

прямоугольный треугольник, образованный радиус-вектором R и его

горизонтальной составляющей х; здесь же приведен второй прямо-
прямоугольный треугольник, подобный первому, сторонами которого
являются центростремительная сила F и ее горизонтальная состав-

составляющая Fх. Из подобия треугольников следует, что отношение

величин Fx и х равно отношению величин F и R, но направления
Fx и х противоположны.

Поскольку F =— Dтя2/Г2)/? (см, раздел 20.5), соотношение

между х и Fx таково:

Fx = — Dтя2/Т2)х.

Это уравнение просто выражает горизонтальную составляющую
величины F =— Dтя2/Г2)/?.

Так как масса т и период Т для данного движения постоянны,
то 4тя2/Г2 — тоже величина постоянная, и уравнение может быть

приведено к виду
k

где k = imn2/T2—коэффициент пропорциональности между F и х»

Это означает, что сила, выраженная уравнением F = —kx, является

силой, обусловливающей колебательные движения вектора х. По-

Поскольку движение вдоль оси х зависит только от силы, действую-
действующей в направлении х, любая сила такого рода производит движение,
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аналогичное движению точки N конца вектора х на рис. 20.17, когда
точка Р равномерно движется по окружности.

Таким образом, мы связали ^-составляющую кругового движе-

движения с движением массы т, когда на нее действует сила F = —kx,
независимо от источника этой силы: эта связь дает нам возможность

вычислить период. Если масса т движется под влиянием силы

р
— —kxy мы всегда можем вообразить подходящее круговое дви-

движение, которое будет соответствовать движению массы т. Период

Положение \
равновесия f

Рис. 20.18. Простой маятник!
масса т, подвешенная на нити

длиной /, движется по дуге s.

Рис. 20.17. Масса, находящаяся в точке Лт,
была первоначально смещена до расстояния R
от начала координат вдоль оси х. Если на нее

действует сила, подчиняющаяся уравнению
F=—kx, то рассматриваемая масса будет дви-
двигаться взад и вперед вдоль оси х\ ее движение

будет тождественным с движением проекции на

ось х некоторой точки Р, движущейся равно-
равномерно по окружности радиуса R.

фактического движения массы т совпадает с периодом этого вооб-

воображаемого кругового движения. Чтобы определить соотношение

между коэффициентом пропорциональности k в уравнении/7 = —kx
и периодом колебательного движения массы, мы можем воспользо-

воспользоваться рассуждениями, которые уже применяли раньше. Период
зависит только от массы т и от коэффициента пропорциональности
k. Из формулы k =4mn'2/T2 находим

Смысл этого выражения таков: если восстанавливающая сила быстро
возрастает с расстоянием (т. е. если k велико), то масса совершает
быстрые колебания и Т мало. С другой стороны, если масса велика,

она медленнее подчиняется действию силы, и, таким образом, чем

больше масса, тем больше становится и период.
Может показаться удивительным, что период не зависит от ам-

амплитуды R. Но этот результат легко проверить экспериментально.
Попробуйте выполнить следующий эксперимент.

Так называемый математический маятник представляет собой
тело *) массы m на конце нити **) длиной / (рис. 20.18). Будем

*) Пренебрежимо малых размеров по сравнению с длиной нити. (Прим. перге.)
**) Нерастяжимой и невесомой. (Прим. перев.)
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обозначать смещение тела из положения равновесия вектором 5,
а его горизонтальную составляющую

—

вектором d (рис. 20.19),
который выражает горизонтальное смещение тела из положения

равновесия. Движение массы т очень близко к простому гармони-
гармоническому. Чтобы доказать это, надо показать, что существует линей-
линейная возвращающая сила, т. е. сила, пропорциональная смещению
с обратным знаком. Вес тела mg может быть разложен на взаимно

Положение

равновесия

тд-

d

Рис. 20.19. Когда колеблющаяся масса лишь

немного смещена от своего положения рав-
равновесия, разность между ее действительным

перемещением s и горизонтальной проекцией
смещения d очень мала. Это будет особенно

ясно, если представить себе еще гораздо
меньшее смещение по сравнению с длиной

нити, чем здесь изображено.

Рис. 20.20 На левом треугольнике вес mg
разложен на две составляющие: одну по на-

направлению нити (пунктир) и другую, пер-
перпендикулярную ей (Fs). Другой треуголь-
треугольник изображает нить длиной /, горизонталь-
горизонтальное смещение массы т от вертикали и вер-
вертикальную линию, проходящую через точку
подвеса. Изображенные треугольники по-

подобны, поскольку Fs перпендикулярно к I,
a mg перпендикулярно к d.

перпендикулярные составляющие, как показано на рис. 20.20.

Одна из них, обозначенная пунктиром, направлена вдоль нити и ее

роль сводится к поддержанию нити в натянутом состоянии; другая,

перпендикулярная нити, направлена по касательной к траектории
и стремится возвратить тело назад к положению равновесия. Из

подобия треугольников на рис. 20.20 получается следующее выра-
выражение для абсолютной величины Fs:

Fs/mg = или /\ =

Но, пока d и s малы по сравнению с /, разность s и d тоже мала

по сравнению с самими этими величинами. Поэтому можно напи-

написать Fs = (mg/l)s. Кроме того, если s мало по сравнению с /, вектор
s почти перпендикулярен нити, или почти антипараллелен вектору

Fs. Поэтому Fs =— (mg/l)s, и мы действительно имеем дело с воз-

возвращающей силой вида Fs =—ks, необходимой, чтобы вызывать

простое гармоническое движение. Зная, что коэффициент пропор-
пропорциональности равен k = mg/ly можно найти период математического
маятника. Подставляя это выражение коэффициента пропорцио-
пропорциональности в формулу периода Т = 2лугт/к, получаем
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Период зависит только от длины маятника и напряженности поля

тяготения. Во всех случаях, когда действующей силой в основном

является сила тяготения, величина периода не зависит от массы.

Амплитуда, или величина размаха колебаний, не влияет на величину

периода при условии, если она настолько мала, что d и s практически
не отличаются друг от друга. Следовательно, имея маятник точно

известной длины и хороший хронометр (секундомер), можно изме-

измерить g.

20.9. Выбор простейшей системы координат на основании ди-

динамического поведения тел

Когда вы кружитесь в комнате, вам кажется, что стены комнаты

вращаются в обратном направлении. Если на столе лежит шарик,
то вам покажется, что и он вращается по кругу. Однако к шарику
во время его кажущегося движения по кругу никакой силы, необ-

необходимой для движения по окружности и равной rnv2/R, не прило-
приложено. В отсутствие действующих на него сил шарик остается в по-

покое, если вы наблюдаете его по отношению к комнате; но он пока-

покажется вам находящимся в движении, если вы будете наблюдать
его по отношению к самому себе.

Вообразите, что вы находитесь в автомашине, которая движется
с ускорением по прямой. Вы смотрите наружу и видите мяч, летя-

летящий по воздуху. При этом вам кажется, что мяч описывает кривую
в горизонтальной плоскости, хотя вы и понимаете, что он летит

по прямой линии над земной поверхностью. Если описывать движе-
движение мяча относительно автомашины, в которой вы едете, то мячу

придется приписать ускорение, несмотря на то, что на мяч не дейст-
действует никакая непосредственно наблюдаемая сила.

В первой части курса мы рассматривали системы координат
в связи с задачами описания движения тел, т. е. в связи с задачами

кинематики. Основная мысль, которой мы при этом руководствуем-
руководствуемся, заключается в том, что любая система координат может быть
использована для описания движения. Мы считаем, что целесооб-
целесообразно использовать ту систему координат, которая обеспечивает

простейшее описание движения. Иными словами, мы имеем полную

свободу выбора и пользуемся ею для облегчения решения задач,
А как же с динамикой? Располагаем ли мы и в этой области

той же свободой выбора координат? К сожалению, нет. Закон дви-
движения Ньютона справедлив не для всех систем координат, в некото-

некоторых из них при решении задач динамики требуется применение
более сложных законов. Каким же образом следует выбирать систе-

системы координат, в которых закон движения Ньютона остается спра-
справедливым? Ответ один: только на основе экспериментальных наблю-

наблюдений. Вспомните, как мы пришли к закону инерции Галилея
и к закону движения Ньютона; учтите также, что всякий вывод,

который мы делаем на основании экспериментальных наблюдений,
справедлив только в пределах точности наших измерений. Мы при-
пришли к закону движения Ньютона на основании результатов лабора-
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торных опытов, произведенных на Земле, и поэтому мы считаем

систему координат, жестко связанную с земной поверхностью, под-
подходящей для описания движений по крайней мере в пределах
точности наших измерений. Движущаяся с ускорением авто-

автомашина не является системой координат, в которой закон Ньютона

справедлив*

20.10. Фиктивные силы в системах координат, движущихся с

ускорением *)
Мы все замечаем особые силы, которые возникают при наблю-

наблюдении движений в некоторых системах координат. Если мы едем

в закрытой автомашине с постоянной скоростью по ровной и прямой
дороге, на нас, кроме сил реакции сидения, не действуют никакие

другие силы. Однако при повороте, особенно если он делается

с большой скоростью, вы ощущаете, что дверца автомашины давит

на вас. Если рассматривать это явление в системе координат, свя-

связанной с автомашиной, то оно наводит вас на размышления: чем

объяснить, что со стороны дверцы на вас действует сила, но она

при этом не отодвигает вас от дверцы? Вы, вероятно, скажете, что

на вас действует и другая сила — по направлению к дверце, которая
и удерживает вас на месте. Эта новая сила — центробежная сила

инерции, действующая в направлении от центра кривизны,— урав-
уравновешивает силу, действующую на вас со стороны дверцы. Только

таким путем можно объяснить, почему вы остаетесь неподвижным

относительно машины. Но тогда возникает другой вопрос: каким

образом при изменении движения системы координат возникают

вовые силы и реальны ли они?

*) Вокруг понятия сил инерции очень часто возникают споры и разногласия.

Однако большинству специалистов, по-видимому, ясно, что с этими разногласи-
разногласиями не связано никакой физической проблемы, а речь идет лишь о недоразумениях,
возникающих в результате нечеткой терминологии, а иногда и вследствие непра-
неправильной трактовки данных опыта.

Центробежные силы инерции иногда называют фиктивными. Многие специа-
специалисты считают, что это неправильно или по крайней мере спорно. Прежде чем так

говорить, следовало бы точно установить понятие «фиктивной силы». Этому поня-

понятию, однако, можно приписать различный смысл, и поэтому оно остается очень

спорным. В сущности говоря, вопрос о реальности или фиктивности сил инерции
возникает потому, что, рассматривая силы инерции, мы не можем указать второе
тело, участвующее во взаимодействии, при котором возникают силы инерции.
Имеются, однако, серьезные основания предполагать, что этим вторым телом явля-
является вся совокупность небесных тел Вселенной. За этим исключением, силы инер-
инерции во всем остальном подобны обычным силам: они способны сообщать ускорение,
совершать работу, мы складываем эти силы с другими силами, которые считаем

«реальными», и получаем общую результирующую и т. д. Кроме того, с точки

зрения общей теории относительности силы инерции эквивалентны силам тяготе-

тяготения. Все это говорит о том, что вряд ли целесообразно называть силы инерции

фиктивными.
Всем, кто пожелал бы ознакомиться с вопросами, возникающими в связи с

понятием сил инерции, можно рекомендовать очень хорошие книги С. Э. Хайкина:
«Что такое силы инерции», ОНТИ, 1940, и «Физические основы механики», Физмат-
гиз, 1963. (Прим. ред.)

51



Чтобы ответить на эти вопросы, рассмотрим простой опыт. Возь-

Возьмем ползун с сухим льдом и положим его на плоскую, лишенную

трения поверхность стола, а затем отпустим. Что произойдет? Ровно

ничего. Ползун останется на месте, и мы приходим к заключению,

что на него не действует никакая горизонтальная сила.

Произведем теперь тот же опыт на таком же столе, установлен-
установленном на большой карусели. Пусть вся наша лаборатория является

такой же каруселью и равномерно вра-
вращается относительно земной поверхности.
Что теперь произойдет, если мы отпустим
ползун? Он не остается в состоянии покоя,

а движется относительно нас, т. е. отно-

относительно карусели, по кривой, подобной
изображенной на рис. 20.21. Такая кривая
называется эвольвентой. Теперь мы попали

y^p в затруднительное положение. Действитель-
Действительней столтрласположеннина но> в Данном опыте тело в отсутствие дей-
большой вращающейся кару- СТВуЮЩИХ На НеГО СИЛ ДВИЖеТСЯ ПО ЭВОЛЬ-

ТНабТ5^В венте, тогда как согласно закону Галилея

5^rS^aSS5^HSS 0Н0 Д°ЛЖН0 6ЫЛО бы ИЛИ ПОКОИТЬСЯ, ИЛИ

гичной изображенной здесь. ДВИГаТЬСЯ ПО ПрЯМОИ С ПОСТОЯННОЙ СКОрО-

^аКэ^1вентойР"разТрЬткоейТ): стью. Как же согласовать наши наблюде-
наблюдения с законом Галилея? Можно было бы

сказать: мы ошибаемся, полагая, что на ползун не действует ни-

никакая сила; движение ползуна по эвольвенте показывает, что

на него действует какая-то особая сила. Но что вызывает появ-

появление этой силы? Мы не можем указать причину ее возникновения.

Значит, мы снова вернулись к тому затруднению, с которого начали.

Проанализируем создавшееся положение с точки зрения наблю-

наблюдателя, стоящего около карусели. Он видит, что мы движемся по

кругу с постоянной скоростью. Мы держим ползун, который движется
по кругу вместе с нами. Когда мы отпускаем ползун, то наблюда-
наблюдатель около карусели видит, что ползун движется по прямой, каса-

касательной к окружности, с постоянной скоростью, в соответствии

с законом Галилея. Человек, стоящий около карусели, понимает

наше недоумение и указывает нам, что затруднения возникли не

из-за того, что законы динамики неверны, а оттого, что мы наблю-

наблюдаем движение ползуна во вращающейся системе координат. Эта
система обладает ускорением, и если это учесть, то можно решить
нашу проблему. Теперь мы знаем причину наших затруднений.
Нарушение закона Галилея и закона движения Ньютона вызвано

ускорением системы координат, вращающейся относительно Земли.
Таким образом, если наблюдатель на карусели удерживает

ползун неподвижным по отношению к себе самому, то он должен

действовать на него с силой, постоянной по величине и направлен-
направленной к центру вращения. Он рассуждает так: поскольку ползун
находится (по отношению ко мне) в состоянии покоя, то должна

существовать равная и противоположная сила, выталкивающая
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ползун из рук *). Эту загадочную для него силу он называет цент-

робежной силой инерции. С другой стороны, наблюдатель, стоящий
около карусели, видит, что ускорение ползуна направлено к центру
карусели и что на ползун с соответственной силой действует наблю-
наблюдатель, находящийся на карусели. Он знает также, что на вращаю-
вращающегося наблюдателя со стороны ползуна согласно третьему закону

динамики действует равная и противоположная сила, которую он

называет обычной центробежной силой. Таким образом, наблюдателю
на земле нет необходимости изобретать силу инерции.

А как же толковать силу, которую мы ощущаем, когда сидим
в машине, заворачивающей за угол? Эта сила достаточно реальна,
но она может казаться необъяснимой, если мы забудем, что машина

делает поворот. В системе отсчета, связанной с Землей, все ясно.

Со стороны дверцы машины на нас действует реальная центростре-
центростремительная сила, принуждающая нас совершать поворот, вместо

того, чтобы двигаться по прямой. В этом примере в системе коорди-
координат, в которой справедлив закон Ньютона, движение является

ускоренным, а силы, вызывающие ускорение,— реальными. Маши-

Машина, включая дверцу и нас самих, не будет совершать поворот, если
на нее не будет действовать сила, перпендикулярная к траектории
ее движения. С другой стороны, центробежная сила здесь не реаль-
реальна. Если бы она была реальной, то результирующая сила должна

была бы равняться нулю, и мы не двигались бы по кривой. Центро-
Центробежная сила в этом случае

— фикция, т. е. воображаемая сила,

которую мы вводим, чтобы ньютоновский закон движения оставался

справедливым в системе координат, связанной с машиной.

Мы видим, что центробежная сила в этих условиях действитель-
действительно не является силой в том смысле, что здесь мы не можем указать
тело, которое действует на другое тело, развивая силу тяги или

толчка; скорее всего ее можно назвать фиктивной, поддельной силой,
которую мы вводим, чтобы правильно учесть ускорения в нашей

вращающейся системе координат.
Центробежная сила — понятие, которое широко применяется,

но нередко неправильно понимается. Используя его, мы должны

помнить, что это понятие применяется для того, чтобы внести по-

поправки в динамическую характеристику движения, когда мы рас-

рассматриваем его во вращающейся системе координат. В системах

координат, в которых выполняется закон Ньютона, эти силы, как

реальные физические силы, просто не существуют.

20.11. Закон Ньютона и вращение Земли

Рассмотрим теперь другую проблему. Мы знаем, что Земля вра-
вращается вокруг своей оси, делая один оборот в сутки по отношению

к Солнцу или неподвижным звездам. Находимся ли мы во вращаю-
вращающейся системе координат или Солнце и неподвижные звезды сами

*) Здесь надо обратить внимание на то, что центробежная сила инерции при-
приложена к движущемуся телу, а не к телам, ограничивающим движение (связям
движения), как это имеет место в инерциальных системах координат. (Прим. ред.)
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вращаются вокруг Земли? Иными словами, закон Ньютона дейст-
действительно справедлив, когда мы используем в качестве системы коор

-

динат Землю, или он более точен в каких-нибудь других системах

координат, относительно которых Земля вращается? Если закон

Ньютона действительно применим к некоторой внеземной системе

координат, то мы смогли бы обнаружить это, установив, что для

объяснения движения тел по отношению к Земле необходимо вве-

ввести в наши рассуждения силы инерции, наподобие центробежных
сил инерции. Эти силы должны быть весьма невелики, иначе они

уже давно были бы обнаружены в наших опытах. Есть и другое
соображение, указывающее на то, что эти силы должны быть малы:

их величина должна зависеть от скорости суточного вращения
Земли, а эта скорость невелика. Ведь для того, чтобы заставить

массу, расположенную у экватора, вращаться вместе с Землей,
требуется центростремительная сила (см. раздел 20.5)

= 3.1СГ2/л Н

— около 1/300 силы земного тяготения*

Опыт, который мог бы подтвердить, что нормальное ускорение
в этом движении равняется всего 1/3 % от g9 должен быть более

точным, чем опыты, которые мы проводили для подтверждения
закона движения Ньютона.

Французский физик Фуко произвел свой знаменитый опыт, ко-

которым было доказано, что Земля вращается вокруг собственной оси

в системе координат, в которой справедлив закон Ньютона* Для
воспроизведения этого опыта пользуются маятником, подвешенным
к потолку. Если привести маятник в движение, он будет раскачи-
раскачиваться и при небольшой амплитуде совершать простые гармониче-
гармонические колебания, с которыми мы познакомились в разделе 20.8.

Чтобы привести маятник в движение, мы можем, например,
оттянуть груз в сторону от положения равновесия и отпустить;
груз будет совершать колебания почти по прямой линии. Если мы

находимся в такой системе координат, где закон Ньютона справед-
справедлив, то движение маятника должно продолжаться бесконечно в плос-

плоскости, проходящей через линию колебания и точку подвеса (см. рис.
20.18), так как силы, перпендикулярные к этой плоскости, отсутст-

отсутствуют. Таким образом, основываясь на законе движения Ньютона,
можно предсказать, что если такой маятник начнет качаться

в определенной плоскости, то он будет бесконечно долго качаться

в этой же плоскости, Так должно быть в инерциальной системе

координат — единственной системе, в которой справедлив закон

Ньютона.

Когда мы производим этот опыт в лаборатории, мы видим, что

маятник примерно так и ведет себя: нам кажется, что он продолжает
колебаться в той плоскости, в которой он начал свои колебания,
и, по-видимому, подчиняется закону движения Ньютона. Но если

продолжать опыт достаточно долго, в течение часов, а не минут,
то мы обнаружим, что плоскость движения медленно, но неизменно
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поворачивается по отношению к своему начальному положению.
С помощью опыта Фуко на Северном полюсе можно было бы обна-

обнаружить, что ровно за 24 часа плоскость качания маятника делает

полный оборот на 360° (рис. 20.22). Такой опыт дает эксперименталь-
экспериментальное доказательство, притом полученное на

Земле, что наша планета действительно
вращается и что система координат, жестко

связанная с Землей, является вращаю-
вращающейся системой координат. Этот опыт также

показывает, как мало влияет вращение Зем-
Земли на наши лабораторные опыты. Маятник
с периодом колебаний 1 с совершает около

105 колебаний за сутки. Если бы силы тре-
трения такого маятника были настолько малы,

что он мог бы действительно свободно ка-

качаться в инерциальной системе координат,
то его плоскость колебания на Северном
полюсе поворачивалась бы примерно на угол
10 градуса при каждом колебании.

Эти опыты показывают, что Земля дей-
действительно является вращающейся систе-

системой координат, в которой закон Ньютона
не совсем точен. Несмотря на это, мы мо-

можем пренебречь влиянием вращения Земли
во всех опытах, кроме тех, которые требуют
особо большой точности. Для достижения предельно высокой точ-

точности мы должны пользоваться законом Ньютона в системе ко-

координат, связанной с неподвижными звездами, а не с Землей.

Рис. 20.22. Маятник Фуко на

Северном полюсе. Шарик ма-

маятника совершает колебания

почти по прямой линии, в то

время как Земля вращается

под ним. Человеку, стояще-
стоящему на земной поверхности,

будет казаться, что плоскость

колебаний маятника враща-
вращается.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1*. Какова масса тела, на которое в поле напряженностью 9,80 Н/кг дейст-
действует гравитационная сила в 49,0 Н? (Раздел 20.1.)

2*. Поле тяготения на поверхности Луны в 6 раз меньше земного.

а) Сколько будет весить 70-килограммовый человек на Луне?
б) Какова его" масса на Земле? На Луне? (Раздел 20.1.)
3. Какие два пункта целесообразно выбрать в табл. 20.1 для характеристики

влияния высоты на ускорение силы тяжести?
4*. Чему равна напряженность гравитационного поля на Земле в пункте,

где ускорение силы тяжести составляет 9,81 м/с2? (Раздел 20.2.)
5. Если различные тела имеют разные отношения инертных и гравитационных

масс, будут ли они одинаково ускоряться в поле тяготения Земли? Объясните
ваш ответ.

6*. Какой длины должна быть шкала на рис. 20.2, чтобы сделать 30 импульс-
импульсных снимков шарика, начавшего двигаться в момент первой вспышки? (Раздел
20.2.)

7. Каково ускорение падающего шарика массой 0,2 кг, если напряженность
гравитационного поля равна 9,8 Н/кг, а сила сопротивления воздуха дви-
движению шарика составляет 0,5 Н?

8. Шарик брошен вертикально вверх со скоростью 15 м/с.
а) Определите его скорость через 1,2 с.

б) На какой высоте будет находиться шарик к этому моменту?
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в) Какова будет его скорость через 2,3 с?

г) На какой высоте будет находиться шарик в это время?
д) Каково ускорение шарика в верхней точке его движения?
9. Камень сбрасывают со скалы высотой h метров. В этот же момент верти-

вертикально вверх от подножия скалы бросают мяч с начальной скоростью v м/с.

а) Определите время t, через которое мяч встретится с камнем.

б) Движется ли мяч в момент встречи все еще вверх?
10. Два ползуна массой по 0,5 кг расположены на ровной поверхности стола

и соединены между собой бечевкой.

а) Определите общую силу тяготения, действующую на ползуны.
б) Как будет нарастать скорость ползунов, если их толкает горизонтальная

сила, равная силе тяготения, найденной в п. а)?
в) Если один ползун остается на поверхности стола, а другой свисает на

бечевке через край стола, каково будет ускорение ползунов? (Трением пренеб-
пренебречь.)

11. Тело массой т движется по наклонной плоскости без трения. Угол на-

наклона к горизонтали равен 30°.

а) Какова результирующая сила, действующая на тело?

б) Определите ускорение движения тела по наклонной плоскости.

12. Камень, падая с края крыши, пролетает мимо окна высотой 2 м в течение

0,1 с. Определите расстояние от верха окна до крыши.
13*. На каком основании можно утверждать, что горизонтальная составляю-

составляющая скорости шарика, брошенного горизонтально (рис. 20.4), постоянна, а вер-
вертикальная изменяется? (Раздел 20.3.)

14. Бейсбольный мяч брошен от центра поля к его краю. Если мяч находится
в полете 3 с, на какую высоту он должен подняться без учета сопротивления
воздуха?

15. Постройте траекторию движения тела, брошенного с начальной скоростью
10 м/с под углом 45° к горизонту.

а) На какую высоту поднимется тело?

б) Какое расстояние оно пролетит?
в) С какой скоростью оно ударяется о землю?

16. Покажите, что выражение v2JR для центростремительного ускорения
имеет размерность ускорения.

17*. Какая центростремительная сила требуется, чтобы удерживать на

окружности радиусом в 2,0 м предмет массой 3,0 кг при скорости 4,0 м/с? (Раз-
(Раздел 20.5.)

18*. Какое влияние на скорость и направление движения предмета оказы-
оказывает сила, действующая на него по направлению, перпендикулярному к его тра-

траектории? (Раздел 20.5.)
19*. Какова скорость ползуна, изображенного на рис. 20.11, когда он на-

находится в нижней точке? (Раздел 20.5.)
20*. Каково ускорение того же ползуна в той же точке? (Раздел 20.5.)
21. С какой скоростью должен самолет выполнять мертвую петлю радиусом

1 км, если летчик не испытывает силы реакции ни от сиденья, ни от привязной
системы в верхней точке петли? (В таких случаях говорят, что летчик находится

в состоянии невесомости.)
22. Говорят, что летчик при выходе реактивного самолета из пикирования

весит в несколько раз больше своего собственного веса. Иногда говорят также,
что летчик, свободно падающий перед открытием парашюта, находится в со-

состоянии невесомости.

а) Имеют ли эти утверждения смысл в связи с нашим определением веса как

силы тяжести, действующей на тело?

б) Что означают понятия «в несколько раз больше своего веса» и «невесо-

«невесомость»? Приготовьтесь к обсуждению этих вопросов в классе.

23. На нити длиной 5 м и диаметром 2 мм подвешен шар.

а) Если заставить шар качаться, то нить обрывается. Почему?
б) Какой следует выбрать минимальный диаметр нити из того же материала,

чтобы шар проходил нижнюю точку качания со скоростью 7 м/с (без разрыва
нити)?
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24. Электрон (масса 0,9* Ю-30 кг) под действием магнитной силы движется

по кругу радиусом 2 см со скоростью 3- 10е м/с. С какой скоростью будет дви-

двигаться протон (масса 1,6-10~27 кг) по кругу того же радиуса и под действием той
же магнитной силы?

25. На тело, движущееся со скоростью v, действует сила, направленная
перпендикулярно к его движению и постепенно увеличивающаяся по вели-
величине.

а) Нарисуйте примерную траекторию движения тела.

б) Увеличивается, уменьшается или остается постоянной скорость тела?
26*. Как должна зависеть от смещения сила, действующая на предмет, чтобы

его движение было простым гармоническим? (Раздел 20.8.)
27*. В какой точке окружности на рис. 20.17 точка Р будет иметь ту же

скорость, что и точка N1 (Раздел 20.8.)
28*. Если жесткость пружины составляет 8 Н/м, какая масса, подвешенная

к пружине, будет иметь период колебаний в 1 с? (Раздел 20.8.)
29*. Какова должна быть длина математического маятника, чтобы его период

был равен 1 с? (Раздел 20.8.)
30. Брусок массой т находится на горизонтальной платформе. Платформа

совершает гармонические колебания в вертикальном направлении с амплитудой
0,098 м. В наивысшей точке движения платформы брусок отделяется от поверх-
поверхности платформы (это означает, что в этой точке ускорение платформы равно
9,8 м/с2 и направлено вниз).

а) Каков период этого простого гармонического движения?

б) Какое ускорение действует на брусок со стороны платформы в нижней

точке ее движения?
в) Какая сила действует на брусок со стороны платформы в нижней точке ее

движения?
31. а) Каков период колебаний маятника, состоящего из груза массой 2 кг,

подвешенного на легкой бечевке длиной 2,4 м, если ?=9,8 Н/кг?
б) Заметьте, что маятник можно использовать для измерения g. Если период

этого маятника 3 с, какова величина g?
32. Шар массой 2 кг подвешен на пружине. Если ему дать вертикальное

смещение и отпустить, то он совершает гармонические вертикальные колебания

с частотой 4 колебаний в секунду.
а) Каков период этих колебаний? Ц Д В
б) Какая сила действует на шар со |

стороны пружины по направлению вверх,
когда он находится в средней точке своего

движения вверх-вниз?
в) На сколько растянулась пружина в

Рис 2023. к заДаче 33.

первый момент, когда к ее концу прикре-
прикрепили шар (перед началом колебаний)?

33. К ползуну с твердой углекислотой, расположенному на горизонтальной
поверхности, прикреплены четыре одинаковые пружины, как показано на рис.
20.23. Когда ползун покоился в среднем положении, точки А и В были закреп-
закреплены зажимами. Затем ползун был смещен на отрезок d по направлению к Л и

после этого отпущен. Во время его последующих колебаний с амплитудой d и

периодом Т зажимы были убраны в тот момент, когда ползун проходил среднюю
точку. Это позволило ползуну колебаться в дальнейшем уже под действием всех

четырех пружин.

а) Каково соотношение между жесткостью k' системы из двух одинаковых

последовательно соединенных пружин и жесткостью к одной пружины?
б) Каков новый период колебаний?
в) Изменилась ли скорость ползуна в средней точке?
г) Какова новая амплитуда колебаний ползуна?
34. С открытой платформы товарного поезда, движущегося горизонтально со

скоростью 4 м/с, брошен мяч вертикально вверх с начальной скоростью 24 м/с.
Опишите траекторию мяча, наблюдаемую человеком:

а) находящимся на платформе;
б) находящимся поблизости на земле.
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35 Будем перекатывать шарик поперек пола автобуса, движущегося по

горизонтальной прямой дороге. Его траектория по отношению к автобусу — пря-

прямая линия В другом случае при перекатывании шарика получилась парабола,

вогнутая по отношению к кабине водителя. Опишите движение автобуса в каждом

из этих двух случаев. Приготовьтесь к обсуждению этих вопросов в классе.

36. Для изучения некоторых вопросов относительного движения построена

установка, состоящая из гладкого ровного стола (рис. 20.24), поставленного на

Рис. 20.24. К задаче 36.

середину платформы, равномерно вращающейся со скоростью 1 оборот за 12 с.

Через центр стола проведены две взаимно перпендикулярные прямые, пересе-

пересекающие окружность радиусом 1,2 м в точках А\ В\ С и D'. На платформе сидят

два наблюдателя (Hf и /') на противоположных концах прямой А С . 1ретии

наблюдатель J находится над столом так, что он наблюдает движение ползуна

в неподвижной системе отсчета. В его распоряжении имеются четыре метки на

полу лаборатории, образующие ортогональные оси координат АС и ви, пере-

пересекающиеся под центром стола (на рисунке точка В скрыта платформой).

а) Наблюдатель Н' держит ползун в руке в точке А . Какова скорость пол-

ползуна в системе отсчета наблюдателя J в момент, когда точка А пересекает пря-

прямую АС?

б) Когда Н' проходит точку Л, он резким толчком посылает ползун вдоль

прямой АС со скоростью 0,40 м/с. Постройте векторный треугольник, позволяю-

позволяющий определить скорость, приобретенную ползуном в момент толчка в системе

отсчета наблюдателя /.

в) Сделайте векторные построения и определите положения ползуна через

1 2 3 4. 5 и 6 с в системе отсчета наблюдателя J.
'

г) Используя построения по п. в), постройте траекторию ползуна на столе

в том виде,как она представляется наблюдателям W и / . (Нанесите на кальку

перемещения движущейся системы отсчета и наложите кальку на траекторию в

неподвижной системе. Векторным построением определите положения ползуна

после каждого поворота движущейся системы на 15°. Соединив полученные течки

можно дать картину движения ползуна, видимою в движущейся системе отсчет?.)
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37. Выясним следующие вопросы, касающиеся задачи 36.

а) Наблюдатель #' толкает ползун при пересечении линии А таким образом,
чтобы наблюдатель /' поймал его в момент пересечения линии D. Сделайте по-

построение, показывающее движение ползуна в системе координат, связанной с

наблюдателем /. Какова скорость ползуна в этой системе?

б) Используйте построение по п. а), чтобы сделать новое построение для
выяснения траектории ползуна в том виде, как она воспринимается наблюда-
наблюдателями Н' и /'.

в) Сделайте векторное построение для определения скорости, которую на-

наблюдатель Н' должен был сообщить ползуну, чтобы он стал двигаться, как ука-
указано в п. а).

38. Выясним новые вопросы, относящиеся к задаче 36.

а) Какую скорость и в каком направлении должен наблюдатель #' сообщить

ползуну при пересечении линии А, чтобы, с точки зрения наблюдателя J, ползун
остался на месте?

б) Каково при этом движение ползуна с точки зрения наблюдателей Нг и /'?

в) Масса ползуна равна 0,5 кг. Какова сила, действующая на ползун, сточки

зрения наблюдателя У, после того как наблюдатель Н' его отпустил? Какая сила,
с точки зрения наблюдателей Я' и /', действует на ползун, заставляя его дви-
двигаться так, как он движется в их системе отсчета?

39*. В Северном полушарии расположено дальнобойное орудие. Требуется,
чтсбы снаряд попал в точку, расположенную прямо на север от орудия. В каком

направлении нужно для этого целиться? (Раздел 20.11.)



ГЛАВА

21 ВСЕМИРНОЕ ТЯГОТЕНИЕ И СОЛНЕЧНАЯ СИСТЕМА

Почти каждый из нас может указать в ночном небе ковш Боль-
Большой Медведицы. Самым поразительным при этом является тот факт,
что это созвездие, как и все прочие, веками сохраняет совершенно
неизменным свой вид. Нам представляется, что созвездия, отдель-
отдельные звезды и их группы движутся так, словно они прикреплены

к внутренней поверхности боль-
большой вращающейся сферы, в центре
которой мы находимся (рис. 21.1).
На этом фоне «неподвижных звезд»
Солнце и Луна движутся равномер-
равномерно, как если бы они были прик-
прикреплены к другим сферам, вращаю-
вращающимся с другими скоростями во-

вокруг Земли. С этой точки зрения
Земля, громадная и неподвижная,
находится в центре звездной Все-
Вселенной, которая вращается вокруг
нее. Такое строение Вселенной на-

называется геоцентрическим (Земля
в центре Вселенной).

В древности было известно
семь небесных тел, которые, как
это казалось наблюдателям, пе-

перемещались среди неподвижных
звезд. Солнце и Луна, Меркурий,
Венера, Марс, Юпитер и Сатурн
были названы- планетами (от гре-

ч
п

веского слова, означающего «блуж-
«блуждающие»). Движение этих тел, за исключением Луны и Солнца, если
наблюдать за ними с Земли в течение длительного временн.является
нерегулярным (рис. 21.2). Это странное движение привлекло к себе
внимание древних наблюдателей. Планеты ярче звезд, что облегчает
наблюдения за изменениями их яркости. Оказалось, что яркость
планет изменяется во время их движения, как если бы изменялось
расстояние между ними и Землей. Наблюдатели ассоциировали
планеты с различными эмоциями и представлениями человека (Ве-
(Венеру - с любовью, Марс - с войной и т. д.), как если бы планеты
60

Рис. 21.1. Снимок сделан фотоаппаратом,
направленным на Полярную звезду (эк-
(экспозиция 1 час). Отрезки дуг показы-
показывают видимое движение звезд. Именно
это круговое движение натолкнуло гре-
греков на мысль, что звезды прикреплены к
сфере, которая вращается вокруг Земли.



являлись своеобразными посредниками между неизменным совер-
совершенством звезд и беспокойным несовершенством человеческой жиз-

жизни на Земле. Позднее астрологи на основании расположения планет

в данный отрезок времени пытались предсказывать судьбы людей*
Задача рационального объяснения специфических особенностей

движения планет сделалась основной проблемой древней астроно-
астрономии. Существует рассказ о том, что греческий философ Платон
D27—347 г. до н. э.) поставил перед своими учениками следующую

•
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- Альтаир
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Рис. 21.2. Особенности кажущегося движения планеты Марс по отношению к неподвижным

звездам. Кажется, что Марс в некоторые моменты времени меняет направление движения на

обратное.

задачу. Звезды, как мы видим, движутся вокруг Земли по идеаль-

идеальным кругам, тогда как траектории планет представляют собой не-

неправильные фигуры. Каковы комбинации правильных круговых

траекторий, с помощью которых можно описать сложное движение

планет? Форма этого вопроса показывает, что круг считался наиболее

совершенной кривой, а следовательно, единственно достойным спо-

способом описания движения небесных тел. Усилия большинства астро-
астрономов в течение многих веков были направлены на решение этой

задачи.

21.1. Первые модели Солнечной системы

Ученик Платона Евдокс пытался изобразить движение планет

комбинацией движущихся концентрических сфер, центром которых
была Земля. Каждую планету он поместил на поверхности сферы,
равномерно вращающейся вокруг оси, прикрепленной в двух про-
противоположных точках на поверхности сферы большего размера
(рис. 21.3). В то время как внутренняя сфера равномерно вращалась
вокруг своей оси, сама ось приводилась во вращательное движение

равномерным движением внешней сферы, ось которой в свою очередь
могла быть прикреплена к поверхности еще большей сферы. Таким
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путем число сфер можно было увеличивать и далее до тех пор, пока

оно становилось достаточным для описания самых сложных дви-

движений. И наконец, вся система вращалась внутри небесного купола,
к которому были прикреплены неподвижные звезды. Используя

ряд таких концентрических сфер, вращающихся одна внутри другой,
Евдокс получил достаточно точное описание движения планет.

Рис. 21.3. а) Планетная система Евдокса. Движение Солнца, Луны и планет можно описать

с помощью сфер, вращающихся внутри других сфер. Внешняя сфера является сферой непод-
неподвижных звезд. Эта сфера делает каждые 24 часа один оборот с востока на запад вокруг оси,

проходящей через Северный и Южный полюсы Земли. Солнце закреплено на некоторой точке

поверхности внутренней сферы. Ось внутренней сферы проходит через две определенные
точки внешней сферы. Внутренняя сфера делает один оборот в год. б) Планета помещена на

самой внутренней сфере. Ось вращения каждой сферы связана с двумя точками следующей
по порядку сферы. Размещая оси вращения сфер под соответствующими углами и выбирая
необходимые скорости и направления вращения, можно с достаточной точностью описать

движение планеты по отношению к неподвижным звездам с точки зрения наблюдателя, нахо-

находящегося на Земле.

Его преемники повысили точность этой модели, продолжая увели-
увеличивать число сфер. Так постепенно усложнялись описания движения

планет.

Было создано много моделей Солнечных систем на основе дви-

движения сфер, для чего потребовалось использовать большое число

этих сфер. Например, в одной из таких моделей для объяснения

движения одного лишь Меркурия использовалось 13 сфер.
Другие греческие астрономы пытались разрешить задачу Пла-

Платона иным путем. Например, Полоний и Гиппарх (III и II вв. до н. э.)
разработали систему, в которой планета движется по кругу, центр
которого движется по другому кругу. Работы этих греческих астро-
астрономов привели к системе, связанной с именем Птолемея из Александ-
Александрии, жившего во II веке н. э. Его система окружностей, движущих-
движущихся по другим окружностям, довольно точно воспроизводила видимое
движение планет (рис. 21.4). Однако орбиты планет получились
настолько сложными, что вызывали нарекания всех, кто пытался
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их изучать. Альфонс X, король Кастилии (XII в.), сказал как-то,
что если бы с ним посоветовались при сотворении мира, он бы создал

'Луна

Меркурий JAfapc
Венера

Рис. 21.4. Упрощенная схема

планет по Птолемею.

Ощ/pff

движения

9 Земля

Рис. 21.5. Движение планеты по схеме Пто-

Птолемея. Планета движется по небольшому

кругу, центр которого в свою очередь дви-
движется по круговой орбите вокруг Земли.

мир по более простому и лучшему плану. Упрощенная орбита
планеты по Птолемею показана утолщенной линией на рис. 21.5.

21.2. Солнечная система Коперника
Польский астроном Николай Коперник (род. в 1473 г.) понимал,

что система Птолемея слишком сложна* Простота равномерного

кругового движения, к которой стремился Платон, утонула в слож-

сложных построениях. «Истина,— думал Коперник,— должна быть про-

проще». Поэтому он попытался дать более простой ответ на вопрос,
поставленный Платоном, избрав другой центр для системы окруж-
окружностей.

Подобно его предшественникам, Коперник понимал, что движе-
движение неподвижных звезд можно объяснить, если предположить, что

Земля вращается *). Ведь наше положение по отношению к небес-

небесным телам напоминает положение пассажира в самолете. Когда
самолет во время полета над городом делает поворот, пассажиру
кажется, что вращаются улицы. Поэтому, раз Земля вращается,
нам кажется, что вращаются звезды.

Предположив, что Земля за сутки совершает оборот вокруг
своей оси, Коперник нашел, что орбиты планет можно значительно

упростить, приняв за центр Солнечной системы Солнце. Но тогда

Земля не может быть в центре Вселенной и не может быть неподвиж-

неподвижной. Видимо, это — планета и она вместе с другими планетами вра-

вращается вокруг Солнца. На рис. 21.6 показаны простые орбиты
движения Земли и планет вокруг Солнца, как это представлял себе

Коперник.
Коперник, обосновывая свое предположение о движении Земли,

говорил: «И хотя это казалось абсурдным, все же, поскольку я знал,

*) Хотя основное направление греческой и средневековой мысли придержи-
придерживалось геоцентрической системы, Гераклид (IV в. до н. э.) считал, что Земля вра-
вращается вокруг своей оси, а Аристарх (III в. до н. э.)полагал,что Земля вращается
вокруг Солнца.
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что многим до меня была предоставлена свобода выбора кругов
для объяснения наблюдений над небесными телами, я решил, что
и мне будет дозволено попытаться выяснить, нельзя ли, допустив,
что Земля движется, получить более разумное объяснение движения
небесных тел... После большого количества длительных наблюдений
я обнаружил, что если движения других планет прибавить к дви-
движениям Земли..., то отсюда не только вытекало наблюдаемое пове-

поведение планет, но эта система в такой степени соответствовала по-

последовательности расположения и размерам планет, их орбитам

Рис. 21.6. Орбиты планет Солнечной системы по Копернику.

а также и всему звездному небосводу, что ни одна черта в ней не
могла быть изменена без нарушения гармонии ее частей и всей этой
системы Вселенной в целом».

Система Коперника включала также большую неподвижную
сферу, на которой были расположены неподвижные звезды. Он так
писал об этом: «Первая и самая высокая из всех сфер — это сфера
неподвижных звезд. Она включает все другие сферы и самое себя;
она неподвижна; это, несомненно, та часть Вселенной, по отношению
к которой должно рассматриваться движение и положение всех

других небесных тел. Если и есть люди, которые еще считают, что
эта сфера движется, то мы придерживаемся другого мнения». Затем,
описывая орбиты и периоды вращения планет, среди которых Земля
рассматривается как одна из шести планет а Луна очень часто
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называется спутником Земли, он заключает: «В центре всего поко-

покоится неподвижное Солнце; где, в самом деле, в другом месте может

находиться этот светоч, чтобы освещать все части столь великолеп-

великолепного храма?»

21.3. Возражения против теории Коперника
Важно понять, что предложенное Коперником упрощение орбит

вынудило его отбросить всю картину Вселенной, созданную со

времен Аристотеля. Вопрос о том, вращается Земля или нет, был

чрезвычайно серьезным. Вся средневековая космология и физика
основывались на идее, что Земля неподвижна и находится в центре
Вселенной. Это положение отчасти основывалось на внутреннем

убеждении человека, что его Земля должна быть центром мира.
Но и помимо этого, казалось, имелись достаточные основания счи-

считать, что Земля занимает особое положение. Во-первых, если Земля

движется, то что толкает ее и почему это движение не ощущается?
Или другое: почему камни падают на Землю, если она не является

центром Вселенной?

Коперник ожидал, что работа его подвергнется суровой кри-
критике, и так долго откладывал ее издание, что увидел напечатанный

экземпляр книги только в день своей смерти. Предвидя многие из

возражений, он попытался ответить на них заранее. На весьма веро-
вероятное возражение, что Земля, вращающаяся с такой скоростью

вокруг своей оси, несомненно лопнула бы, подобно колесу при
слишком быстрой езде, он писал: «Почему приверженец геоцентри-
геоцентрической теории не опасается, что та же участь постигнет его вращаю-
вращающуюся небесную сферу? Ведь она движется значительно быстрее,
потому что значительно больше по размерам». На возражение, что

птицы в полете отставали бы от быстро движущейся Земли, Копер-
Коперник отвечал, что Земля увлекает за собой атмосферу.

И действительно, возражений и контрвозражений было много.

Теория Коперника была отвергнута, как «ложная и совершенно про-
противная священному писанию». Мартин Лютер назвал Коперника
глупцом и еретиком. Спор по поводу этой новой и смелой идеи по-

построения Вселенной продолжался более ста лет, пока, наконец, она

не получила всеобщее признание.

21.4. Тихо Браге
Датский астроном Тихо Браге (род. в 1546 г.) не смог принять

систему Коперника, несмотря на ее простоту. Вместо этого он дал

несколько улучшенную геоцентрическую систему, в которой Солнце
вращается вокруг Земли, а другие планеты — вокруг Солнца

(рис. 21.7).
С целью проверки предложенных астрономических моделей он

принялся за составление особо точной карты положения неподвиж-

неподвижных звезд и определение перемещения планет, наблюдаемых с Земли
в течение длительного периода времени. Он начал свои наблюдения
с помощью инструмента, состоявшего из двух соединенных стерж-
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Рис. 21.7. Геоцентрическая система по Тихо
Браге.

ней, один из которых направлялся на неподвижную звезду, дру-

другой — на планету. Таким путем он мог измерить угловое расстояние

между ними. Позднее он сконструировал большие секстанты и ком-

компасы, с помощью которых произ-
производил наблюдения с поразитель-
поразительной точностью. Он составил ка-

каталог положений для 777 звезд

с такой точностью, что его на-

наблюдениями пользуются да сих

пор, причем ошибки в его изме-

измерениях углового положения пла-

планет за двадцатилетний период
не превышают 4/60 градуса. Это

угол, примерно равный углу
зрения на головку булавки, на-

находящуюся на расстоянии вы-

вытянутой руки от глаза.

Наблюдения Тихо Браге над
положением планет были значи-

значительно точнее наблюдений, кото-

которые мог осуществить Коперник.
Они скоро показали, что орбиты Коперника не вполне точны,

и Тихо Браге принялся за поиски более точного описания орбит.
Эта задача была решена после его смерти одним из учеников Тихо

Браге, немецким астрономом Кеплером, работавшим в лаборатории
Тихо Браге в течение последних 18 месяцев жизни Тихо Браге.

21.5. Кеплер
Иоган Кеплер (род. в 1571 г.) как ученый представлял разитель-

разительный контраст с Тихо Браге. Тихо Браге обладал огромными способ-
способностями и мастерством экспериментатора, но проявлял сравнитель-
сравнительно малый интерес к математике. Кеплер не был хорошим экспери-
экспериментатором, но верил в безграничные возможности математики.

Своим преклонением перед могуществом вычислений он напоминал

древних греков, его неотразимо привлекали головоломные задачи

из области нахождения численных величин.

После того как Кеплер изучил основы астрономии, им овладело

стремление найти математическую схему, лежащую в основе си-

системы планет. Он писал: «Я направил всю энергию своего ума на

разрешение этой проблемы». Он посвятил свою жизнь анализу
таблиц положения планет, которые оставил ему Тихо Браге. При
разрешении проблемы перехода от наблюдений Тихо Браге к мате-

математическому описанию движения планет Кеплер действовал подоб^
но современному ученому, который стремится выразить данные

эксперимента в виде простых математических формул, а не только

в виде таблиц. Математические законы дают возможность не только

воспроизвести данные, получаемые при наблюдениях, ной предска-
предсказать результаты еще не произведенных наблюдений. Более того,
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математические законы легче запомнить и легче, чем таблицы цифр,
передать другим ученым.

В своей первой книге Кеплер пытался объяснить, почему в Сол-
Солнечной системе имеется именно шесть планет. Он установил связь

между шестью орбитами и пятью

геометрически правильными
твердыми телами *) (рис. 21.8).
Исходя из этого построения, он

вывел соотношения радиусов, ко-

которые были довольно близки к

известным в то время величинам

планетных орбит.
Кеплер был в экстазе. Он пи-

писал: «То огромное удовольствие,
которое я получил от этого от-

открытия, описать словами невоз-

невозможно. Я больше не считал, что

время потрачено зря; я не уста-
уставал от моего труда; я не пренеб-
пренебрегал тяжелой работой по вычис-

вычислению и проводил дни и ночи за

расчетами, пока не оказался в

состоянии ответить на вопрос,
дает ли моя гипотеза согласие с

орбитами Коперника или же моя

радость эфемерна».
Найти соотношение между ра-

радиусами орбит планет, используя
гг. тг1 вильнои геометрической формы, используй

ДаННЬЮ 1 ИХО Ьраге, ВОТ ОДНа 20-гранник и 8-гранник. Это дает нам ради-

из типичных задач, которые ста-
" ~ " '"'"""

вул перед собой Кеплер. Однако
часто случается, что самое точное

совпадение данных не имеет боль-
большого значения в объяснении при-
природных явлений. В наше время
это открытие Кеплера совсем забыто. Его система разрушена тем, что

планет в действительности оказалось не шесть, а больше. Но седьмая
планета была открыта много лет спустя после смерти Кеплера.

Однако Кеплер открыл другие математические соотношения,

которые успешно прошли проверку более поздних наблюдений.
Свою замечательную работу по анализу данных Тихо Браге он

начал с тщательного изучения движения Марса. По какой кривой
двигался Марс за время наблюдений Тихо Браге, длившихся
20 лет? Наблюдения за положениями планеты производились,
конечно, с Земли. Как же движется Марс? По простой кривой,

S) Юпитер

Рис. 21.8. Кеплеровский закон орбит был ос-
основан на свойствах пяти правильных много-

многогранников, а) В соответствии с этим зако-
законом сфера радиусом, равным радиусу орбиты

Сатурна, описывается вокруг куба. Сфера,
вписанная в этот куб, имеет радиус, равный
радиусу орбиты Юпитера, б) В сферу радиу-
радиусом орбиты Юпитера вписан тетраэдр. Сфе-
Сфера, вписанная в этот тетраэдр, дает радиус
орбиты Марса, в) В сферу с радиусом орбиты
Марса вписан додекаэдр. Сфера, вписанная
в этот додекаэдр, дает радиус орбиты Земли.

Мы можем продолжать этот процесс по-

последовательного вписывания сфер и тел пра-
правильной геометрической формы, используя

усы орбиты Венеры (д) и Меркурия (е); •_
диус орбиты последнего равен радиусу сфе-
сферы, вписанной в 8-гранник. Кеплер считал
пять тел правильной геометрической формы
связующими звеньями между орбитами пла-
планет. Поскольку существует только пять тел

правильной геометрической формы, Кеплер
придерживался убеждения, что должно быть

только шесть планет.

*) Под правильным твердым телом мы понимаем симметричное тело с рав-
равными плоскими гранями. Можно построить лишь пять типов таких тел.
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определяемой постулатом о неподвижности Земли, или по Ко-

Копернику?
Кеплер принял идею Коперника, что Земля вращается вокруг

своей оси и вместе с тем обращается вокруг Солнца по определенной
орбите. Следуя традициям, он для получения возможных орбит
сперва использовал систему кругов, двигавшихся по окружностям.
Он проделал бесчисленные пробные расчеты, каждый из которых

требовал длительных и кропотливых вычислений. Каждый угол
между Марсом и неподвижной звездой, измеренный Тихо Браге,
ему пришлось пересчитывать на положение этой планеты в прост-

пространстве по отношению к неподвижному Солнцу, вокруг которого

вращалась сама Земля.
После примерно семидесяти попыток использования орбиты

типа «эксцентрического круга» Кеплер нашел кривую, которая до-
довольно точно соответствовала фактам. Но затем, к своему отчая-

отчаянию, он убедился, что эта кривая, если ее продолжить за пределы
данных, которые он использовал, не совпадает с прочими наблюде-
наблюдениями Тихо Браге над положением Марса.

Расхождение между данными Тихо Браге и вычислениями Кепле-

Кеплера составляло около 8/60 градуса (это такой угол, какой секундная
стрелка часов проходит при-
примерно за 0,02 с). Не мог ли

Тихо ошибиться на такую ма-

малую величину? Не могли ли

его пальцы онеметь в зимнюю

ночь от стужи, не затумани-
затуманилось ли его зрение? Кеплер
знал методы Тихо и тщатель-

тщательность его измерений. Тихо не

мог ошибиться, даже на такую

небольшую величину. Итак,
на основании данных Тихо

Браге Кеплер отверг постро-
построенные им кривые. Такова была

дань Кеплера памяти его учи-

учителя!

Говоря, что «на этих вось-

восьми минутах (он) все же по-

построит теорию Вселенной»,

Кеплер снова принялся за

работу. Отбросив древнее и

излюбленное положение о равномерном движении, он счел воз-

возможным предположить, что скорость движения планеты по ее ор-
орбите вокруг Солнца может изменяться. И он сделал свое первое
великое открытие, найдя, что прямая, проведенная от Солнца к пла-

планете, описывает равные площади в равные промежутки времени.
Это положение стало известно как второй закон Кеплера (рис. 21.9).
После открытия своего второго закона Кеплер, наконец, оставил
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Рис. 21.9. Кеплеровский закон равных площа-
площадей Марс движется по орбите с переменной
скоростью, которая достигает наибольшей вели-

величины, когда он ближе всего к Солнцу. Кеплер
обнаружил, что для равных интервалов време-
времени tz— t1= t4—t3 площади, описанные прямой,
соединяющей планету с Солнцем, равны (пло-
(площадь В равна площади Л). Чтобы нагляднее
пояснить закон равных площадей, эксцентриси-
эксцентриситет эллипса сильно преувеличен (эллипс вы-

вытянут в горизонтальном направлении).



попытки построить движения планет на основе комбинаций равно-
равномерных круговых движений и начал пробовать различные овальные

формы в качестве возможных орбит. После новых кропотливых
и длительных вычислений он, наконец, достиг одного из своих

наиболее важных результатов. Это открытие называется теперь
первым законом Кеплера. Он обнаружил, что каждая планета дви-

движется по эллиптической орбите с Солнцем, находящимся в одном

из фокусов эллипса. Представьте себе восторг Кеплера, когда после

многолетних усилий он, наконец, нашел простую кривую, верно

отображавшую движение планет.

После этого открытия Кеплер снова принялся за работу, на

этот раз для того, чтобы определить связь между величиной орбиты
планеты и ее периодом, т. е. временем одного оборота вокруг Солн-

Солнца. В результате многих попыток он нашел точное соотношение:

для всех планет отношение куба радиуса орбиты к квадрату периода
оказалось величиной постоянной *). Точность этого вывода оказа-

оказалась поразительной (табл. 21.1). Постоянство отношения R3/T2

таблица 21.1

Третий закон Кеплера

Планета

Меркурий
Венера
Земля

Марс
Юпитер
Сатурн

Радиус орбиты,
а. е.

0,389

0,724

1,000

1,524

5,200

9,510

Период Г,
дни

87,77
224,70
365,25
686,98

4 332,62
10 759,20

R3/T2,
10-» (а.е.O(деньJ

7,64
7,52
7,50
7,50
7,490
7,430

Современные данные

R*/T2, 10" м3/с2

3,354
3,352
3,354
3,354
3,355
3,353

В этой таблице даны величины орбит и периодов, которыми пользовался Кеплер.
Во времена Кеплера радиусы были известны в единицах радиуса земной орбиты. Радиус
орбиты Земли называется астрономической единицей (а. е.) длины. Почти постоянные
величины Rz/T* иллюстрируют третий закон Кеплера. Последний столбец основан
на современных точных измерениях орбит и периодов.

называется третьим законом Кеплера. Одержав эту победу,
Кеплер написал: «То, что я 16 лет назад выдвигал как предмет
поисков, то, ради чего я присоединился к Тихо Браге, ...я, на-

наконец, выяснил и признаю за истину, что выше всех моих чая-

чаяний... Жребий брошен, книга написана, чтобы ее прочитали теперь
или позже, мне безразлично, когда; она может ждать читателя целое

столетие, как бог ждал шесть тысяч лет появления наблюдателя».

*) Радиус орбиты определяется половиной суммы самого короткого и самого

большого расстояния между Солнцем и планетой. Так как орбиты планет не сильно

отличаются от окружности, то расстояние от Солнца до любой точки на орбите
можно в большинстве случаев принять за радиус окружности.
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Открытия Кеплера способствовали быстрому развитию астро-
астрономии. Он перевел великолепные таблицы данных, которые соста-

составил Тихо Браге, в простую и ясную систему кривых и математиче-

математических законов. Система Кеплера завоевала ему звание «законодателя

небес».
таблица 21.2

Солнечная

Планета

Салвде

Меркурий
Венера
Земля

Марс,
Юпитер
Сатурн
Уран
Нептун
Плутон
Луна

система

Масса, кг

1,98» ИР*

3,28.10**

4,83*10**
5,98.10**

6,37-1023

1,90-102'
5,67.102»
8,80-102§
1,03.10м

?

7,34-1022

Радиус, м

6,95*
2,57*
6,ЗЬ

108
10е
10е

6,38*10*
3,43-
7,18.
6,03.
2,67-
2,48.

?

1,74

10*
10'
10'
10'
10'

106

Период враще-
вращения вокруг соб-
собственной оси, с

2,14*

7,60.
2,&*

8,6Ь

8,85-
3,54.

3,60-
3,88-
5,69-

?

2,36-

да

10*

w (?)
10*

10*
10*

10*
10*
10*

10е

Средний ра-
радиус орбиты,

м

5,79401°
1,08.1011
1,494011
2,28.10И
7,78-1011
1,43-1012
2,87-1012
4,50.1012
5,9-1012
3,8-108

Период об-
обращения, с

7,60.10е
1,94.10'
3,16-10'
5,94-10'
3,74-108
9,30.10е
2,66-10»
5,20-10»
7,82-10»
2,36.10е

ТАБЛИЦА 21.3

Масштабы Солнечной системы

Планеты Солнечной системы

Солнце

Меркурий

Венера
Земля

Марс
Юпитер

Сатурн

Уран
Нептун

Плутон
Ближайшая звезда

Объект модели

Баскетбольный мяч

Половина булавочной головки

Семечко яблока

Семечко яблока

Небольшое семечко яблока

Мяч для гольфа
Мяч для пинг-понга

Шарик диаметром ~ 15 мм

Шарик диаметром *>- 15 мм

?

Баскетбольный мяч

Расстояние

от «Солнца»

13 м

25 м

34 м

52 м

180 м

320 м

0,65 км

1,0 км

1,3 км

8.103 км

На небольшом рисунке невозможно показать соотношение размеров и расстояний
планет в одном масштабе. Эта таблица да.ет некоторое представление о соотношении ве-
величин и расстояний по сравнению с обычными] предметами. Чтобы получить реальные
размеры солнечной системы, надо каждый из приводимых размеров умножить на 4,4*10*.
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ffiymott

Рис. 21.10. Орбиты известных планет, их расположение в пространстве. Обратите внимание

на то, что орбиты всех планет, кроме Плутона, лежат примерно в одной плоскости. (Орбита
Меркурия не показана, так как в масштабе этого рисунка она слишком мала.)

Орбита Плутона

• Меркурий
о Венера
о Земля

• Маре

Юлитер

Сатурн

Рис.21.11. Приближенная схема орбит ос-
основных планет (орбиты Меркурия и Венеры
не показаны ввиду их малости в масштабе

рисунка). Все планеты, за исключением

Плутона, имеют почти круговую форму ор-
орбиты. Только тщательные измерения пока-

вывают, что орбиты эллиптичны.

Рис. 21.12. Сравнительные размеры планет
и Солнца. Общая масса всех планет состав-
составляет только 1,34-Ю-8 часть от массы

Солнца.

71



Вот три закона Кеплера:
I. Каждая планета движется по эллипсу, в одном из фокусов

которого находится Солнце.

II. Прямая, соединяющая Солнце и планету, в равные проме-

промежутки времени описывает равные площади.
III. Отношение R3/T2 одинаково для всех планет.

Если это постоянное отношение обозначить /С, то третий закон

можно выразить формулой
r*/T* = K.

Три закона Кеплера дают возможность вычислять орбиты планет

с большей точностью, чем системы Птолемея или Коперника с их

сложным сочетанием окружностей, движущихся по другим окруж-
окружностям (рис. 21.10—21.12).

21.6. Кинематическое описание и проблемы динамики

Законы Кеплера являются кинематикой Солнечной системы.

Они дают простое и точное описание движения планет, но не содер-
содержат объяснения причин движения с точки зрения действующих
сил. Метод вычисления орбитального движения планет по Птолемею

также является чисто кинематическим. В чем же основное разли-
различие этих двух кинематических методов?

Оба описания в достаточной степени точны. Оба дают нам воз-

возможность предсказать, где будет находиться планета в то или иное

время. Различие заключается в точках зрения. Описание Кеплера
представляется нам более простым. Следуя теории Коперника, он

избрал неподвижные звезды в качестве системы координат, по отно-

отношению к которой определяется движение планет, и подобно Копер-
Копернику использовал Солнце для измерения положения планет. Проще
описать движение планет относительно Солнца, принимаемого за

неподвижную точку отсчета, чем описывать эти движения в том

виде, как они нам представляются при наблюдении с Земли; кроме
того, законы Кеплера дают возможность легко представить себе,
как должно выглядеть движение планет, если смотреть на них

с Земли.
С другой стороны, нет ничего порочного в том, чтобы описывать

движения, связывая систему отсчета с Землей. Но это значительно

труднее, а результат получается запутанным, так как движения

кажутся сложными и нерегулярными. Таким образом, удобства,
а не какие-либо принципиальные соображения определяют в ки-

кинематике выбор системы координат.
Ситуация в этом случае напоминает положение человека, стоя-

стоящего на земле и наблюдающего движение какой-либо точки на

краю колеса автомашины (см. гл. 6). Он видит, что эта точка дви-
движется по циклоидной траектории со скоростью, которая периодиче-
периодически меняется от нуля до максимальной величины. Для человека

же, движущегося вместе с осью колеса, эта точка движется по кругу
с постоянной скоростью. Оба наблюдателя правы; если мы примем
во внимание движение оси по отношению к земле, то должны будем
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признать, что оба описания эквивалентны, как эквивалентны систе-

системы Тихо Браге и Коперника (см. рис. 21.6 и 21.7); выбор той

или иной системы диктуется соображениями удобства конкретных
условий наблюдения. Для навигации, например, предпочтительно

геоцентрическое описание — в этом случае для нас не имеет значе-

значения простота движений планет вокруг Солнца. Мы хотим лишь

знать, где мы находимся, когда видим планеты в определенном
месте и в определенное время. Поэтому в наши дни геоцентрический
принцип используется при звездной ориентации судов и самолетов.

Однако положение становится совершенно иным, когда мы же-

желаем объяснить движения планет. Во-первых, естественно предпо-

предположить, что чем проще описание движения, тем легче объяснить

и понять его динамику. Во-вторых, мы уже знаем, что закон Ньютона

сохраняет свою форму только в определенных системах координат.
Даже равномерное движение, протекающее без воздействия силы

на предмет, не будет казаться равномерным наблюдателю, который
вращается наподобие волчка. В этом случае, как мы знаем, возни-

возникают силы инерции, и простое динамическое объяснение делается
невозможным. Следовательно, при переходе от кинематики к дина-

динамике важно найти такую систему координат, в которой силы инер-
инерции не будут осложнять задачу.

Итак, чтобы объяснить движение планет с точки зрения дина-

динамики, нужно сначала выбрать подходящую систему координат.
Можем ли мы избрать систему координат, в которой Земля была бы

неподвижна? Ответ на этот вопрос должен быть отрицательным.
В любой такой системе движения планет таковы, что нам приходится

допускать наличие переменных сил, так что динамическое объясне-
объяснение таких движений не может быть найдено. В этом положении нам

оставалось бы только вернуться к точке зрения Аристотеля, который
считал, что планеты отличаются от любой другой материи и ведут
себя согласно их собственным особым законам движения.

Система Птолемея соответствовала этой точке зрения Аристотеля
и не противоречила геоцентрической динамике земных объектов.

Она привела к мысли, что орбиты планет должны быть наиболее

простыми, если рассматривать в качестве их центра Землю, а не

какую-либо другую точку. Большая простота планетных орбит
в гелиоцентрическом описании Кеплера подрывает, таким образом,
всю картину Вселенной, созданную Аристотелем.

С другой стороны, в гелиоцентрической системе Земля стано-

становится планетой, подобной всем другим планетам. Значит, не остается

основания для того, чтобы иметь особую геоцентрическую динамику.
Вместо этого мы снова можем искать единую динамику, которая
включает движение тел на Земле и движение всех планет, включая

нашу собственную. И действительно, гелиоцентрическая точка зре-
зрения дала ключ, с помощью которого мы построили динамическое
объяснение движения планет.

В дальнейшем в этой главе мы увидим, как гелиоцентрическая
система согласуется с динамикой Галилея и Ньютона. Мы пойдем
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по стопам Ньютона. Основываясь на гелиоцентрической точке зре-
зрения и системе координат, связанной с неподвижными звездами, мы

обнаружим, что простой закон, определяющий величину силы,

действующей между массами, объясняет наблюдаемые движения

планет. Он объясняет их на основе той же самой динамики, которая

пригодна и для объяснения движений, происходящих на поверх-
поверхности Земли. Постулированный Ньютоном закон тяготения был

многократно проверен как на Земле, так и на астрономических
расстояниях. Таким образом, поиски динамики, единообразно опи-

описывающей движения на Земле и во Вселенной, оказались успешными.
На основании геоцентрической системы такое унифицированное
объяснение не было бы возможно*

21.7. Ньютон
Исаак Ньютон родился в 1642 г., в тот год, когда умер Галилей.

Он объединил открытия Коперника, Кеплера, Галилея и других
ученых как в астрономии, так и в динамике. К этим открытиям он

добавил свои и создал систему, которая до сего дня является одним

из величайших достижений науки. Так глубоко и ясно было его

понимание явлений, что он смог успешно применить законы движе-
движения к поразительно большому числу явлений природы, начиная от

движения планет и кончая приливами и отливами.

За период времени, отделявший Ньютона от Кеплера, произо-
произошли большие изменения в науке. После работ Галилея все больше
и больше утверждалось мнение о всеобщности законов, управляю-
управляющих движением тел, и о том, что эти законы могут применяться как

к движению небесных тел, так и к движениям на Земле. Мысли

ученых все чаще обращались к вопросу: какого рода сила действует
на планеты со стороны Солнца и заставляет их двигаться согласно

законам, открытым Кеплером? Руководствуясь законами Кеплера,
Ньютон ответил на этот вопрос. Он создал динамику движения
планет, которая была настолько глубоко разработана, что ученые
в течение многих лет жаловались на то, что в этой области ничего

не остается делать.

Первые усилия Ньютона были направлены на изучение движения

Луны. Ньютон знал, что если Сы на Луну не действовали никакие

силы, то она двигалась бы по прямой с постоянной скоростью.
Однако, согласно наблюдениям с Земли, Луна движется почти по

кругу. Следовательно, должно существовать ускорение, направлен-
направленное к Земле, и сила, которая вызывает его. Он установил: «И Луна
без некоторой силы такого рода не могла бы удержаться на своей

орбите. Если бы эта сила была слишком мала, она не могла бы

свернуть Луну с ее прямолинейного курса; а если бы она была
слишком велика, то она слишком сильно повернула бы Луну и по-

потянула бы ее с орбиты в направлении к Земле».
Какая же сила заставляет Луну обращаться вокруг Земли?

Ньютон говорил, что ответ на этот вопрос пришел к нему в то время,
когда он сидел в саду. Он думал как раз об этой проблеме, когда
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на землю упало яблоко; сила, с которой Земля действует на яблоко,
подумал он, может действовать и на Луну. Может быть, Луна яв-

является падающим телом?

В гл. 20 мы рассчитали ускорение Луны в направлении Земли
и нашли, что оно равно 2,7 • 10~3 м/с2, что намного меньше величины

9,8 м/с2, выражающей ускорение падающего тела у земной поверх-
поверхности. Ньютон произвел в основном такое же вычисление. Сначала

необходимо было установить точное значение радиуса орбиты Луны.
Но он знал, что радиус орбиты Луны приблизительно в 60 раз
больше радиуса Земли; используя приближенную величину радиу-
радиуса Земли, он смог определить радиус орбиты Луны и вычислить ее

ускорение. Получив столь малую величину ускорения Луны, Нью-
Ньютон должен был задавать себе вопросы, подобные следующим: по-

почему ускорение падающего тела во много раз больше, чем ускорение

Луны? Уменьшается ли сила, с которой Земля притягивает тел^,
по мере их удаления от Земли? Если это так» то каково точное соот-

соотношение между силой и расстоянием, разделяющим взаимодейст-

взаимодействующие тела?

Ньютон предположил, что Земля притягивает Луну согласно

тому же общему закону, по которому она притягивает и падающее
яблоко. Если исходить из этого предположения, то всякий постули-
постулированный закон изменения силы с расстоянием должен объяснить,
чем вызывается различие между ускорением g падающего тела у по-

поверхности Земли и значительно меньшим ускорением Луны. Нью-
Ньютон много лет спустя говорил, что он пришел к правильному закону
изменения силы, вернувшись к третьему закону Кеплера. Он вре-
временно отложил работу над силами притяжения со стороны Земли

и занялся рассмотрением сил, действующих со стороны Солнца на

планеты, т. е. центростремительных сил, заставляющих планеты

двигаться по их орбитам. Ньютон хотел узнать, как изменяется

сила, действующая на планету, с изменением радиуса орбиты. Мы
сейчас увидим, как можно вычислить эту силу.

Одним из достижений Кеплера явилось определение орбит пла-

планет как эллипсов. Поскольку эти эллипсы приближаются к окруж-
окружностям, ради простоты мы примем их за окружности с Солнцем
в центре. Рассмотрим движение планеты, движущейся вокруг Солн-
Солнца с периодом Т по круговой орбите радиуса R. Как мы узнали
в разделе 20.5, центростремительное ускорение планеты или любого

предмета, движущегося равномерно по окружности, равно

a = 4n2R/T2.

Поэтому центростремительная сила, действующая на планету,
должна быть равна

F = ma = m-4n2R/T29

где m — масса планеты. Чтобы исключить период Т и выразить
силу только как функцию R и /л, Ньютон использовал третий закон
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Кеплера:
R*/T2 = K, или T2 = R3/K.

Заменяя Т2 в уравнении F = 4n2Rm/T2 отношением R3/K, мы нахо-

находим, что сила, действующая на планету, равна

Сила прямо пропорциональна

Рис. 21.13. Сила притяжения, дейст-
действующая со стороны Солнца на планету,
прямо пропорциональна массе планеты
и обратно пропорциональна квадрату

расстояния планеты от Солнца.

массе планеты и обратно пропорцио-
пропорциональна квадрату расстояния от

Солнца (рис. 21.13).
Позднее Ньютон доказал, что

любое тело, движущееся под влия-

влиянием этой силы, должно переме-
перемещаться по эллиптической орбите
с Солнцем в одном из фокусов эл-

эллипса и что прямая, соединяющая
Солнце с телом, описывает в рав-
равные промежутки времени равные
площади. Как мы видели, формула
силы притяжения и метод ее по-

получения прямо связаны с третьим
законом Кеплера. Следовательно,
система движения планет, описы-

описываемая законами Кеплера, выте-

, установленного Ньютоном из егокает из этого нового закона

же закона динамики *).

21.8. Всемирное тяготение

Заметьте, что множитель К в формуле для силы притяжения

представляет собой постоянную третьего закона Кеплера. Он отно-

относится к любой планете, с любой массой и любой орбитой. Поэтому
множитель К зависит только от свойств Солнца; он характеризует
Солнце как источник сил притяжения.

Сила притяжения между Солнцем и массой m равна

где 4я2/("с относится к Солнцу как источнику силы, a R есть рас-
расстояние между Солнцем и массой т. Весьма вероятно, что сила,

действующая между Землей и массой т, равна

где 4я2/Сз является характеристикой Земли как источника силы

земного притяжения, a R — расстояние между Землей и массой пг.

*) Гюйгенс и Гук тоже использовали третий закон Кеплера и закон движения

Ньютона для доказательства того, что сила F пропорциональна \/R2y однако они
не сумели показать, что отсюда же вытекают и другие законы Кеплера. Ньютон
дал закон динамики, нашел закон тяготения и, кроме того, доказал, что из него
вытекают законы Кеплера.
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С этими идеями Ньютон вернулся к проблеме движения Луны
вокруг Земли. Ускорение g массы, падающей у поверхности Земли,
равно

где /?з —радиус Земли, т. е. расстояние между центром Земли
и массой т на ее поверхности. Величина земного поля тяготения

на расстоянии, равном расстоянию до Луны, т. е. ускорение Луны
по направлению к Земле, имеет значение

где /?з-л — расстояние от центра Земли до центра Луны. Разде-
Разделив это уравнение на предыдущее, мы получаем

л>
или *л

Поскольку Ньютон знал, что /?з/??з-л примерно равно 1/60,
a g" равно 9,8 м/с2, он нашел, что ад « 2,7 • 10~3 м/с2. Этот результат
весьма близок к величине ал» которую Ньютон нашел, исходя из

радиуса орбиты и периода обращения Луны (см. раздел 20.7).
Итак, Ньютон получил ускорение Луны двумя различными

способами: исходя из /?з-л и периода обращения Луны, безот-
безотносительно к закону обратной пропорциональности ускорений
квадратам расстояний, и из величины ускорения земного при-

притяжения на основе этого закона. Близкое совпадение получен-
полученных величин подтверждало его предположение, что силы, дей-
действующие между Землей и Луной и между Солнцем и планетами,

одинаковы по своей природе и являются силами тяготения,

подобными силе, действующей на падающее яблоко.

Вывод законов Кеплера из закона всемирного тяготения был

сделан Ньютоном, по-видимому, лишь несколько лет спустя после

открытия им закона изменения силы притяжения и вычисления

ускорения Луны. Интересно при этом отметить, что эти работы
были выполнены Ньютоном, когда ему было всего 24 года. Об этом

периоде Ньютон позднее писал: «И в тот же год я начал думать
о притяжении, как о чем-то относящемся к орбите Луны, и, ... поль-

пользуясь правилом Кеплера (третий закон),.. .нашел, что силы, которые

удерживают планеты на их орбитах, должны меняться обратно
пропорционально квадратам расстояний от центров, вокруг которых
они вращаются; и в связи с этим я сравнил силу, требуемую для

того, чтобы удерживать Луну на ее орбите, с силой тяготения на

поверхности Земли, и нашел, что они весьма близки. Все это было
в годы чумы A665—1666 гг.). В те дни я был в расцвете моих твор-
творческих лет и занимался математикой и философией больше, чем

когда-либо потом».

Ньютон, конечно, понимал, что закон тяготения относится не

только к Солнцу и планетам, не только к Земле и Луне, но также

к любым двум телам. Это предположение непосредственно ведет

77



к вопросу: какое свойство материального тела определяет его гра-
гравитационное притяжение к другим телам? Какое свойство Земли

определяет численную величину параметра 4я2/Сз? Что определяет

параметр 4я2/Сс для Солнца? Возможно, 4я2/С зависит от какого-то

нового свойства тела; но если гравитационное притяжение есть

свойство всех тел, то имеются все основания предположить, что

4я2/С зависит от количества вещества в данном теле. Поэтому естест-

естественно предположение, что 4я2/С пропорционально массе тела. Тогда
4я2/С3 = G/гсз для Земли, а 4я2/Сс = Gtric для Солнца, где G —

коэффициент пропорциональности между 4я2/С и массой т для

любого тела. Ньютон первым сделал это предположение. Таким

образом, сила притяжения, с которой тело массой т± действует
на тело массой т2 на расстоянии R, должна быть равна

/Y2 = Dя2/Сх) mJR2 = Gm1 m2fR2.
С другой стороны, поскольку все массы тяготеют друг к другу,

масса т2 в свою очередь также действует на^с некоторой грави-
гравитационной силой. Поскольку 4я2/С2 = Gm2, сила притяжения, с ко-

F f—>. торой т2 действует на т19 равна

Хотя эти две силы противопо-
ложны по направлению, они рав-
равны по величине (рис. 21.14). Фор-

Рис. 21.14. Сила притяжения, действующая Мула
со стороны массы тх на массу т2, равна и

противоположна силе, действующей со сто- п *> , D2

роны тя на тх.
Г =^ um1m2/JK

для величины притяжения выражает закон всемирного тяготения:

два тела притягиваются друг к другу с силой, прямо пропорциональ-
пропорциональной массе каждого из них и обратно пропорциональной квадрату
расстояния между ними. Константа G, входящая в закон всемир-
всемирного тяготения, не зависит от рассматриваемых масс, от того, где

они находятся, или от состояния их движения.

К сожалению, нам неизвестны детали того логического пути,

которым Ньютон пришел к закону всемирного тяготения. Помимо

тех соображений, которыми мы воспользовались выше при выводе
этого закона, существует ряд других способов рассуждений, кото-

которые приводят к тому же результату. Например, как мы увидим
в следующей главе, Ньютон в конце концов предположил, что силы

взаимодействия между двумя телами всегда равны и противополож-

противоположны; возможно, что именно из этой идеи он исходил при выводе за-

закона тяготения. Каковы бы ни были, однако, шаги, которые привели
Ньютона к открытию закона всемирного тяготения, справедливость
этого закона зависит от совпадения предсказаний, сделанных на

его основе, с фактическим поведением тел в природе. На основе

этого закона Ньютон смог сделать большой шаг вперед в учении
о строении Вселенной,
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21.9. Некоторые более поздние работы Ньютона
Ньютон применил закон всемирного тяготения к самым разно-

разнообразным проблемам. Как мы уже знаем, он вывел, пользуясь этим

законом, все три эмпирические формулы Кеплера. Затем он изучил

приливы и отливы и объяснил их на основе сил тяготения, создавае-

создаваемых Луной и действующих как на сушу, так и на океаны. Он начал

исследовать возмущения
— наблюдаемые на опыте незначительные

отклонения орбит планет от теоретически вычисленных. Эти откло-

отклонения движения планет от эллиптических орбит можно объяснить

небольшим гравитационным взаимодействием между самими пла-

планетами. Земля притягивается не только Солнцем, но также в раз-
различной степени и каждой из планет. Эти силы притяжения сравни-
сравнительно незначительны, потому что массы планет по сравнению с мас-

массой Солнца невелики, но действие этих сил можно наблюдать,
и Ньютон правильно предсказал их существование,

Позднее эта теория возмущений привела к открытию новой пла-

планеты. В XIX веке знали семь планет. Из них шесть, известные ра-
ранее, вели себя нормально, но седьмая, Уран, открытая Гершелем
в 1781 г., двигалась не совсем так, как предполагали. Когда вычисли-

вычислили отклонения орбиты Урана, вызываемые влиянием других планет,

результат не совпал в точности с наблюдаемым движением. Астро-
Астрономы Адаме и Леверье независимо друг от друга пришли к заклю-

заключению, что существует еще одна планета (находящаяся дальше от

Солнца, но достаточно близко, чтобы оказывать влияние на движе-

движение Урана); и 23 сентября 1846 г. Галле обнаружил новую планету
в точке, заранее рассчитанной Леверье. Эту новую планету назвали

Нептуном.
Среди многих других проблем, к которым Ньютон применял

закон всемирного тяготения, одна представляет для нас особый

интерес. Это — проблема вычисления ускорения Луны на основе

закона всемирного тяготения с использованием величины g у по-

поверхности Земли (раздел 21.8). Когда Ньютон в первый раз произ-
произвел это вычисление, он использовал расстояния Rs и #з-л от

центра Земли. Хотя центр Земли и является естественной точкой,
от которой следует измерять R, Ньютон не был уверен в правильно-
правильности расчетов. Поскольку закон тяготения относится к любым двум
телам, то гравитационное притяжение данного предмета Землей

должно быть результирующей силой его притяжения ко всем частям

Земли.

Массы, образующие в совокупности Землю, расположены на

разных расстояниях от данного предмета. Создают ли они, действуя
вместе, ту же силу, которую создавали бы, находясь все вместе

в центре Земли? Уменьшается ли при этом сила все по тому же з акону
1/R2 или нет? Ньютон смог ответить на эти вопросы только после

того, как он разрешил математическую задачу сложения сил, воз-

возникающих от притяжения предметов массами, из которых состоит
Земля. Он должен был доказать, что эта векторная сумма выражает
силу, которая убывает по закону обратных квадратов.
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В настоящее время мы могли бы решить эту задачу, применив

известную математическую теорему; но во времена Ньютона ни

эта теорема, ни метод ее вывода не были известны. Ньютон сам

создал математический аппарат (называемый теперь интегральным
исчислением), который необходим для решения этой и многих

других сложных задач. Когда Ньютон получил ответ, оказалось, что

его первоначальное предположение было правильным: если силы,

создаваемые каждым элементом массы, убывают обратно пропорцио-
пропорционально квадрату расстояния, то сферические тела притягивают друг

друга так, как если бы вся их масса была сконцентрирована в их

центрах. Ньютон был очень доволен этим результатом.

21.10. Проверка закона всемирного тяготения в лаборатории
Прямой путь проверки закона всемирного тяготения Ньютона

заключается в измерении сил притяжения между телами в лабора-
лаборатории. Мы ставим перед собой задачу обнаружить притяжение между

двумя массами и измерить силу, испытываемую каждой из них;

при этом необходимо использовать предметы из различных мате-

материалов, чтобы убедиться, что только масса определяет величину
сил притяжения, В случае соответствия результатов измерений
закону тяготения мы можем найти универсальную константу про-

пропорциональности G.

Выполнить такие опыты в лаборатории довольно трудно. Даже
если положить рядом два камня, то их взаимное притяжение остает-

остается незамеченным. Приближенное определение величины G показы-

показывает, почему это так. Согласно закону всемирного тяготения сила

притяжения, действующая на массу т у поверхности Земли, равна

Поэтому напряженность поля тяготения g равна

В этом уравнении мы знаем величину g; она равна 9,8 м/с2. Мы знаем

радиус Земли #з; он равен 6,38 • 106 м (Ньютон знал лишь прибли-
приближенную величину). Поэтому, для того чтобы определить G, нам

нужно только определить массу Земли.
Ньютон определил ее. Он правильно предсказал величину сред-

средней плотности Земли (примерно в 5 раз больше плотности воды)
и умножил ее на объем Земли. Таким образом, масса Земли полу-
получается равной примерно 6- 1024 кг, а порядок величины G— рав-
равным 10 0м3/(кг • с2). В настоящее время мы знаем точную величи-

величину G: это значение

G = 0,667-10-10 м3/(кг-с2).

Применив этот результат к двум камням с массами по 1 кг, находя-
находящимся на расстоянии 10 см друг от друга, мы находим, что сила
притяжения между ними должна равняться приблизительно 10~8 Н,
т. е. около одной миллиардной части от силы, которая притягивает
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их к Земле. Ньютон также пришел к заключению, что «сила притя-
притяжения (между двумя такими камнями) должна быть много меньше

той, что поддается наблюдению нашими органами чувств». Поэтому
он направил свое внимание на вы-

вычисления сил притяжения планет

и их спутников, которые мы рас-

рассматривали в предыдущем разделе.
Сто лет спустя, в 1798 г., лор-

лорду Кавендишу удалось измерить
силу притяжения небольших масс

в лабораторных условиях. Схема

установки, которой он пользовался,

приведена на рис. 21.15 и 21.16.

Два небольших шарика были при-
прикреплены на противоположных
концах легкого стержня длиной
около 2 м. Этот стержень висел

горизонтально на тонкой проволо-
проволоке, прикрепленной к его центру.
На концах стержня и на стенках

ящика, в котором помещалась уста-
установка, Кавендиш установил масштабные линейки из слоновой кости

для измерения положения стержня. Помещая две большие массы

Рис. 21.15. Упрощенная схема установ-
установки, использованной Кавендишем для
подтверждения справедливости закона

всемирного тяготения для небольших
тел и для измерения постоянной G.

Рис. 21.16. Схема установки Кавендиша, заимствованная из оригинала его работы. Обратите
внимание на то, что вся установка смонтирована внутри большого кожуха G с дистанционным
управлением перемещения масс и регулированием положения горизонтального стержня.
Масштабные линейки А на концах стержня освещаются лампами L и наблюдаются в теле-

телескопы Т.

вблизи шариков, прикрепленных к концам стержня, Кавендиш

установил, что эти шарики притягивались к большим массам и про-
проволока, на которой висел стержень, закручивалась,
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Кавендиш зафиксировал положение стержня, когда большие

массы были расположены, как показано на рис. 21.15. Затем он

передвинул каждую из больших масс по другую сторону шариков
в то же положение. Гравитационное притяжение вызвало поворот
подвеса в обратном направлении, и Кавендиш измерил новое поло-

положение равновесия. Изменяя таким образом положения масс, Ка-
Кавендиш смог определить силы тяготения между шариками и боль-

большими массами *).
Кавендиш провел целый ряд опытов. Это было сделано для того,

чтобы устранить возможные погрешности измерений, обусловленные
конвекционными токами воздуха, которые могли возникать вследст-

вследствие незначительных различий в температуре. Кроме того, он хотел

быть уверенным в том, что по ошибке не измеряет магнитные силы.

Требовалось произвести много измерений, для того чтобы убедиться
в воспроизводимости получаемых результатов и оценить их точность.

С помощью этих опытов Кавендиш вычислил величину G. Он выра-
выразил свой ответ через величину средней плотности Земли, которую
он нашел почти в 5,5 раз большей плотности воды, что очень близко
к величине, указанной Ньютоном.

Используя методику Кавендиша и изучая различные объекты,
изготовленные из разных веществ, можно показать, что только

величина массы определяет величину силы тяготения. Изменяя от-

относительное положение малых и больших масс, можно проверить
закон обратных квадратов в лабораторных условиях, не прибегая
к вычислениям расстояний между планетами и Солнцем.

Было предложено много вариантов опыта Кавендиша, и все

они привели к подтверждению закона всемирного тяготения.

21.11. Несоответствие движения Меркурия закону тяготения

Прошло почти 300 лет с тех пор, как Ньютон разработал теорию
тяготения. За это время закон тяготения неоднократно подвергался
тщательной проверке при расчете движения планет и их спутников.
Почти в каждом случае расчеты приводили к орбитам, которые
точно соответствовали наблюдениям. Однако было обнаружено одно

исключение: весьма незначительное искажение орбиты планеты

Меркурия, которое не могло быть объяснено на основе закона тяго-

*) Силу, развиваемую подвесом при его закручивании на различные углы,
можно определить динамически. Для этого, убрав большие массы, можно стержню
с шариками предоставить возможность закручиваться сперва в одном направлении,
а потом в обратном. В этих условиях движение стержня будет зависеть от масс

шариков и от сил, с которыми действует на них закрученная нить подвеса. Поэ-

Поэтому величину этих сил можно определить, изучая движение шариков.
Рассмотрим теперь систему в состоянии покоя с большими массами, находя-

находящимися на своих местах. Результирующая сила, действующая на каждый из ша-

шариков, должна равняться нулю; но подвес под действием гравитационных сил

между большими массами и шариками закручен. Результирующая сила, равная

нулю, есть сумма гравитационной силы и силы, развиваемой закрученным подве-
подвесом. Поэтому сила тяготения равна по величине и противоположна по направле-

направлению силе, развиваемой подвесом. Таким образом, зная силу, развиваемую подве-
подвесом, мы одновременно устанавливаем силу тяготения.
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тения Ньютона. Несмотря на то что это искажение незначительно,
для его объяснения требовалось улучшение теории движения планет.

Новую теорию тяготения разработал Альберт Эйнштейн, исходя
из своей общей теории относительности. В основе этой теории лежит

замечательный факт эквивалентности тяготеющих и инертных масс.

Эйнштейн показал, что по существу они едины. Теория Эйнштейна

построена на теории Ньютона, так же как ньютоновская теория
была построена на основании работ Галилея и Кеплера. Из нее

вытекают все результаты теории Ньютона (но вычисления более

сложны). Когда мы говорим, что она приводит к тем же результатам
мы имеем в виду, что различия между предсказаниями, основанными

на теории тяготения Эйнштейна, и предсказаниями, основанными
на механике Ньютона, обычно так малы, что они не поддаются

наблюдению. Это различие можно наблюдать только в особых

случаях. Орбита Меркурия и является одним из этих редких исклю-
исключений. Теоретический расчет орбиты Меркурия, произведенный
Эйнштейном, оказался в полном согласии с наблюдениями*

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1. Три светящиеся точки X, Y и Z находятся на движущемся в темноте вело-

велосипеде. X находится точно в центре одной из его осей, которая вращается вместе

с колесом, точка Y находится на ободе колеса и Z — на раме велосипеда за пре-

пределами обода колеса. Нарисуйте и опишите в нескольких словах движения:

а) X и Y относительно Z;
б) Y и Z относительно Х\

в) X и Z относительно Y\

г) движение светящихся точек но отношению к неподвижному наблюдателю.
2*. а) Каково отношение наибольшего к наименьшему расстоянию между

Землей и Марсом на рис. 21.4?

б) Как обстоит дело в этом смысле на рис. 21.7? (Раздел 21.4.)
3. С точки зрения наблюдателя, расположенного на Земле, неподвижные

звезды совершают в сутки полный оборот. Сколько времени занимает:

а) оборот сферы неподвижных звезд с точки зрения наблюдателя, находяще-
находящегося на Луне?

б) оборот Земли вокруг Луны, если наблюдатель находится на Луне (с Земли
мы всегда видим одну и ту же сторону Луны)?

в) оборот Солнца с точки зрения наблюдателя на Луне? Не покажется ли ему,

что Солнце обращается подобно неподвижным звездам? Обращается ли оно бы-

быстрее или медленнее неподвижных звезд? Помните, что Земля и Луна совершают
в год один оборот вокруг Солнца.

4. Можно ли объяснить с точки зрения геометрической системы Тихо Браге
то обстоятельство, что существует наибольший предельный угол между Венерой
и Солнцем при наблюдении с Земли?

5. Земля описывает вокруг Солнца почти круговую орбиту, а Луна — такую
же вокруг Земли. Радиус земной орбиты 1,5* 10й м, а радиус лунной орбиты
4.108 м.

а) Как часто Луна оказывается между Землей и Солнцем?

б) Как далеко удаляется Луна от Солнца в интервале между двумя ее по-
последовательными положениями между Землей и Солнцем?

в) Нарисуйте орбиту движения Земли вокруг Солнца и нанесите на рисунок
орбиту движения Луны вокруг Солнца.

г) Не покажется ли наблюдателю, расположенному на Солнце, что Луна
совершает сложное движение, подобное тому, которое изображено на рис. 21.2?
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6*. Какая площадь прочерчивается радиус-вектором Юпитера за четверть

оборота вокруг Солнца (см. табл. 21.2)? (Раздел 21.5.)
7. С какой секториальной скоростью (в м2/с) движется:

а) радиус орбиты Земли вокруг Солнца;
б) радиус орбиты Луны вокруг Земли?
8*. На рис. 21.10 изображены орбиты планет вокруг Солнца. Когда Плутон

движется:
а) быстрее всего;
б) медленнее всего? (Раздел 21.5.)
9*. В табл. 21.1 не представлены Уран, Нептун и Плутон. Каких значений

отношения R3/T2 можно ожидать для каждой из этих планет? (Раздел 21.5.)
10*. Если бы была открыта небольшая планета, отстоящая от Солнца в 8 раз

дальше, чем Земля, то во сколько раз дольше она обегала бы Солнце? (Раздел 21.5.)
11. Между 21 сентября и 21 марта число дней на 3 меньше, чем между 21 марта

и 21 сентября. В указанные числа марта и сентября день и ночь имеют одинаковую

продолжительность. Между этими датами Земля перемещается вокруг Солнца
на 180°. Исходя из этого, а также из закона равных площадей Кеплера, опреде-
определите, в каком сезоне Земля находится на кратчайшем расстоянии от Солнца.

12. Астрономы заметили, что комета Галлея имеет период, равный 75 годам,
и что минимальное расстояние кометы от Солнца составляет 8,9.1010 м. Макси-
Максимальное расстояние измерить не удалось, так как комета в этом положении не-

невидима. Используя эти данные и примечание на стр. 69, рассчитайте максималь-
максимальное расстояние кометы от Солнца. (Как рассчитать орбиту кометы, Галлею под-
подсказал Ньютон. Галлей рассчитал орбиту и период кометы, которая носит его

имя, в ходе произведенного им общего анализа движения комет и их орбит.)
13*. Радиус орбиты Луны в 60 раз больше радиуса Земли. Во сколько раз

ускорение силы тяжести на земной поверхности превышает ускорение Луны,
направленное к Земле? (Раздел 21.7.)

14*. а) Вычислите /Сз по данным табл. 21.2.

б) Используя значение /Сс, взятое из табл. 21.1, и результат по п. а), опре-
определите отношение массы Земли к массе Солнца. (Раздел 21.8.)

15*. На какой высоте над поверхностью Земли сила притяжения, действую-
действующая на ракету, будет вдвое меньше, чем на уровне моря? Выразите ответ через

радиус Земли. (Раздел 21.8.)
16. а) На какой высоте спутник, движущийся в плоскости экватора, будет

неподвижен по отношению к Земле? (Ответ на вопрос можно получить, сравнив

спутник с Луной, которая находится на расстоянии 59,5 земных радиусов от

центра Земли и вращается вокруг нее с периодом 27 суток.)
б) Каково центростремительное ускорение этого спутника?
в) Используя закон всемирного тяготения и значение g на поверхности Земли,

определите поле тяготения на высоте спутника. Сравните ответ с результатом

по п. б).
17. На поверхности Земли человек весит 100 кг. Сколько он весит на Юпитере?
18. Юноша массой 70 кг стоит на расстоянии 1 м от девушки массой 60 кг.

Определите силу притяжения между ними.
19. Спутник движется вокруг Земли на средней высоте 500 км с периодом

98 мин. Определите массу Земли. (Массы планет практически определяются по
движению их спутников, и одним из назначений искусственных спутников Земли
является точное определение массы Земли.)

20. а) Если Т — период спутника, вращающегося над самой поверхностью
планеты со средней плотностью р, то рР есть универсальная постоянная. До-
Докажите это.

б) Найдите величину этой постоянной.
21. Земля находится под действием силы притяжения Солнца. Почему же

она не падает на Солнце? Приготовьтесь к обсуждению этого вопроса в классе.

22. а) Сравните скорости движения Луны и Земли вокруг Солнца.

б) Если бы можно было удалить внезапно Землю, не нарушая движения
Луны, то по какой траектории стала бы двигаться Луна?

в) Определите отношение сил притяжения, действующих на Луну со стороны

Солнца и со стороны Земли.
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г) Почему Солнце не срывает Луну с орбиты, по которой она движется во-

вокруг Земли?

23. Предположим, что Земля -— идеальный шар с радиусом 6 400 км.

а) На сколько меньше весит человек с массой 100 кг на экваторе, чем на по-

полюсе, вследствие вращения Земли?

б) С какой скоростью должна была бы вращаться Земля, чтобы на весы,

расположенные на экваторе, больше не действовали силы веса?

в) Во сколько раз скорость вращения, найденная в п. б), больше фактической
скорости вращения Земли?

24. 10-тонный космический корабль дальнего назначения движется к пери-

периферии Солнечной системы. С него запущен небольшой экспериментальный спут-
спутник, обращающийся вокруг корабля на расстоянии 120 м под действием их вза-

взаимного гравитационного притяжения.
а) Каков период обращения спутника?
б) Какова скорость спутника?
25. Астроном обнаружил планету с небольшим спутником, обегающим ее по

круговой орбите радиуса г с периодом Т.

а) Какова масса планеты?

б) Каково ускорение спутника к планете?

в) Какова гравитационная сила, действующая на спутник?
г) Измерив радиус планеты, астроном установил, что он равен 0,1 радиуса

орбиты спутника. Какова напряженность гравитационного поля планеты на ее

поверхности?
26. Две неравные массы т± и т2 взаимно притягиваются в свободном косми-

космическом пространстве с гравитационной силой F=Gm1m2/R2. Каковы ускорения
каждой из них? Не противоречит ли ваш результат законному ожиданию, согласно

которому наблюдатель на /% увидит, что т2 приближается к нему с таким же

ускорением, с каким тх приближается к%с точки зрения наблюдателя на т2?
27. Астрономические наблюдения показывают, что Солнце движется по кру-

круговой орбите вокруг центра нашей Галактики. Радиус этой орбиты составляет

около 30 000 световых лет B,7» 1020 м), а период обращения — около 200 миллио-

миллионов лет. При этом движении Солнце испытывает гравитационное притяжение
множества звезд, расположенных внутри этой орбиты.

а) На основании приведенных данных вычислите общую массу этих звезд.
б) Сколько было бы звезд, если бы каждая имела массу Солнца, т. е.

2.1030 кг?



ГЛАВА

22 КОЛИЧЕСТВО ДВИЖЕНИЯ И ЗАКОН СОХРАНЕНИЯ

КОЛИЧЕСТВА ДВИЖЕНИЯ

I
-At-

22.1. Импульс
Попробуйте заставить бейсбольный мяч и ядро весом 8 кг дви-

двигаться с одинаковой скоростью. Как вы знаете, ядро значительно

труднее заставить двигаться. Если прикладывать к телу постоян-

постоянную силу F в течение времени А*, изменение скорости определится

уравнением m&v =* FA*. Поэтому, чтобы получить одинаковое изме-

изменение скорости Д#, произведение
FA? должно быть тем больше, чем

больше масса, которую вы хотите

заставить двигаться.

Для того чтобы вывести 8-ки-

8-килограммовое ядро из состояния

покоя и придать ему такую же

конечную скорость, как и мячу (то-
(тоже приведенному в движение из

состояния покоя), толчок должен

быть либо более сильным, либо
более длительным. Важно произ-
произведение FA/. Это произведение
FAt является естественной мерой
силы и длительности толчка, необхо-

необходимого для изменения движения; называется оно импульсом силы.

Мы можем получить данный импульс различными способами:

действуя большой силой в короткий промежуток времени или малой

силой, но в течение длительного времени, и даже силой, которая
меняется в то время, когда она действует. На рис. 22.1 приведен

график зависимости постоянной силы F от времени, в течение кото-

которого она действует. Эта зависимость выражена горизонтальной
прямой, находящейся на высоте F над осью времени и по длине

равной At = t2— tlf что соответствует времени, в течение которого
действует эта сила. Площадь прямоугольника под этой линией,
FAtt есть величина импульса за указанный промежуток времени.
(Направление импульса

— то же, что и направление силы.) Для
каждой постоянной силы, действующей в течение некоторого време-
времени, мы всегда можем найти величину импульса как площадь под

кривой сила — время для этого периода времени, и при этом на-

направление импульса будет совпадать с направлением силы.
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Рис. 22.1. Постоянная сила F действует
в течение промежутка времени ti— t1 =
= А/. Площадь FAt равна импульсу

этой силы за время Л?.



Теперь предположим, что сила меняется, как на рис. 22.2. В те-

течение времени А/х сила Fx постоянна, а импульс равен FiA/i. Этот

импульс дает изменение mAvx. В следующий интервал времени
At2 сила, на этот раз F2, снова постоянна, и импульс равен F2At2.
Он вызывает изменение mAv2, т. е. ^А/^тА^ и F2At2 = mAv2.

Сложив эти векторы, получим

F-tA/i + F2At2 = т Avx + tn Av2 = m [Av± + Av2].

Таким образом, полный импульс за время At = At± + At2 в точ-

точности равен произведению массы на полное приращение вектора
скорости за время At.

Даже когда мы имеем дело с непрерывно меняющейся силой,
общий импульс получить нетрудно; для этого надо сложить все

Время

Рис. 22.2. Сила Ft действует в течение вре- Рис. 22.3. Когда сила изменяется со време-
мени Atu затем увеличивается до величины нем, можно разделить площадь под кривой
t2 и действует в течение Att. Если направ- сила—время на большое число малых пло-
ление силы не меняется, общий импульс щадок (см. заштрихованную площадку), ко-
коза время А^-|-А/2 равен FiAt^FiAt^ и со- торые принимаются приблизительно пря-

ответствует заштрихованной площади. моугольными. Каждая такая площадка со-

соответствует небольшому импульсу. Общий
импульс равен сумме этих небольших им-

импульсов. Таким образом, пока направление
силы не меняется, площадь под кривой со-

соответствует общему импульсу силы.

импульсы, действующие в течение коротких промежутков времени.
Промежутки времени можно брать настолько короткими, что сила

F для каждого из них будет практически величиной постоянной.
Тогда импульс, являющийся суммой всех FA/, даст общее изменение
mAv.

Когда сила меняет величину, но сохраняет направление, можно

сложить импульсы, определив площадь под кривой сила — время.
На рис. 22.2 показан простой случай, а на рис. 22.3 приведен при-
пример, когда сила меняется непрерывно. Однако если сила меняет

направление, этот графический метод недостаточен. Малые импуль-
импульсы FAt нужно складывать с учетом их направления и пользуясь
правилом сложения векторов для нахождения полного импульса.
Если первый малый импульс имеет место в момент t, когда движу-
движущееся тело имеет скорость v> а последний импульс происходит в мо-
момент /' при скорости тела V, то полный импульс равен

т (v' —v) = mv'—mv.
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(Мы часто будем прибегать к знаку ', который читается «штрих»,
чтобы обозначить значение скорости через какой-то промежуток
времени.)

Часто большая сила действует в течение короткого промежутка
времени. Подумайте о том, что происходит, когда вы ударяете ракет-
ракеткой по теннисному мячу или когда сталкиваются два стальных

Рис. 22.4. Пример мгновенной силы. Обратите внимание на деформацию ракетки и мяча.

шара. Без сложного оборудования очень трудно определить вели-

величину сил, действующих во время столкновения. Но общий импульс
силы легко определить, наблюдая изменение произведения mv.

Силы, которые действуют в течение короткого промежутка
времени и для которых известно только произведение Fkt, назы-

называются мгновенными силами (рис. 22.4).

22.2. Количество движения

Положим, что мы сообщаем одинаковый импульс двум различным
покоящимся телам, например, теннисному мячу и 8-килограммовому
гимнастическому ядру. Так как начальные значения величины mv

равны и сообщенные импульсы также равны, конечные значения mv

мяча и ядра будут тоже равны. Однако поскольку масса ядра во

много раз больше массы мяча, скорость ядра будет гораздо меньше
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скорости мяча. Таким образом, произведение mv является мерой
движения, совершенно отличной от скорости V, но в дальнейшем

мы увидим, что это — чрезвычайно важная величина в физике.
Она называется количеством движения и измеряется килограммо-
килограммометрами в секунду. Так как с этой величиной приходится очень

часто иметь дело, ей присвоен определенный символ р:

p = mv.

Хотя скорость и количество движения связаны друг с другом,

они говорят нам о разных вещах. Знание только одной скорости
говорит нам о том, как быстро (и в каком направлении) движется

предмет. Оно ничего не говорит нам об усилиях, необходимых для

того, чтобы заставить предмет двигаться или остановить его. С дру-
другой стороны, количество движения не говорит о скорости движения

предмета (хотя и указывает направление движения), но определяет
импульс, необходимый для того, чтобы привести тело в движение,

и импульс, необходимый для того, чтобы остановить его. Короче
говоря, скорость есть кинематическая характеристика движения,
с помощью которой вводится геометрическое описание движения

и даются ответы на вопросы «где» и «когда», тогда как количество

движения представляет собой динамическую характеристику дви-

движения, связанную с импульсами и поэтому с причинами, вызываю-

вызывающими изменение движения масс.

Обратите внимание на то, что количество движения не зависит

от того, каким образом тело приобрело данное состояние движения.

В уравнениир
= mv нет ничего, кроме массы и скорости ее движения

в данный момент. Импульс, который привел массу в движение,

мог быть произведен одним из бесконечного числа способов (как
мы это знаем из предыдущего раздела) или же масса могла все

время двигаться с количеством движения р,—все это имеет для

нас значения. Подобным же образом импульс, необходимый для того,
чтобы остановить движущуюся массу, независимо от способа, каким

это осуществляется, может быть определен из данного количества

движения тела. В этом случае, чтобы остановить тело, требуется
приложить обратный импульс, равный —mv, независимо от того,

будет ли применена большая сила в короткий промежуток времени
или небольшая сила в продолжительное время.

Связь количества движения с импульсом, которая естественно

вытекает из закона Ньютона FAt = mAv, позволяет перейти от ко-

количества движения к основному закону ньютоновской динамики.
И действительно, Ньютон выразил свой закон движения через ве-

величину mv, которую он и назвал «количеством движения». Мы легко

можем выразить закон Ньютона с помощью величин изменения

количества движения вместо величин изменения скорости:

FAt = mAv = m (v' —v),

где v и v' — скорости до и после приложения импульса FAt. Но

правую часть последнего уравнения можно выразить следующим
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образом:
т (vr—v) = tnv'—mv=p' —p = Ap.

Поэтому FAt = Ар, т. е. импульс равен изменению количества дви-

движения. Таким образом, средняя сила, которая сообщила бы задан-
заданный импульс за время А/, в точности равна

Если в действительности сила изменяется, то ее мгновенное зна-

значение в любой момент времени можно определить при условии, что

известно, каким образом количество движения изменяется со вре-
временем. Надо просто брать все меньшие и меньшие интервалы А/,
пока не окажется, что значение величины Ар/At большене изменяется

при дальнейшем сужении этого интервала. Иными словами, мгно-

мгновенное значение силы определяется равенством

F= lim (Ар/At).
At ^ о

В любой момент времени сила равна быстроте изменения количества

движения. Ньютон впервые сформулировал свой закон именно

в этом виде, а не в виде F = tna.

Для определения движения тела удобны обе формы закона Нью-
Ньютона. Огромное значение понятия количества движения станет оче-

очевидным при рассмотрении движения двух тел, взаимодействующих
друг с другом; это тема следующих разделов.

22.3. Изменения количеств движения при взаимодействии двух
тел

Мальчик и взрослый человек стоят рядом на гладкой поверх-
поверхности льда. Мальчик толкает взрослого, и они оба начинают дви-

двигаться, скользя в противоположных направлениях, причем мальчик

движется несколько быстрее взрослого. При проведении этого рода
опытов мы обнаруживаем, что каждый раз, когда два человека

стоят неподвижно и затем один толкает другого, они начинают

двигаться в противоположных направлениях. Мы также обнару-
обнаруживаем, что их скорости обратно пропорциональны их массам.

Например, если мальчик, масса которого равна 50 кг, толкает чело-

человека с массой 80 кг с такой силой, что человек движется со скоростью
0,25 м/с, мы найдем, что мальчик будет двигаться со скоростью

0,40 м/с (рис. 22.5).
Эти опытные данные легко выразить через количества движения

взрослого и мальчика. Количество движения взрослого человека

то =80 кг • 0,25 м/с = 20 кг • м/с, количество движения мальчика

mv = 50 кг • 0,40 м/с = 20 кг • м/с. После толчка количества дви-

движения мальчика и взрослого равны по величине, но обратны по

направлению.

Используя ползун с сухим льдом, мы можем провести опыт

подобного рода с большой точностью. Привинтим конец пружины
к краю одного из ползунов, согнем пружину и свяжем ниткой оба
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ее конца вместе (рис. 22.6). Затем поместим второй ползун вплот-

вплотную к первому, как показано на рисунке. Оба ползуна находятся
в состоянии покоя на гладкой металлической поверхности. Затем

а) б)
Рис. 22.5. Мальчик, масса которого 50 кг, отталкивается от мужчины массой 80 кг с такой

силой» что скольаит по льду со скоростью 0,40 м/с. Мужчина при этом движется в противопо-
противоположную сторону со скоростью 0,25 м/с.

1111

щ

Рис. 22.6. Приспособление для демонстрации явления, подобного взрыву. Сжатая пружина

находится между двумя ползунами с сухимльдом. Пружина привинчена к большому ползуну
и удерживается в сжатом состоянии нитью.

Рис. 22.7. Импульсный снимок движения двух ползунов после того, как они получили тол-
толчок от пружины. Частота съемки — 4 вспышки в секунду, масштаб — в сантиметрах.

пережжем нитку и будем наблюдать за тем, что произойдет, когда
пружина «взорвется». Последующее движение ползунов показано
на рис. 22.7,
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В этом опыте масса большого ползуна вместе с пружиной, при-
прикрепленной к нему, была 3,9 кг, а масса меньшего — 2,0 кг. Доста-
Достаточно взглянуть на рисунок, чтобы убедиться, что оба ползуна

двигались в прямо противоположных направлениях. За интервал

времени между вспышками света малый ползун проходит большее

расстояние, чем большой. Малый ползун должен был получить боль-

большую скорость, чем большой. Произведя измерения на фотографии,
можно определить, что после толчка малый ползун двигался со

скоростью 0,48 м/с, и большой — со скоростью 0,24 м/с. Количество

движения малого ползуна то = 2,0 кг • 0,48 м/с = 0,96 кг • м/с,
а количество движения большого ползуна то = 3,9 кг • 0,24 м/с =
= 0,94 кг • м/с. В пределах экспериментальной точности эти количест-

количества движения равны и противоположны по знаку.
Наблюдая движение двух взаимодействующих друг с другом

тел с момента выхода их из состояния покоя, мы всегда находим,

что изменения количества движения равны, противоположны по

направлению и не зависят от природы сил взаимодействия. Они

могут возникать в результате работы наших мускулов, от действия
пружины или от химического взрыва.

Возьмем в качестве другого примера взрыв. При выстреле из

ружья газы, образующиеся при взрыве пороха, создают огромные
силы внутри ствола. Пуля выталкивается в одном направлении,
а ружье, двигаясь в обратном направлении, испытывает «отдачу»*
Мы можем показать, что количество движения ружья и количество

движения пули равны и противоположны: мы подвешиваем ружье
на длинных веревках, делаем последовательные импульсные снимки

движения пули и отмечаем время значительно более медленного
движения отдачи ружья. При обычном использовании ружья ско-

скорость отдачи быстро уменьшается благодаря толчку в плечо стре-
стреляющего, и измерения в этом случае не показывают равенство
и противоположность количеств движения.

До сих пор мы рассматривали только такие примеры, когда
оба взаимодействующих тела первоначально находились в состоянии

покоя. А что можем мы сказать об изменении количества движения

двух взаимодействующих тел, когда одно из них или оба были

первоначально в движении?
На рис. 22.8 показано столкновение движущегося бильярдного

шара с шаром, находившимся в покое. Движущийся шар останав-

останавливается, а шар, на который он налетает, катится с той же скоро-
скоростью, с которой двигался первый шар. Масса обоих бильярдных
шаров одинакова. Поэтому количество движения второго шара
после столкновения равно количеству движения ударившего шара до
столкновения. Первый шар потерял все свое количество движения,
а шар, который он ударил, получил все утраченное первым шаром
количество движения. Изменения количества движения снова рав-
равны и противоположны.

Столкновение, изображенное на рис. 22.8, представляет собой
особый случай: катящийся бильярдный шар ударил шар, находив-
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шийся в покое, так, что продолжение прямолинейной траектории

движения первого шара проходило через центры обоих шаров.
Но обычно бильярдный шар уда-

ударяет другой не в лоб, а как-

либо косо, и тогда оба шара ка-

катятся в разных направлениях.
Такое столкновение показано на

рис. 22.9. На этой фотографии
шар, находившийся в движении,

подошел снизу. После столкно-

столкновения, как и следовало ожидать,

один шар идет направо, дру-
другой — налево.

Рис. 22.8. Кинокадры процесса столкно-

столкновения двух бильярдных шаров равной
массы. Интервал времени между кадра-
кадрами 1/48 с, масштаб — в сантиметрах. Об-

Обратите внимание на то, что количество

движения движущегося шара полно-

полностью переходит ко второму шару,

который первоначально находился в

покое.

Рис. 22.9. Импульсный снимок C0 вспышек

в секунду) косого удара двух шаров мас-

массой по 173 г каждый. Шар, отмеченный
точкой, движется снизу и ударяет шар, от-

отмеченный полосой, находившийся в покое.

Диаграмма скоростей и количеств движе-

движения (см. рис. 22.10) построена с учетом того,

что размеры на снимке составляют i/7 дей-
действительных размеров.

Фотография, полученная методом многократных вспышек, по-

показывает скорости и направления движения шаров до и после
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столкновения. Скорости измеряются расстояниями, которые про-
проходят шары между вспышками света. Используя результаты изме-

измерения скоростей и наблюдения направлений движения, мы находим

векторы скорости vu v[ и v'^ представляющие скорости движения

первого шара до и после столкновения и второго шара после столк-

столкновения. Затем, умножая векторы скоростей на массы шаров, мы

получим количество движения р =tm для каждого шара. Так как

массы шаров равны, использование р вместо v в данном случае

0 0,1 (Ц

xs-m/g
//

-*v. /
/
Ik-»*
~Apf

Рис. 22.10. а) Векторная диаграмма количеств движения шаров, изображенных на рис 22.93

рх
— количество движения шара, помеченного точкой, до столкновения, рг

— после столк-

столкновения, р^ — количество движения второго шара после столкновения, б) Мы получаем

Apt—p^—pt графически. Вычитаем р± из p'v откладывая вектор — рх от конца вектора р'г ,

и получаем результирующий вектор, обозначенный пунктиром. Обратите внимание на то,
что Apt почти равен и противоположен вектору Ар2—pv

меняет только масштаб величин. На рис. 22.10, а мы нанесли век-

векторы количества движения pl9 p[ np*2t представляющие количества

движения катящегося шара до столкновения и обоих шаров после
столкновения. (Когда второй шар находился до столкновения в со-

состоянии покоя, у него не было количества движения.)
Теперь нам предстоит выяснить, меняются ли в этом опыте коли-

количества движения обоих шаров в противоположных направлениях
на одинаковую величину?

На рис. 22.10,6 А/?! получено графически. Мы строим—pt
от концар[; затем от началар\ до конца — рг строим Арг — резуль-
результирующий вектор суммы р[ и —pv Мы видим, что он равен и про-
противоположен &р2=р2 — изменению количества движения шара,
воспринявшего удар. Изменение количества движения шара,
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совершившего удар, компенсируется равным и противоположным
изменением количества движения другого шара, принявшего на

себя удар, т. е.

Ар1 = — Ар2.

22.4. Закон сохранения количества движения

В предыдущем разделе мы рассмотрели примеры взаимодействия

двух тел. Движение каждого тела меняется, причем изменение коли-

количества движения одного тела равно и противоположно изменению

количества движения другого те-

тела. В дальнейшем мы встретимся
с большим числом таких примеров.
Однако любой пример сам по себе

не может служить исчерпывающим
доказательством того, что измене-

изменения количеств движения двух взаи-

взаимодействующих тел всегда одина-

одинаковы и противоположны по нап-

направлению. Лишь наш опыт, подт-

подтвержденный многочисленными при-

примерами и повседневной практикой,
подсказывает, что равные и про-
противоположные изменения количе-

количества движения являются законо-

закономерностью природы.
Эта закономерность может быть

выражена в различных формах. Мы
вводим общее количество движения

р~р1~\-р2 двух тел. Поскольку
любые изменения количеств дви-

движения рг и р2 равны по величине

и противоположны по направле-

направлению, общее количество движения

р никогда не меняется. Вытекаю-

Вытекающее из опыта заключение о том,

что общее количество движения

есть величина постоянная, мы на-

называем законом сохранения ко-

количества движения.

Рассмотрим сохранение коли-

количества движения при столкновении

двух движущихся тел, массы которых различны. Такое столкнове-

столкновение показано на рис. 22.11. Измерив расстояние, проходимое шарами
между вспышками, мы можем определить их скорости, Векторы
этих скоростей изображены на рис. 22.12, а. Умножив их на массы

шаров, которые, согласно измерениям, равны 85,4 г для малого шара
и 201,1 г для большого, мы получим векторы количеств движения

для каждого шара до и после столкновения (рис. 22.12, б). Затем
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Рис. 22.11. Снимок столкновения двух

шаров, полученный методом многократ-
многократных вспышек. Частота съемки —30 вспы-

вспышек в секунду; условия съемки такие же»
как и для рис. 22.9. Оба шара движутся

сверху вниз.



(см. левую часть рис. 22.12, в) для получения общего количества

движения мы складываем векторы количеств движения обоих

шаров до их столкновения, а также (см. правую часть того же ри-

рисунка) складываем количества движения обоих шаров после столк-

столкновения. Мы видим, что полученные величины общего количества

движения почти совершенно одинаковы. Этот опыт находится в соот-

соответствии с законом сохранения количества движения.

0,25 0,5 О 0,25
р, К2М/С

0,5

Рис. 22.12. а) Векторы скоростей шаров, показанных на рис. 22.11. Индекс «1* относится к

малому шару, «2» — к большому. Штрихами помечены соответствующие величины после стол-

столкновения, б) Векторы количеств движения шаров до и после столкновения, в) Слева изобра-
изображено векторное слежение количеств движения до столкновения, справа

— после столкнове-

столкновения шаров. Как вы видите, Pi-\-p2=p'1-\- Р2- Точность такого графического расчета — около

0,5%.

Попробуем изучить еще один вид столкновения: когда две массы

после столкновения продолжают двигаться как одно целое. Рис.
22.13 показывает столкновение мяча для игры в гольф с шаром из

замазки. Масса мяча 45,7 г, а шара, первоначально находившегося
в состоянии покоя, 69,7 г. Следовательно, общая масса обоих тел

после столкновения 115,4 г. Эта общая масса в 2,53 раза больше
массы движущегося мяча. Измерив соотношение начальной и конеч-

конечной скоростей по импульсной фотографии, найдем, что начальная

скорость примерно в 2,53 раза больше конечной скорости. Поэтому
конечное количество движения равно начальному.

Итак, теперь мы будем считать, что количество движения двух
взаимодействующих тел сохраняется. Мы считаем это положение

общим законом физики, основанным на широком опыте. Действи-
Действительно, эксперименты, итоги которых мы обсуждали выше, являют-
являются убедительными примерами закона сохранения. Явления, возни-

возникающие при столкновении тел, имели большое значение для развития
механики, поэтому уже в XVII веке им было уделено большое вни-

внимание. Около 1668 г8 трое ученых пришли к почти одинаковым ре-
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шениям: Джок Уоллис, английский математик, Кристофер Рэн,
английский ученый и архитектор (автор проекта собора св. Павла
в Лондоне), и Христиан Гюйгенс, датский физик. Уоллис был пер-
первым, и поэтому честь формулировки общего принципа сохранения
количества движения принадлежит ему.

В статье, опубликованной в 1669 г., и поаднее в своей книге

«Механика» A670 г.) Уоллис довольно ясно изложил теорию импуль-
импульса и количества движения, а также их взаимосвязи. Он считал, что

Рис. 22.13. Снимок столкновения мяча для игры в гольф и шара из замазки, полученный ме-

методом вспышек. Мяч движется слева и ударяет по шару После столкновения мяч и шар, слип-

слипшись друг с другом, движутся вместе направо. Сделайте сами измерения начальной и конеч-

конечной скоростей и сопоставьте их с расчел ами в тексте.

импульс, который приводит в движение одно тело в направлении
другого, должен сообщать одно и то же количество движения одно-

одному телу или обоим, объединившимся после столкновения. Он также

утверждал, что закон сохранения количества движения применим
и к другим видам столкновений. Все его аргументы основываются на

представлениях о силах и импульсах, действующих между телами.

Французский физик Мариотт подтвердил эти выводы в серии опытов

с маятниками, которые могли сталкиваться друг с другом. Гюйгенс

произвел подобные эксперименты, а также опыты и другого рода,
в которых твердые сферические тела, находящиеся в контакте,

подвергались удару такого же сферического тела, двигавшегося
по прямому желобу. В «Основах натуральной философии» Ньютон
описывает эти опыты, а также и свои собственные эксперименты,
произведенные с большой тщательностью. Таким образом, закон

сохранения количества движения был установлен как одна из основ

современной физики.

22.5. Центр масс

Представьте себе иллюминационную ракету, взрывающуюся во

время своего полета в воздухе. Если бы после взрыва вы увидели
все осколки по одну сторону от траектории, вы с полной уверен-
уверенностью заключили бы, что в ваших наблюдениях что-то не в порядке*
Интуиция подсказывает, что осколки от взрыва ракеты должны
в среднем продолжать свое движение вдоль прежней траектории
ракеты. При нашем исследовании подобных взрывов мы убедимся
в существовании некоторой особой точки, которая продолжает свое

движение независимо от того, произошел взрыв или нет.
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Осколки взрывающейся в воздухе иллюминационной ракеты
—

слишком сложные объекты, чтобы начинать с них исследование

вопроса. Поэтому вернемся к простейшему «взрыву», обсуждавше-
обсуждавшемуся выше, а именно к случаю двух ползунов с сухим льдом (твер-
(твердой углекислотой), расталкиваемых предварительно сжатой пру-
пружиной. Промеры на фотоснимке (см. рис. 22.7) показали, что после

«взрыва» два ползуна, несмотря на совершенно различные массы,

получили равно-противоположные количества движения. Обозначив

массу левого ползуна через ml9 а правого
—

через m2t мы можем

написать

Отсюда абсолютные величины скоростей обратно пропорциональны
массам:

Примем, что «взрыв» заканчивается через весьма малый промежуток
времени, так что можно говорить о телах, движущихся с самого

начала с постоянной скоростью. Тогда за время А^ они должны

пройти от точки, где произошел «взрыв», пути хх = vt&t и х2
= v2kt.

Эти пути прямо пропорциональны скоростям и, следовательно,

обратно пропорциональны массам обоих тел:

x1/x2 = v1/v2 =mjm1.

Таким образом, в любой момент точка начала расхождения тел

делит расстояние между ними на отрезки, обратно пропорциональ-
пропорциональные их массам. Точка, делящая расстояние между двумя телами

на отрезки, обратно пропорциональные их массам, называется

центром масс этих тел. В данном случае точка, в которой тела начали

расходиться, является их центром масс.

Исследуем поведение центра масс в некоторых более сложных

взаимодействиях между телами, а именно при столкновениях (уда-
(ударах), обсужденных в этой главе. На рис. 22.14 мы опять видим столк-

столкновение мяча для игры в гольф с шариком из оконной замазки,

ранее показанное на рис. 22.13 и проанализированное в предыду-
предыдущем разделе. Масса мяча для игры в гольф была тг = 45,7 г, а масса

шарика из замазки т2 = 69,7 г. Из определения понятия центра
масс находим

^/^2 = 69,7/45,7 «3/2.

Иначе говоря, центр масс делит расстояние между шарами в любой
момент в отношении 3 :2. Справа от мяча для гольфа это составляет

точно 3/б от расстояния между шарами при каждой вспышке. Поло-
Положения центра масс при каждой вспышке отмечены стрелками и про-
пронумерованы в том же порядке, что и соответствующие положения

шаров при последовательных вспышках. Можно измерить скорость
центра масс и убедиться, что он продолжает перемещаться равно-
равномерно, как будто бы никакого столкновения и не происходило.
В данном случае, когда шары слипаются, скорость центра масс
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vn равна общей конечной скорости шаров v'. По закону сохранения
количества движения, общая масса {тг + т^ после столкновения

имеет такое же полное количество движения р\ какое налетающий
шар имел до столкновения:

Но, поскольку v' =г>ц, где г>ц
—

скорость центра масс, мы можем

также написать:

Таким образом, общая масса, умноженная на скорость центра масс,
дает полное количество движения системы. Мы вскоре увидим, что

Рис. 22.14. Столкновение, изображенное на рис. 22.13, с нумерацией положений центра масс,
ссглассванной с нумерацией соответствующих положений взаимодействовавших шариков
во Еремя последовательных вспышек. Положения центра масс устанавливались по формуле
m1x1=mix2 на основании данных, приведенных б тексте. Можно видеть, что центр масс дви-

движется с постоянной скоростью в течение всего процесса столкновения.

центр масс двух взаимодействующих тел ведет себя совершенно
таким же образом и в тех случаях, когда тела не слипаются. Центр
масс всегда движется так, как если бы вся масса системы была со-

сосредоточена в нем.

Более интересное столкновение показано на рис. 22.15. Это —

столкновение, изображенное на рис. 22.11, между двумя шариками
с массами 201,1 и 85,4 г. Здесь также отмечены положения центра
масс при каждой вспышке. Даже и в этом, более сложном, случае
центр масс продолжает свое движение с постоянной скоростью в те-

течение всего процесса столкновения по совершенно прямой линии.

Ясно, что центр масс — совершенно особая точка. Представим
себе, что мы движемся вместе с этой точкой, куда бы она ни пере-
перемещалась, и наблюдаем движение двух взаимодействующих шаров
с массами тг и т2 в системе отсчета, относительно которой центр
масс остается в покое. Чтобы определить скорости шаров относи-

относительно центра масс, нужно вычесть скорость центра масс из скоро-
скоростей шаров. Полученные скорости можно измерить на рис. 22.15.
Они показаны на рис. 22.16, а. При наблюдении из центра масс

скорости Vt и V2 шаров до столкновения противоположны друг

другу по направлению, а их величины обратно пропорциональны
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массам. То же самое справедливо относительно скоростей V[ и V2
после столкновения. Умножая каждую скорость на соответствую-
соответствующую массу, получаем векторы количеств движения, показанные

Рис. 22.15. Столкновение, изображенное
на рис. 22.11, с указанием положений

центра масс при каждой вспышке. Шары
имели отношение масс около 7 : 3, так

что расстояния от шаров до центра масс

относятся как 3 : 7. Здесь мы опять ви-

видим, что центр масс движется с постоян-

постоянной скоростью, на которую столкнове-

столкновение никак не влияет.

Начальные
спорости

Конечные
скорости

и

О 0,25 0,50
р, кг-м/с /Начальные

А количества
Pt ддиоюения

пГ лГ Конечные
ш

g) __
Рг цм Pf

.

количестда

Рис. 22.16. а) Векторы скоростей шаров и цент-
центра масс, измеренные на рис. 22. 15. Нижний

индекс «1» относится к меньшему шару, а ин-

индекс «2» — к большему. Штрихи при символах

относятся к скоростям после столкновения. За-

Заглавными буквами обозначены скорости шаров
в системе отсчета, связанной с центром масс.

Они получены вычитанием вектора скорости

центра масс из векторов скоростей шаров. Они
взаимно противоположны по направлению, а

отношение их абсолютных величин в точности

обратно отношению соответствующих масс ша-

шаров, б) Показаны произведения mV, т. е. коли-

количества движения относительно центра масс. Они

равно-противоположны как до, так и после

столкновения. Полное количество движения от-

относительно центра масс всегда равно нулю.

на рис. 22.16, б. Можно видеть, что количества движения масс тх

и т2 равно-противоположны: полное количество движения шаров
в системе отсчета, связанной с центром масс, всегда равно нулю.

Те'перь сойдем с центра масс и вернемся на землю. Скорость
Vi массы тъ оцениваемая наземным наблюдателем (например, с

помощью импульсной фотосъемки), составляется из скорости <оп
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центра масс плюс скорость Vx массы тх относительно центра масс:

Точно так же

Отсюда полное количество движения масс тх и т2 относительно

Земли равно

р = /пл + m2v2 =щ (ггц + Vx) + т2 (г>д + V2),
или

С другой стороны, совершая путешествие на центре масс, мы уста-

установили, что сумма тх Vx + m2 V2 всегда равна нулю. Поэтому окон-

окончательно имеем

Это еще раз подтверждает, что полное количество движения системы

не отличается от того, которое получилось бы, если бы вся масса

системы была сосредоточена в центре масс.

Различные части тела могут перемещаться друг относительно

друга. Они могут вращаться вокруг центра масс или переме-
перемещаться взад-вперед от центра масс или к нему. Но, каковы бы ни

были эти внутренние перемещения, центр масс тела движется так,

как если бы вся масса тела была в нем сосредоточена (рис. 22.17).

Рис. 22.17. Снимок движущегося гаечного ключа, полученный методом многократных вспы-

вспышек (время между вспышками — 1/30 с). Черным крестиком обозначен центр масс.

Мы знаем, что, когда массы взаимодействуют только друг с дру-
другом, полное количество движения постоянно. Отсюда мы заключаем,

что скорость центра масс при указанном условии никогда не изме-

изменяется.

Центр масс ведет себя в этом случае как уединенное тело,
не испытывающее никакой равнодействующей внешней силы. Он

движется в соответствии с принципом инерции Галилея. Поскольку
нет силы, действующей извне, а есть только взаимодействие масс

тх и ш2, взаимодействующие тела ведут себя в указанном отношении

как единое тело»
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22.6. Закон сохранения количества движения в общем случае
В этой главе приводилось много примеров сохранения коли-

количества движения двух тел* Сохранение количества движения оди-

одинаково хорошо применимо и к любому числу взаимодействующих
тел. В этом разделе мы пойдем по пути проведения аналогии между

сохранением количества движения вообще и сохранением количества

движения для двух тел. В следующем разделе мы наметим другой
путь рассуждения, подтверждающий ту же связь для простого
случая действия «ньютоновских сил». Наше убеждение в справед-
справедливости закона сохранения количества движения для системы, со-

состоящей из многих тел, опирается не только на рассуждения; оно

подтверждается огромным количеством экспериментальных данных.

Рис. 22.18. Тело / (шар) наталкивается на тело 2, состоящее из двух частей а и Ь, соединенных
небольшой пружиной.

На рис. 22.18 изображены два тела. Одно из них шар, а другое
представляет собой два шара, соединенных легкой пружиной. Пред-
Предположим, что второе тело находится в состоянии покоя, а первое

ударяет его, двигаясь с количеством движения pv После столкно-
столкновения шар 1 удаляется с количеством движения р[, составное же

тело движется с количеством движения р'2.
Мы знаем из рассмотренных нами опытов, что количество дви-

движения двух взаимодействующих тел сохраняется. В данном при-
примере до столкновения общее количество движения Р является как

раз количеством движения р1 первого тела. После столкновения

общее количество движения р равно р[ +р'л. Следовательно,

Теперь подробнее рассмотрим тело 2. Оно состоит из шаров
аи Ь. Мы знаем из предыдущего раздела, что количество движения

центра масс этого тела р'2 является суммой количеств движения

обоих шаров, из которых оно состоит:

Подставив р\ в предыдущее уравнение, имеем

Pi=p'i+Pa+Pl
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Такой ход рассуждения показывает, что общее количество движения

сохраняется для трех тел (У, а, Ь), так же как и для двух тел, по

крайней мере когда два из трех тел соединены вместе. Но то, что

шары а и Ъ соединены пружиной, не имеет значения: пружина
в ходе рассуждений совсем не принималась во внимание. Количество
движения центра масс р\ тела 2 — величина постоянная и равная
р'а + р'ь независимо от того, связаны между собой тела или нет.

Опыт, который мы только что рассмотрели, ничем не отличается

от приведенных выше. На рис. 22.9 представлена картина столкно-

столкновения движущегося шара с неподвижным. Если внимательно рас-

рассмотреть этот рисунок, можно заметить, что после столкновения

шар, получивший удар, не только движется поступательно, но

и вращается. Количество движения, измеренное нами для шара,

воспринявшего удар (см. рис. 22.9), было в действительности коли-

количеством движения его центра масс. На том же основании, на кото-

котором в разделе 22.3 мы рассматривали столкновение не двух, а трех
тел, мы можем считать, что в столкновении, изображенном на рис.
22.9, участвуют три тела: мы мысленно разделим шар, получивший
удар, на две половины,— одну, например, с черной меткой, и другую
без нее. Поскольку имеются силы, удерживающие две половинки

шара вместе, можно рассматривать эти две половинки как два

взаимодействующих между собой тела. В конце концов число частей,
на которое мы разделим тело, зависит от нашего усмотрения. Мы
сами решаем, назвать ли собрание ножек и ручек креслом или

разделить его на восемь тел, присвоив им названия: сиденье, спинка,

ручки, ножки.

Рассмотрев изображенные на рис. 22.18 шары У, аи Ь как систе-

систему трех тел, мы показали, что при взаимодействии трех тел общее
количество движения не меняется. Сохранение количества движе-

движения одинаково хорошо применимо как к двум телам, так и к трем.
Мы видим, что сохранение количества движения вообще не зависит

от числа тел. Изолированную систему, состоящую из нескольких

предметов, которые взаимодействуют только друг с другом, мы

можем разделить на любое число тел. Тот же способ рассуждений,
который мы только что применяли, покажет, что общее количество

движения не меняется и не зависит от того, что мы решаем назвать

телом. Закон сохранения количества движения применим поэтому

ко всякой изолированной системе. Он является общим законом

физики. Все эксперименты с любым числом каких угодно взаимо-

взаимодействующих тел подтверждают этот важный вывод,

22.7. Силы взаимодействия
Мы можем связать сохранение количества движения двух взаимо-

взаимодействующих тел с общим законом сохранения количества движения
и другим путем, а именно, включив в рассуждения понятие силы.

Мы показали, что силы взаимодействия двух тел равны и противо-
противоположны. Затем рассмотрели ряд взаимодействующих тел и пред-
предположили, что силы между каждой парой таких тел тоже равны
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и противоположны. Исходя из этого предположения, оды сможем

найти, что общее количество движения системы сохраняется.

Действительно, в любом случае взаимодействия двух предметов
количество движения сохраняется

— то, что теряет одна масса,

приобретает другая: Арг =—Ар2. Кроме того, если силу, с которой
масса т1 действует на массу га2, обозначать Fi-2, а силу, с которой
т2 действует на тъ обозначить F2-i • то

Арг = /vi A/, Ap2 = Fi-a A^.

Величина Д^ должна быть одинакова для обеих масс, испытываю-

испытывающих столкновение. Если я толкну вас, вы автоматически толкнете

меня, и я не могу толкать вас в течение более длительного времени,
чем вы толкнете меня. Таким образом,

да = —Да.
или

F2-i&t = — F1-2 А/,

а это ведет к равенству
«2-1

—

*1-2 •

Мысль, что силы взаимодействия тел должны быть равны и про-
противоположны, была высказана Ньютоном (после его опытов по

сохранению количества движения): «Всякому действию всегда

имеется равное противодействие, или силы взаимодействия двух
тел друг с другом всегда равны и направлены в противоположные

стороны». Это положение часто называют третьим законом движения,

хотя вы видите, что этот закон характеризует силовое взаимодействие
тел, а не их движения; однако характеристика движений вытекает

из этого закона при применении его к каждому из взаимодействую-
взаимодействующих тел.

Еще до введения в наш обиход понятия количества движения

мы тщательно исследовали гравитационные силы как один из видов

сил взаимодействия. В последней главе было установлено, что силы

гравитационного притяжения между двумя телами равны и направ-
направлены в противоположные стороны по прямой, соединяющей центры
этих тел. Притяжение Солнцем Земли равно и противоположно

притяжению Землей Солнца. Притяжение, испытываемое Луной со

стороны Земли, противоположно притяжению, испытываемому
Землей со стороны Луны, и т. д. В дальнейшем в этом курсе мы

часто будем изучать явления, которые происходят под действием
столь простых сил. Мы будем называть их ньютоновскими.

Мы можем распространить третий закон Ньютона на взаимодейст-
взаимодействие многих тел, что послужит доказательством «универсальности»
закона сохранения количества движения. Рассмотрим для этого

изолированную систему, в которой несколько масс движутся в раз-
различных направлениях и действуют друг на друга с различными си-

силами. Поскольку все силы действуют между парами тел и при этом

F2-1 =—Fi-2i то и изменения количеств движения, равные по вели-
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чине и противоположные по направлению, также происходят по-

попарно. Поэтому в то время как одно тело приобретает какое-то

количество движения, другое теряет равное и противоположное
ему количество движения. Общее количество движения изолиро-
изолированной системы при этом не меняется.

Таким образом, доказательство справедливости третьего закона

Ньютона является одновременно и доказательством универсально-
универсальности закона сохранения количества движения. Однако возможно

сохранение количества движения системы, состоящей из многих

тел, даже если некоторые из действующих сил не являются ньюто-

ньютоновскими. И действительно, как мы увидим в части IV, такие систе-

системы и силы существуют.
Вот пример, в котором силы не являются явно ньютоновскими,

Время от времени где-то в пространстве вспыхивает яркий свет —¦

это образовалась сверхновая звезда с небольшим периодом жизни.

Яркость звезды уменьшается по экспоненциальному закону
на 1/2 через каждые 55 ночей (таков же период полураспада радио-
радиоактивного элемента калифорния). По сравнению с миллионами лет,

которые свет идет от сверхновой звезды до Земли, время, в течение

которого она излучает свет, незначительно. Сверхновые звезды

рождаются задолго до того, как их свет достигает Земли.

Когда, наконец, свет от сверхновой звезды достигает Земли,
мы получаем световой сигнал. При этом мы не можем, конечно,

в тот же момент передать уже потухшей звезде сигнал. Таким обра-
образом, если рассматривать весь этот процесс как взаимодействие между
Землей и сверхновой звездой, то нет оснований считать, что в этом

взаимодействии силы равны и противоположны.
Однако закон сохранения количества движения выполняется

и в этом случае. Чтобы это понять, мы должны включить свет в чис-

число материальных тел Вселенной. В момент излучения света звезда

дала ему толчок. Порция света направилась к Земле, неся с собой

некоторое количество движения, и когда, миллионы лет спустя,
свет достиг Земли, он передал Земле толчок и получил обрат-
обратный; свет, поглощенный Землей, передал ей свое количество

движения.

Это рассуждение не покажется столь притянутым, если вернуться
к примеру скользящих по льду людей. На этот раз мы вообразим,
что они играют в мяч. Взрослый бросает мяч мальчику. В момент

броска он сообщает мячу некоторое количество движения в данном

направлении и получает равное количество движения в обратном
направлении. Затем, когда мальчик ловит мяч, количество движе-
движения переходит от мяча к мальчику. (Масса мяча, конечно, включает-

включается в массу мальчика после того, как он поймает мяч. Изменения

количеств движения взрослого и мальчика с мячом равны и про-

противоположны, но взаимодействие между ними возникает с запозда-

запозданием. Задержка во времени значительно короче, чем та, которая
имеется между излучением света звездой и его поглощением на по-

поверхности Земли; тем не менее это заметный и измеримый промежу-
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ток времени. Если мы забудем о мяче, силы взаимодействия между

взрослым и мальчиком не покажутся нам ньютоновскими, а количест-

количество движения мы сочтем потерянным на то время, пока мяч находится

в воздухе. Однако все приобретает ясный смысл, когда в систему
включается мяч; точно таким же путем все становится ясно в при-

примере с Землей и звездой, когда мы включаем в наши рассуждения

свет, рассматривая его как материальное тело.

То, что мы рассматриваем свет по аналогии с мячом, летящим

между взрослым человеком и мальчиком, помогает нам задержку
во времени взаимодействия лишить всякой таинственности и дает

нам чувство уверенности в том, что количество движения сохра-
сохраняется во всевозможных видах взаимодействий. Бросание мяча

есть «модель» переноса света — модель, в которой мы можем ис-

использовать ньютоновские силы взаимодействия. В действительности
свет, конечно, не тождествен мячу

— мячи не возникают, когда

их бросают, и не исчезают, когда их останавливают, а свет появляет-

появляется и исчезает *). Значит, мы не должны воспринимать модель бук-
буквально.

При изучении светового, магнитного и других видов взаимо-

взаимодействий в части IV мы могли бы, создавая подобные модели, сохра-
сохранить ньютоновскую трактовку этих явлений; но такие модели могут
оказаться слишком сложными и искусственными. Обычно в этих

случаях мы не прибегаем к моделированию, а просто основываемся

на всеобщности закона сохранения количества движения.

При изучении процессов излучения и поглощения света (кото-
(которыми в доступном нам объеме мы будем заниматься в части IV)
мы увидим, что идея сохранения количества движения в этих

процессах является вполне последовательным представлением. Мы
можем и обязательно должны распространить закон сохранения
количества движения за пределы тех взаимодействий, в которых
количество движения переносится только материальными объекта-
объектами **). В наши представления мы должны включить перенос коли-

количества движения, который осуществляется в процессах излучения.
Неравенство сил взаимодействия между Землей и сверхновой звез-

звездой возникает за счет того, что количество движения переносится

в космическом пространстве вместе с излучением. Можно привести
много других подобных примеров. Например, точно такие же сооб-

соображения возникают, когда излучение испускается одним атомом
и поглощается другим. Когда понятие количества движения рас-
распространяется на явления излучения, закон сохранения количест-

количества движения становится справедливым в масштабах Вселенной.

*) Не следует, конечно, считать, что свет возникает из ничего и исчезает бес-

бесследно. В части IV мы увидим, в чем заключаются процессы поглощения и возник-
возникновения света, и это убедит нас в том, что универсальный закон сохранения, впер-
впервые сформулированный М. В. Ломоносовым в 1748 г., распространяется и на

световые явления. (Прим. ред.)
**) Имеются в виду физические тела, рассматриваемые классической меха-

механикой. (Прим. ред.)
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Ракеты. Закон сохранения количества движения позволяет объяснить дви-
движения ракет и выяснить некоторые из условий выведения спутника на орбиту.

Сначала представим себе космонавта, движущегося в межпланетном про-
пространстве в космическом костюме. Равнодействующая приложенных к нему сил

равна нулю, и потому вектор его скорости постоянен. Его масса т\ в руке он

держит небольшой предмет, масса которого Am и который движется с той же ско-

скоростью в пространстве, как и космонавт (рис. 22.19). Затем космонавт бросает
массу Am со скоростью ve по отношению к его собственной скорости. Количество

Момент отбрасываний
масш Am

Рис. 22.19. Последовательные положения через равные интервалы времени t человека, дви-

движущегося в космическом пространстве. На первых двух снимках человек движется с постоян-
постоянной скоростью. На третьем снимке он отбрасывает от себя небольшую массу Am со скоростью
ve (относительно его собственной скорости). Если бы человек не отбросил массу Am, то его

положение было бы таким, как изображено пунктиром. В течение следующего интервала
времени это «привидение» продолжает двигаться с прежней скоростью, тогда как сам человек

дрижется на Av=(Am/m)ve быстрее Поэтому он пролетит расстояние, на (Да)* большее, чем
его «привидение», а малая масса Am окажется позади этого «привидения* на расстоянии vet.

движения предмета изменяется на величину (Am)ve. Согласно закону сохранения
количества движения, скоростью космонавта претерпевает изменение на величину

Див обратном направлении, а его количество движения изменится на величину

mAv, как раз равную по величине изменению количества движения (Am)ve малого

предмета. Поэтому

и скорость движения космонавта изменяется на

Av = (Am/m) ve.
Этот космонавт очень похож на ракету. Он изменяет свое количество движения,

выбрасывая массу. Если он хочет увеличить скорость своего движения на восток,
он должен выбросить массу в направлении на запад.

В ракетном корабле выбрасываемая масса представляет собой поток газа.
Газ выбрасывается из сопла ракетного двигателя с высокой скоростью; количество
движения корабля меняется в направлении, обратном истечению газов. Мы должны
помнить, что т есть масса корабля после того, как была выброшена небольшая
масса газов Am. Эта масса m включает горючее, пассажиров, конструкцию —

все, что остается на корабле.
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Постараемся выяснить, что происходит с ракетой, которая выбрасывает
массу при постоянной выхлопной скорости ve по отношению к ракете *). Как

уменьшается масса ракеты по мере того, как она набирает скорость? Чтобы по-

получить представление о соотношении между уменьшающейся массой ракеты и ее

возрастающей скоростью, мы предположим, что газ выбрасывается равными пор-
порциями. Например, мы можем предположить, что каждая такая порция равна

1/10 общей массы mt ракеты. Тогда при каждом выбросе 1/10 mt выбрасывается,
а 9/10 mt начинают двигаться быстрее, т. е.

Am=l/l0mti m = 9/10/и*.
Разделив первое уравнение на второе, находим Ат/т= 1/9 при каждом выбросе
очередной порции газов. В случае с космонавтом, который отбросил небольшую
массу, мы нашли, что т[Щ

Av = (Am/m)ve.

Объединяя эти два уравнения, получаем

Ai>=l/9ae.

Это уравнение показывает, что мы так

избрали выбросы газов, что изменение

скорости Ли одинаково для каждой пор-
порции газов. Значит, если ракета вначале

Рис. 22.20. а) Для увеличения скорости ракета выбрасывает часть топлива в виде выхлоп-

выхлопных газов. На графике изображена зависимость остатка массы ракеты, отнесенного к ее на-

начальной массе, от скорости, развиваемой ракетой. Скорость ракеты выражена в единицах ско-

скорости истечения выхлопных газов ve. Точками изображена зависимость между массой и ско-

скоростью для случая, когда топливо выбрасывается порциями, равными 1/10 от имеющейся в

данный момент массы ракеты. Непрерывная кривая, проходящая чуть ниже точек, показывает

зависимость между массой и скоростью ракеты в условиях непрерывного истечения выхлоп-

выхлопных газов — эта кривая* является экспоненциальной, б) Начальная часть графика на рис.

22.20, а в увеличенном масштабе, показывающая различия в результатах выбросов газов по

1/10, 1/100 и 1/1000 от оставшейся массы. В последнем случае точки настолько близки, что
©бразуют кривую, неотличимую от кривой для непрерывного истечения газов, приведенной

в том же масштабе.

покоилась, то ее скорость при первом выбросе газов от нуля возросла на 1/9 ve,
при втором выбросе—на 2/9 vet при третьем — на 3/9 ve и т. д.

Рассмотрим теперь изменение массы ракеты по мере того, как возрастает ее

скорость. При каждом выбросе газов ее масса меняется от т\ до 9/10 т\. Поэтому

*) Эта задача впервые в 1897 г. решена И. В. Мещерским A859—1935), кото-

который дал уравнение движения тела переменной массы. Это уравнение является

основой механики движения переменных (Прим. ред.)
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после первого выброса она равна 9/10 т0, где т0 — первоначальная общая масса

ракеты на старте. После второго выброса масса равна (9/10-9/10)т0, или (9/10Jт0;
после третьего она равна (9/10Kт0 и т. д. На рис. 22.20, а приведен график зави-
зависимости изменения относительной массы от достигаемой скорости ракеты в еди-
единицах ve.

Молекулы газа, выбрасываемого ракетой, имеют такие небольшие массы по

сравнению с массой т, что мы можем говорить о непрерывном истечении газа.

Выбросы газа порциями в количестве 1/10 массы ракеты дают грубое приближе-
приближение по сравнению с непрерывным истечением. Мы можем, однако, добиваться все

большего и большего приближения, рассматривая порции газа, равные 1/100,
1/1000 массы т0 и т. д. Мы получаем при этом (рис. 22.20, б) несколько разлив

чающиеся между собой кривые, но по мере того как порции газа уменьшаются,

кривые получаются приблизительно одинаковыми, и при достаточно малых

порциях газа, но все еще очень далеких от массы отдельных молекул, мы при-
приближаемся к той математической кривой, которая соответствует непрерывному
истечению газа. Эта кривая, называемая экспонентой, выражает соотношение

между той скоростью, которую мы можем надеяться достичь, и остаточной массой

ракеты *). Форма этой кривой может показаться знакомой: она такая же, как

у кривой радиоактивного распада, выражающей долю нераспавшихся радиоак-
радиоактивных атомов в зависимости от времени (см. рис. 8.5).

Теперь мы можем определить ту часть массы ракеты, которую необходимо
выбросить в виде выхлопных газов, чтобы вывести спутник Земли на орбиту. Мы

уже знаем, что спутник должен обладать скоростью примерно 8 км/с для того,
чтобы он вращался вокруг Земли. Чтобы достигнуть этой скорости при мини*
мальной потере массы ракеты, выхлопная скорость ve должна быть по возмож-

возможности больше. Какой скорости истечения выхлопных газов ve можем мы добиться?
Это зависит от горючего; применяя, например, химическое топливо, в лучшем

случае можно получить около 3 км/с. Однако химические топлива недостаточно

эффективны для получения высоких выхлопных скоростей. Кроме того, на прак-
практике мы, по-видимому, еще не достигли максимально возможной скорости ve.

Поэтому мы будем считать ve=2 км/с. Это соответствует температурам газа,

превышающим 3000 °С, так что необходима особая конструкция соплового ап«

парата ракетного двигателя для предотвращения его разрушения от таких тем-

температур.

При ve=2 км/с отношение v/ve для ракеты, вращающейся вокруг Земли,
равно 8/2, т. е. 4. Если мы снова обратимся к рис. 22.20, а, то увидим, что при
этом соотношении скоростей соотношение масс т/т0 равно 0,02, или 1/50. Таким

образом, требуется выбросить 98% первоначальной массы для того, чтобы остав-
оставшиеся 2% достигли скорости, равной 8 км/с. Кроме того, чтобы довести ракету до
заданной орбиты, требуется еще преодолеть сопротивление воздуха и притяжение
Земли. Это означает, что мы должны выбросить еще большее количество массы,
и лишь около 1/200 первоначальной массы выйдет на орбиту. Мы видим, что для
того, чтобы вывести на орбиту спутник весом в несколько килограммов, тре-
требуются ракеты весом в несколько тонн.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1*. Вы толкаете тело с постоянным усилием в 3 Н, действующим в течение
1/2 с. Какой импульс вы сообщаете телу? (Раздел 22.1.)

2*. Как велик импульс, который сообщает массе 8 кг изменение скорости
4 м/с? (Раздел 22.1.)

*) Графики показывают зависимость т/т0 от v'/ve, т. е. соотношение между
остаточной массой и скоростью. Они ничего не говорят о времени, в течение ко-

которого протекает процесс. Конечная скорость зависит только от ve и от той части

массы, которая остается от первоначальной (стартовой) массы ракеты. Время,
нужное для сжигания горючего, не влияет на конечную скорость ракеты. Это
легко понять, если вообразить, что двигатель на время выключен и в течение

этого времени ракета движется по инерции без изменения скорости.
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3*. Допустим, что вы бросаете мяч на стену и ловите его после отскока.

а) Сколько импульсов сообщено мячу?
б) Какой из них был самым сильным? (Раздел 22.1.)
4. Движение 3-килограммового тела было ускорено постоянной силой в 12 Н

от 10 до 18 м/с.

а) Какой импульс был сообщен телу?
б) Сколько времени действовала сила?
Б. Постоянная сила, приложенная к предмету массой 2 кг, находившемуся

первоначально в состоянии покоя, передвигает его на 4 м за 2 с. Найти импульс,
приложенный к предмету.

6. Товарный вагон массой в 5,0« 104 кг катится по инерции по горизонтальному
пути со скоростью 0,30 м/с. За ним волочится веревка.

а) Максимальную силу, с которой человек способен тормозить вагон, держась
за эту веревку, можно, не выходя за разумные пределы, оценить в 250 Н. Сколько
времени потребуется тормозить вагон с этой силой, чтобы его остановить?

б) В 10 м от того места, где началось торможение, стоит другой вагон. Про-
Произойдет ли столкновение?

7. 10-граммовая винтовочная пуля, летевшая со скоростью 850 м/с, попадает
в мешок с песком и проходит толщу песка в 20 см.

а) Какова сила, действовавшая на пулю в песке, если принять ее постоянной?
б) Сколько времени потребовалось для остановки пули с момента ее входа

в мешок?

8*. Какая средняя сила потребуется для остановки молота за 0,05 с, если
перед ударом молот имел количество движения 25 Н-с. (Раздел 22.2.)

9. Человек стоит посреди замерзшего пруда, лед идеально гладон и лишен
всякого трения. Как он сможет добраться до берега?

10. Тело с массой 10 кг движется с постоянной скоростью 10 м/с. Затем на
него действует постоянная сила в течение 4 с и сообщает ему скорость 2 м/с в

противоположном направлении.
а) Определить импульс, действующий на тело.

б) Какова величина и направление силы?

в) Определить количество движения тела до и после приложения силы.
11. Тело состоит из двух масс: тг

= 2 кг и т2 = 0,5 кг, связанных тонкой нитью

(рис. 22.21, а), и находится в покое на поверхности стола без трения. Мы приводим

Импульс —10Н'С

Нить

а)

v,= 0,2м/с

Рис. 22.21. К задаче

тело в движение, прикладывая к нему импульс 10 Н«с, но нить во время дей-
действия импульса обрывается (рис. 22.21,6). В результате масса mt получает
скорость только 0,2 м/с, а т2, обладая большей скоростью, удаляется от нее.

а) Какой импульс получила масса тх?
б) Какой импульс получила масса т2?
в) Определите скорость т2 в конце приложения импульса.
12*. Движущемуся предмету сообщается импульс под углом в 120° к вектору

скорости предмета. Чему равен угол между направлениями векторов импульса
FAt и приращения количества движения А/?? (Раздел 22.2.)
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13*. Как получается построение б) из построения а) на рис. 22.12? (Раз-
(Раздел 22.4.)

14*. Два покоившихся ползуна с твердой углекислотой отскочили друг от

друга в результате «взрыва» с начальными скоростями 5 и —2 см/с. Каково от-

отношение их масс? (Раздел 22.4.)
15. 20-килограммовая тележка движется со скоростью 2 м/с. Мальчик массой

60 кг спрыгивает с тележки. Когда он оказывается на земле, он:

а) продолжает двигаться со скоростью тележки;
б) не движется относительно земли;
в) движется со скоростью, в 2 раза большей скорости тележки. В каждом

случае найдите изменение скорости тележки.
16. Две тяжелые тележки, способные катиться без трения и связанные ни-

нитяной петлей, находятся в состоянии покоя. Между ними расположена небольшая

¦0,87м \—0,45м

Рис. 22.22. К задаче 16.

сжатая пружина (рис. 22.22). Когда нить пережигается, пружина расправляется
с 2 до 3 см, тележки разъезжаются в разные стороны и обе одновременно уда-

ударяются о деревянные барьеры в

концах стола. Тележка Л при этом Вода
проходит 0,45 м, а В — 0,87 м. Щ
Найти отношения:

а) скорости тележки А к ско-

рости тележки В;
б) их масс;

в) импульсов, приложенных f

тележкам;

г) ускорений. испытываемых

тележками во время действия пру-
пружины.

17. Протон (масса 1,67- Ю-27 кг),
движущийся со скоростью Ь 107 м/с,
сталкивается с неподвижным ядром
гелия и отскакивает обратно со ско-

скоростью 6* 10б м/с. Ядро гелия после этого столкновения начинает двигаться со

скоростью 4* 106 м/с
а) Можете ли вы подсчитать массу ядра гелия? Если да, то какова она?

б) Можно ли определить силу действующую между указанными частицами
во время столкновения? Если можно, то какова она?

в) Приготовьтесь к обсуждению этих вопросов в классе, если вы отвечаете

на тот или иной из них отрицательно.
18. Неподвижный рефрижераторный вагон массой 2« 104 кг сцепляется о

нагруженной платформой массой 3*10* кг. До столкновения платформа имела

скорость 1 м/с. Какова скорость этих двух вагонов после их сцепления?
19. Экспериментальные сани с ракетным двигателем замедляются забор-

ником, погружаемым в желоб с водой. Как видно из рис. 22.23 (рельсы и ракетный
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двигатель не показаны), заборник сконструирован таким образом, что он выбра-
выбрасывает воду под прямым углом к направлению движения саней, причем вода в

любой момент выходит из трубок со скоростью, равной по абсолютному значению

скорости саней.

а) Чему равно изменение количества движения небольшой массы воды т,
выбрасываемой в сторону в момент, когда скорость саней равна и?

б) Каково изменение количества движения саней на каждую массу т зачер-
зачерпываемой воды?

в) Есть ли какое-либо преимущество в выбрасывании воды в равных количе-

количествах в обе стороны перед выбрасыванием удвоенного количества в одну сторону?
20. Космонавт, имеющий вместе со снаряжением массу М9 случайно отде-

отделился от своего космического корабля и находится в покое относительно корабля
на расстоянии d от него. При нем имеется резервуар массой т0 кислорода (то<^М),
имеющий сопло, через которое газ может быть очень быстро выброшен со средней

скоростью v. Космонавт должен выпу-
выпустить кислород для реактивного продви-
продвижения обратно к кораблю, но также нуж-
нуждается в нем для дыхания. Он вдыхает его

со скоростью R г/с.
а) Какую скорость V приобретет кос-

космонавт, выпустив массу кислорода т для

своего продвижения? Сколько времени ему
потребуется, чтобы достигнуть корабля?

б) Сколько времени он может дышать

остальной частью кислорода?
в) Для успешного возвращения на ко-

корабль длительность дыхания tR должна

равняться или превышать длительность
сближения с кораблем /с. Какова должна
быть для этого величина т?

г) Вычислить минимальную массу
кислорода, которую космонавт должен

выпустить для сближения с кораблем,
если Л4— 100 кг, то=О,5 кг, d= 45 м,
и=50 м/с и Я=2,5«10-4 кг/с.

21*. Каково направление движения

центра масс шариков на рис. 22.9 после

столкновения? (Раздел 22.5.)
22. В процессе совместного движения

двух 1-килограммовых тележек со ско-

скоростью 0,5 м/с пружина расталкивает их.

Одла из них продолжает движение со ско-

скоростью 0,7 м/с в прежнем направлении.
а) Какова скорость центра масс после

срабатывания пружины?
б) Какова скорость другой тележки

после отталкивания пружиной?
23. Ракета в космическом простран-

пространстве выбрасывает выхлопные газы и уве-
увеличивает свою скорость. Что происходит с центром масс системы, состоящей из

выбрасываемых газов и движущейся ракеты?
24. На рис. 22.24 большой шар движется сверху, а малый — снизу. Как

вы видите, столкновение шаров происходит в середине рисунка.
а) Найдите векторы изменения скоростей обоих шаров. Постройте эти

векторы в одном масштабе и убедитесь в правильности направления каждого
из них.

б) Противоположны ли эти изменения скорости по направлению?
в) Равны ли они по величине?

г) Если их- величины не равны, то каково их отношение?

д) Масса большого шара 201 г; какова масса малого шара?
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25. Кирпич массой 2 кг падает вертикально и попадает на тележку такой
же массы, движущуюся по абсолютно гладкой поверхности стола со скоростью

а) Каково изменение скорости тележки?
б) Какова скорость центра масс системы, состоящей из тележки и кирпича

до их столкновения?
26. Взрыв разделяет камень на три части. Два куска разлетаются под прямым

углом друг к другу: 1-килограммовый кусок — со скоростью 12 м/с и 2-кило-

2-килограммовый — со скоростью 8 м/с. Третий кусок отлетает со скоростью 40 м/с.
а) Начертите диаграмму, показывающую направление, в котором летит

третий осколок.

б) Какова масса третьего осколка?

27. Система, изображенная на рис. 22.25, состоит из 5-килограммовой рамы
и двух масс, 1 кг и 4 кг, находящихся в середине. По концам рамы устроены
барьеры из замазки. Рама вместе с грузами покоится на дисках из сухого льда

Рис. 22.25. К задаче 27. Рис. 22.26. К задаче 28.

(масса этих дисков включена в массу рамы). Центр масс всей системы находится
в центре рамы. Взрыв разбрасывает массы. Масса 1 кг движется со скоростью12 м/с. Обе массы останавливаются перед барьерами из замазки.

а) Какова скорость массы 4 кг после взрыва?
б) Найдите положение центра масс системы через 1 с и через 2 с.

в) Какова скорость рамы с массами через 100 с?

г) Качественно опишите движение от момента взрыва и до 100 с.

д) На какое расстояние передвинется рама?
28. 20-килограммовая тележка покоится на 80-килограммовой площадке,как показано на рис. 22.26. Тележка способна перемещаться по площадке с по-

помощью мотора, а платформа, поставленная на ролики, может двигаться по полу
лаборатории практически без трения. Стробоскопическое фотосъемочное устрой-
устройство способно регистрировать любое движение этих предметов.

Исследование снимка, полученного во время работы мотора, показывает,
что за 3 с платформа приобрела скорость 0,3 м/с.

а) Какова скорость тележки в конце 3-секундного периода на основании
того же снимка?

б) С какой силой толкали колеса площадку?
в) Какова была скорость тележки относительно платформы к концу третьей

секунды?
J r

г) Если бы было известно только относительное движение тележки по пло-
площадке, то каково было бы вычисленное значение силы, необходимой для сооб-
сообщения тележке к концу третьей секунды найденной выше относительной скорости?Нельзя ли объяснить, почему ответ расходится с ответом по п. б)?29*. Что происходит с количеством движения автомобиля при его остановке?
(Раздел 22.6.)

30. Двойная звезда состоит из двух больших масс, которые притягиваются
друг к другу гравитационными силами. Наблюдая за движением обеих масс мы
видим, что они вращаются друг относительно друга.
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а) Что, по-вашему, происходит с количеством движения каждой из масс

двойной звезды с течением времени? Объясните ответ.

б) При тщательном наблюдении можно обнаружить, что свет от яркой звезды

Сириуса мерцает. Исходя из этого и ряда других фактов, астрономы считают, что

Сириус имеет двойника. Это действительно двойная звезда. Как с этой точки

зрения объяснить особенности наблюдаемого движения звезды?
31*. Рассмотрим столкновение двух частиц, в результате которого свет ис-

испускается в заданном направлении. Поскольку свет оказывает давление, он дол-

должен обладать количеством движения. Если полное количество движения (включая
количество движения света) сохраняется, должны ли силы взаимодействия упо-

упомянутых двух частиц быть равно-противоположными? (Раздел 22.7.)

t

Рис. 22.27. К задаче 32.

32. На рис. 22.27 показан некий воображаемый график зависимости сил взаи-

взаимодействия Fb2 и F2A от времени.

а) Отличается ли полное конечное количество движения от начального?

б) Сохраняется ли полное количество движения в течение всего процесса

взаимодействия?



ГЛАВА

23 РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Хотя с различными видами энергии в повседневной жизни мы

встречаемся на каждом шагу, дать точное определение понятия

энергии трудно. Пища есть то горючее, которое снабжает нас энер-
энергией для того, чтобы мы могли жить и работать. Нам нужны и дру-
другие виды топлива; дрова, уголь и бензин выделяют большие коли-

количества тепловой энергии для приготовления пищи, отопления

помещений или приведения в движение наших машин. В течение ты-

тысячелетий человек использовал энергию, выделяемую при сжигании

топлива, главным образом для получения тепла и в небольшой

мере
— в ремеслах и теплосиловых устройствах. До недавнего

времени вся тяжелая работа выполнялась мускульной силой людей
или животных. Однако со времени промышленной революции че-

человек все больше и больше стал использовать другие источники

энергии для того, чтобы заменить мускульную силу. В настоящее

время путем сжигания горючего получается большая часть энер-

энергии, которая приводит в движение наши сельскохозяйственные ма-

машины, машины на заводах и фабриках, поезда, автомобили, пароходы
и самолеты.

Современному технически вооруженному обществу энергия,
доставляемая горючим, насущно необходима. Очень хорошей мерой
технического прогресса и материального благосостояния страны
служит средняя используемая энергия горючего, приходящаяся в

год на одного человека.

В нашей повседневной жизни мы часто употребляем слово «энер-
«энергия». Встав утром с постели, готовые приняться за работу или

какое-нибудь другое дело, мы говорим, что чувствуем себя полными

энергии. Но после нашей деятельности, длящейся то или иное

время, мы устаем и говорим, что утратили энергию. Хороший сон

ночью и питательная пища восстанавливают нашу способность ра-
работать.

Такое общепринятое применение слова «энергия» тесно свя-

связано с научным понятием энергии, которое будет развито ниже.

Оно говорит о тесной связи между энергией и горючим, благодаря
которому машины и мускулы совершают полезную работу.

На данном этапе рассуждений мы ограничимся утверждением,
что энергия

— это то главное, что обусловливает работу, но не

возникновение энергии, а ее переходы из одной формы в другую.
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23.1. Превращение энергии
Все виды работы производятся за счет превращения одной фор-

формы энергии в другую: например, энергия топлива превращается
в энергию движущегося поезда. Энергия может передаваться из

одного места в другое: например, теплота, получаемая при сжигании

горючего в котельной теплоцентрали, передается по трубам в доме

и через радиаторы воздуху комнат* Горючее содержит энергию
в аккумулированной форме, уже готовой к использованию. Опре-
Определенное количество горючего содержит определенное количество

энергии. В дальнейшем вы увидите, что энергия не создается и не

уничтожается, она только переходит из одной формы в другую или

передается из одного места в другое. В этом последнем смысле

энергия напоминает деньги, которые при покупке переходят из

одних рук в другие.
Рассмотрим, как можно использовать энергию, накопленную

в бензине. Сжигая его в двигателе автомобиля, мы можем заставить

нагруженный автомобиль двигаться и подниматься в гору. Сжигая

бензин в топке под паровым котлом, мы превращаем энергию бензи-

бензина в теплоту пара. Расширяясь, пар приводит в движение поршень,
который может поднять груз, преодолевая тяготение. Этот груз
можно затем прицепить к оси автомобиля за веревку, перекинутую
через блок; если дать грузу опускаться, он может поднять автомо-

автомобиль в гору. Здесь опять произошло превращение энергии; по край-
крайней мере часть энергии горючего пошла на подъем автомобиля, но

более сложным путем, чем в предыдущем примере. Мы должны

теперь найти метод точного учета порций энергии, претерпевающей
превращения в различных операциях; научившись их оценивать,

мы убедимся, что энергия не создается и не исчезает; она лишь

претерпевает превращения.

23.2. Работа — мера превращения энергии

Превращение энергии горючего в работу мы можем измерять
либо 1) числом единиц произведенной работы (например числом

гектаров скошенной травы, или числом домов, подлежащих отоп-

отоплению), либо 2) количеством израсходованного горючего (например
числом литров бензина).

Только что описанные виды работы представляли собой процессы,
в которых возникали силы, производившие перемещение предметов.
В таких случаях мы обычно говорим, что при этих превращениях
энергии была произведена работа. Давайте теперь разовьем идею
использования работы как точной и надежной меры превращения
энергии. Пока будем пользоваться словом «работа» лишь в значении

меры произведенного труда или затраченного топлива. Обратите
внимание на то, что эти две меры превращения энергии находятся
в соответствии друг с другом. Представьте себе любую работу,
и вы увидите, что число единиц работы и количество использован-

использованного топлива пропорциональны. Для того чтобы выполнить две
единицы работы,- нужно в два раза больше топлива, чем для выпол-
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нения одной единицы работы. Например, мы можем скосить в два

раза большую площадь с четырьмя литрами бензина в косилке,
чем с двумя.

Теперь хорошо было бы найти такую комбинацию величин, ха-

характеризующих силу и движение, которая могла бы служить мерой
превращения энергии. При этом необходимо, чтобы такая комбина-
комбинация величин была пропорциональна как количеству истраченного

Рис. 23.1. Для поднятия на гору двух подвесных вагонеток требуется в два раза больше го-
горючего, чем для поднятия одной; сила также удваивается. Таким образом, мы видим, что

работа должна быть пропорциональна силе.

топлива, так и числу единиц произведенной работы. Эту комбина-

комбинацию величин мы и будем называть работой.
Предположим, что бензиновый двигатель поднимает подвесную

вагонетку на вершину горы (рис. 23.1). В какой зависимости нахо-

находится количество горючего, затраченное двигателем на выполнение

этой работы, от силы, создаваемой тросом? Требуется вполне опре-
определенное количество горючего, чтобы поднять одну вагонетку на

гору, и при этом трос развивает вполне определенную силу тяги,

передвигая вагонетку на вполне определенное расстояние. Чтобы

поднять вторую такую же вагонетку, требуется такое же количество

горючего* Следовательно, горючее, необходимое для подъема двух
вагонеток, в два раза больше количества горючего, необходимого
для подъема одной вагонетки, так как произведены две одинаковые
работы. Мы могли бы поднять на гору две вагонетки одновременно,
использовав два троса и два одинаковых двигателя; при этом мы

создали бы двойную силу тяги и затратили бы двойное количество

горючего. Мы могли бы скрепить два троса, идущих параллельно,
и это не отразилось бы на количестве истраченного горючего и про-
проделанной работе. Мы даже можем заменить два троса одним, под-
поддерживающим обе вагонетки, и использовать один двигатель для

выполнения этой работы, но двигателю пришлось бы сжигать горю-
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чее быстрее. Количество горючего, затраченного на поднятие двух
вагонеток, оказалось бы и в этом случае в два раза больше, чем

при поднятии одной вагонетки. Для увеличения силы в два раза

требуется количество затраченного горючего также увеличивать
в два раза. Итак, работа, которую мы будем использовать в качест-

качестве меры превращения энергии, пропорциональна силе, которая со-

совершает работу, получаемую при сжигании горючего (см. рис. 23.1),

Рис. 23.2. Для поднятия подвестной вагонетки на вершину горы требуется в два раза больше

горючего, чем для поднятия ее до половины пути. Таким образом, работа пропорциональна
пройденному расстоянию.

Теперь рассмотрим зависимость количества использованного го-

горючего от расстояния, которое вагонетка проходит при подъеме
на гору (рис. 23.2). Сперва поднимем вагонетку на половину пути,
потом до самого верха. Чтобы поднять вагонетку на вторую часть

пути, требуется такая же сила и такой же длины трос, как и для

подъема ее на первую половину пути. Чтобы поднять вагонетку
до самого верха, одна и та же работа делается дважды, поэтому

требуется в два раза больше горючего. Количество истраченного
горючего удваивается, когда расстояние увеличивается вдвое; поэ-

поэтому мы говорим, что работа пропорциональна пройденному пути.
Объединяя вышеизложенные результаты, мы определяем работу

как произведение
сила-путь.

На основании изучения многих других случаев превращения энер-
энергии было установлено, что работа, выражаемая как произведение
силы на пройденное расстояние, является наилучшим способом из-

измерения превращения энергии.
Единицей работы должна быть единица силы, умноженная на

единицу длины: 1 ньютон, умноженный на 1 метр (или 1 Н • м).
Мы называем эту единицу джоулем (Дж) в честь английского физика
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Джемса П. Джоуля A818—1889), который впервые произвел ряд
опытов по измерению энергии, превращающейся из одной формы
в другую, для подтверждения закона сохранения энергии. Если
мы силой 2 Н передвигаем тело на 10 м в направлении движения,
мы совершаем работу, равную 20 Дж.

При быстром подъеме вагонетки на гору мы фактически затрачи-
затрачиваем то же количество горючего, как и при медленном подъеме.

Время не имеет никакого значения для оценки количества работы.
При желании мы можем половину работы сделать сегодня, а вторую
завтра, и при этом все равно истратим то же количество горючего.

Включив тормоза и выключив двигатель, можно остановить

вагонетку, после чего энергия горючего не будет передаваться ваго-

вагонетке. И хотя все еще действует сила, удерживающая вагонетку
на месте, работа не производится, так как нет перемещения в прост-
пространстве.

Энергию можно извлекать из горючего и не производить полезную
работу. Мы можем отцепить трос от двигателя и заставить двигатель

работать, сжигая горючее, хотя он и не будет поднимать вагонетку
на гору. Энергия горючего в этом случае заставляет поршни дви-
двигаться вхолостую и преодолевать только силу трения. Таким путем
энергия идет на нагревание двигателя. Энергия продолжает пре-
превращаться из энергии топлива в другие формы и переходить в другие
места, хотя ни одна из этих форм не используется для выполнения

работы по поднятию вагонетки. Даже в тех случаях, когда двигатель
тащит вагонетку на гору, некоторое количество энергии топлива

идет на выполнение ненужной работы. Количество сжигаемого

топлива на практике может отличаться от случая к случаю; напри-
например, если поршни плохо смазаны, требуется больше топлива. С уче-
учетом этих поправок можно утверждать, что количество топлива, рас-

расходуемое на одну и ту же работу, например на подъем подвесной
вагонетки, всегда одинаково.

23.3. Уточнение понятия работы
iMbi выразили работу произведением силы на расстояние, исходя

из примера, когда трос тянет вагонетку, которая движется в на-

направлении тяги. Если сила действует в направлении движения,

происходит превращение энергии и совершается работа. С другой
стороны, превращения энергии не происходит, когда направление
силы перпендикулярно к направлению движения тела. Например,
представим себе камень, вращающийся на конце веревки, привязан-
привязанной к прочно укрепленному стержню (рис. 23.3). Камень делает

один круг за другим, не изменяя скорости. Через равные промежутки
времени он проходит через одно и то же положение, двигаясь с одной
и той же скоростью, поэтому его энергия не изменяется. На другом
конце веревки стержень остается неподвижным. Топливо в этом

процессе не сжигается, и энергия не передается. Поэтому веревка
не получает и не передает энергии, значит, сила натяжения не

производит работы.
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Что произойдет, если мы приложим силу, направленную под

углом к направлению движения камня? Сила в этом случае имеет

составляющую в направлении движения, и эта составляющая будет
ускорять движение камня. Получив
ускорение, камень может произвести
большую работу при остановке, раз-
развить большую силу тяги* Следова-

Следовательно, камень обладает большей

энергией.
Составляющая силы в направле-

направлении движения произвела работу над

камнем, передав ему энергию дви-

движения.

Итак, мы установили, что состав-

составляющая силы, перпендикулярная к

направлению движения, не произво-
производит работы. Работа, производимая
над телом у равна произведению со-

составляющей силы в направлении движения на пройденный путьт

Рис. 23.3. Камень, привязанный к

концу веревки, вращается вокруг

стержня. Веревка прикреплена к

верхнему концу стержня при помо-

помощи подшипника, лишенного трения.
Энергия не передается камню, так
как отсутствуют составляющие сил в

направлении движения.

23.4. Кинетическая энергия
Наше определение работы как силы, умноженной на путь, нахо-

находится в соответствии с идеей о том, что равные количества топлива

выделяют одинаковые количества энергии. Возможно ли использо-

использовать это определение работы для расчета количества энергии движу-
движущегося тела? Ценность нашего определения работы зависит от ответа

на этот вопрос.
Допустим, что мы прикладываем силу к телу, находящемуся

на гладком столе без трения. Тело получает ускорение, скорость
его растет. Пока действует сила, мы производим работу, передавая

Рис. 23.4. Сила F действует на массу т, которая проходит расстояние х, начиная движение
из состояния покоя. Энергия, переданная массе т, равна тг>2/2; эту величину мы называем

кинетической энергией тела.

энергию телу. Мы подсчитываем работу, произведенную над телом,

измеряя пройденное им под действием силы расстояние. Эта работа
соответствует количеству превращенной энергии и дает нам выра-
выражение для энергии движения тела. Энергия движения называется
кинетической энергией. Нам нужно найти выражение для нее,
основываясь на характеристике движения; мы используем для этого

скорость тела v. Мы увидим, что потребуется также использовать

для этой цели и массу тела т. Это будет все, что требуется,
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Приведем покоившееся тело в движение, приложив к нему силу
F, под действием которой тело пройдет путь х (рис. 23.4). Тогда
сообщенная телу энергия равна Fx, Поскольку тело вначале нахо-

находилось в покое, его начальная энергия движения равнялась нулю,
так что его конечная энергия движения равна сообщенной ему

энергии. Как мы можем выразить Fx через т и v? Имеем F = та,

значит, Fx = max. Поскольку F и а — величины постоянные и,

как мы уже знаем (см. раздел 5.8 ч* I), v2 = 2ax, или ax = v2/2, то

Fx = max = mv2/2. Работа W = Fx, затраченная на приведение
массы т в движение из состояния покоя, равна по величине mv2/2,
или, иными словами, mv2/2 равно энергии, переданной телу для

того, чтобы привести его в движение. Мы называем эту энергию
?к кинетической энергией тела:

EK = mv2/2.

Заметьте, что кинетическая энергия mv2/2 определяется только

на основе понятия массы и ее движения. В этом выражении нет

никаких указаний ни на силу, использованную для того, чтобы

сообщить телу эту энергию, ни на пройденный путь. Она не зависит

и от способа, которым энергия была передана массе. Если мы знаем

массу, мы можем определить кинетическую энергию, установив,
насколько быстро движется тело. Иными словами, наше определение

Ек дается на основании наблюдаемого состояния движения массы

безотносительно к истории возникновения движения. Всякий раз,
когда масса находится в одном и том же состоянии движения, она

обладает одной и той же кинетической энергией.
Легко видеть, что работа, необходимая для сообщения телу,

находившемуся первоначально в состоянии покоя, некоторой кине-

кинетической энергии mv2l2y всегда одинакова. Пусть, например, работе
силы F на пути х соответствует кинетическая энергия mv2/2> но

и работе силы 2F на пути х/2 соответствует та же работа и та же

энергия.
Предположим, что сила изменяет свою величину в то время,

когда тело уже движется со скоростью vx и уже совершена работа
Wx ==¦ mv\!2. При изменении величины силы тело получает другое
постоянное ускорение а'; из раздела 5.7 ч. I мы знаем, что, пройдя
дополнительное расстояние Ах, тело будет иметь скорость v2 = v\ +
-\-2а' Ах. Умножая на т/2 обе части этого уравнения, мы видим, что

mv2/2 в конечном счете равно

Поскольку та' есть новая сила F'f то

та'Ax = F'Ах.

Это и есть та дополнительная работа AW, которая была совершена
за счет изменения величины силы; приведенное выше уравнение
показывает, что эта работа увеличивает кинетическую энергию
с mvf/2 до mv2l2. Вся работа поэтому является суммой работы Wt
(которая определяет изменение энергии тела от нуля до то\12) и до-
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полнительной работы AW (которая определяет изменение от mv\l2
до mv2/2). Таким образом, суммарная работа Wt + AW, которая
совершена силами, действовавшими на тело при переходе его от

состояния покоя к движению со скоростью v, вновь получается

равной mv2/2.
Если сила непрерывно изменяется во время движения (как на

рис. 23.5), то мы можем избрать небольшие интервалы Ал: и допу-
допустить, что на протяжении каждо-
каждого из них ее величина остается

приблизительно постоянной. В

каждом интервале работа будет
определять изменение /тш2/2, а

суммарная работа определит,
следовательно, полное измене-

изменение то212. Конечный результат
не будет зависеть от направле-
направления силы, поскольку только со-

составляющая силы в направлении
движения совершает работу и

изменяет скорость. Следователь-

Следовательно, наше определение кинетиче-

кинетической энергии как mv2l2 означает,
что одно и то же количество ра-
работы всегда дает одинаковое из-

изменение кинетической энергии.
Если масса тдвижется со ско-

скоростью v9 ее кинетическая энергия
равна mv2/2. Это то количество энергии, которое надо было сообщить
массе, чтобы привести ее из состояния покоя в состояние движения

со скоростью v. Когда сила действует на массу так, что замедляет

ее движение, кинетическая энергия уменьшается. Энергия перехо-
переходит от массы к системе, которая развивает тормозящую силу. Рабо-
Работа FAxy когда сила F тормозит движение, измеряет энергию, теряе-

теряемую движущейся массой по мере того, как движение замедляется.

Используя приведенное выше рассуждение, мы находим, что

тело, обладающее кинетической энергией, равной mv2/2, может

произвести при торможении работу, точно соответствующую этой
кинетической энергии, независимо от того, как замедляется его

движение.

Итак, когда работа производится силой, действующей на массу
в направлении ее движения, кинетическая энергия увеличивается.
Работа измеряет количество энергии, перешедшей в кинетическую
энергию массы. Когда сила действует в направлении, обратном
направлению движения, энергия массы уменьшается, а работа
этой силы измеряет количество кинетической энергии, перешедшей
в другую форму или к другому телу. Мы можем выразить кинетиче-

кинетическую энергию массы т, движущейся со скоростью и, непосредственно
через ее движение, как mv2/2.
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Расстояние

Рис. 23.5. Если сила переменна по абсолют-
абсолютной величине, но все время направлена по
касательной к траектории тела, то полная

работа этой силы может быть вычислена как

сумма площадей большого числа малых пря-

прямоугольников с основаниями Ах и высотами
F. Если тело переместилось от х до х\
полная работа выражается заштрихованной
площадью. Если на этом пути на тело не

действовали другие силы, то эта площадь

выражает также полный прирост кинетиче-
кинетической энергии тела.



23.5. Передача кинетической энергии от одной массы к другой
До сих пор мы ограничивались случаями, когда тело приобретает

или теряет кинетическую энергию. Этот выигрыш или потеря энер-
энергии определяется работой, совершаемой при передаче энергии
к телу или от него. Мы считали, что энергия, передаваемая телу
от внешнего источника, может в свою очередь передаваться от

этого тела к другому. Например, когда один шар ударяет неподвиж-

неподвижный шар, то первый шар передает энергию второму. На рис. 23.6

Рис. 23.6. Полученная методом многократных вспышек фотография столкновения двух биль-

бильярдных шаров, масса каждого из которых равна 173 г. Интервал между вспышками 1/30 с.

Шар, отмеченный точкой, движется слева и ударяет шар без отметки, находящийся в покое.

Шар без точки представляется белым, так как он находился в покое и фотографировался в

течение нескольких вспышек.

приведен полученный методом вспышек снимок процесса столкнове-

столкновения бильярдных шаров. Измеряя расстояния, которые шары про-
проходят между вспышками, можно определить кинетическую энер-
энергию шара, помеченного точкой, до столкновения (он двигался слева

направо) и после столкновения, когда он продолжает движение
с меньшей скоростью направо вниз. Мы также можем определить

кинетическую энергию второго шара, после того как столкновение

привело его в движение вверх направо (см. рис. 23.6). В результате
находим, что кинетическая энергия, утраченная первым шаром,
почти в точности равна кинетической энергии, приобретенной вто-

вторым шаром.
Как практически происходит передача энергии при столкнове-

столкновении бильярдных шаров? Шары сближаются, не взаимодействуя друг
с другом, пока не придут в соприкосновение, или, как мы обычно

говорим, не будут находиться в «контакте»* С этого момента начи-

начинают действовать силы отталкивания. Эти силы изменяются по вели-

величине, возрастая и уменьшаясь, пока шары деформируют друг друга;
наконец, взаимодействие прекращается и шары разъединяются*
Трудно дать строгий анализ процесса столкновения бильярдных
шаров, так как силы взаимодействия при этом изменяются по вели-

123



чине, Нам легче будет понять, как происходит перенос энергии,

если мы начнем рассмотрение с более простого примера взаимо-

взаимодействия тел, когда силы изменяются по более простому закону.

После того как мы поймем детали процесса в этом простом

случае, можно будет вернуться к

бильярдным шарам.
Для предварительного изуче-

изучения явлений столкновения и пере-
передачи энергии рассмотрим искусст-
искусственный случай, когда два сталки-

сталкивающихся тела не взаимодействуют
друг с другом, пока не сблизятся

на расстояние d. На расстоянии,
Расстояние равном или меньшем d, между

телами действует постоянная оттал-

Рис. 23.7. График силы, действующей КИВаЮЩаЯ СИЛЗ (рИС. 23.7).
между двумя телами. Эта сила равна ну- тт
лю, если расстояние s больше d, и остает- 11уСТЬ СТОЛКНОВеНИе ПрОИСХО-
ся постоянной, когда массы приближа- пмт пп ппсг1ипй (nun 93 К\ Мяггя
ются друг к другу на расстояния, мень- ДИТ по ПрЯМОИ (рИС. Z6.b). МаССа

шие d- т1у двигаясь по этой прямой со ско-

скоростью vly приближается к массе

т2у находящейся в покое. До тех пор, пока тг не окажется на рас-
расстоянии d от т2у ничего не произойдет. Вслед за этим на массу
т2 слева направо начинает действовать сила Fy а на массу тх —

-2;
О
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Положение

Рис. 23.8. Последовательные положения масс mt и т2 и изменение их скоростей в процессе
столкновения mt с т2. Сила взаимодействия изменяется по закону, показанному на рис. 23.7.
Положения масс показаны через равные промежутки времени. Масса тх движется слева на-

направо. Когда расстояние между массами становится меньше d, mx начинает замедлять свое

движение, а т2 выходит из состояния покоя и начинаетувеличивать скорость. После 10 интер-
интервалов времени расстояние между телами в этом частном случае становится снова больше d,
сила взаимодействия обращается в нуль и расстояние между массами, которые продолжают
двигаться с постоянной скоростью, увеличивается. Энергия, полученная массой т2 в течение

всего процесса столкновения, равна энергии, потерянной массой тх.

точно такая же сила в обратном направлении. Поэтому т2 начинает

двигаться ускоренно, а движение тх замедляется. Так как в момент

столкновения масса тг движется, а т2 неподвижна, расстояние
между массами после столкновения в течение некоторого времени
продолжает уменьшаться, доходя до минимального значения, на
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котором их скорости становятся равными друг другу. (Если бы
масса тх все еще двигалась быстрее, она бы нагоняла /л2, а если бы
масса т2 двигалась быстрее, то массы разделились бы.) После этого,
все еще испытывая действие отталкивающей силы F, масса т2 про-
продолжает ускорять, а т1

— замедлять свое движение. Поэтому рас-
расстояние между массами тх и т2 увеличивается, пока они снова не

окажутся на расстоянии d друг от друга. В этот момент отталкиваю-

отталкивающая сила, так как расстояние между массами продолжает увеличи-
увеличиваться, падает до нуля, и массы продолжают дальнейшее движение2

^ 'Z Взаимодействие

d Расстояние] \
пройденное
массой т2

d ^i взаимодействие
*•

закончилось
Расстояние,
пройденное
массой т7

Рис. 23.9. Положения масс тх и т2 в начале (верхняя линия) и в конце (нижняя линия) вза-
взаимодействия по рис. 23 8. Из сравнения этих двух линий видно, что d плюс расстояние, прой-
пройденное массой т2, равно d плюс расстояние, пройденное массой mt. Таким образом, т1 и т%

за время взаимодействия проходят одинаковые расстояния.

без изменения скорости. Столкновение закончилось, и т1 и т2
теперь движутся с определенными энергиями, величины которых
больше не меняются.

Для этой модели столкновения, в которой принято ступенеобраз-
ступенеобразное изменение величины силы, нетрудно по закону Ньютона рас-
рассчитать величины, характеризующие движение для каждой массы.

Результаты такого расчета для случая тх = Зт2 представлены на

рис. 23.8. Однако для определения равенства кинетической энергии,
потерянной массой т± и полученной массой т2у таких расчетов
можно не делать. Поскольку сила F во время взаимодействия масс

постоянна, энергия, превращенная в кинетическую энергию массы

/п2, равна произведению силы F на путь, пройденный массой т2
во время соударения. Подобным образом кинетическая энергия,
потерянная массой т1у равна произведению F на расстояние, которое
тх проходит во время столкновения (т1 теряет кинетическую энер-
энергию, так как сила противодействует движению). Мы можем пока-

показать, что кинетическая энергия, которую теряет масса тъ равна
энергии, приобретаемой т2, если мы покажем, что т1 и т2 проходят
одинаковые расстояния во время столкновения.

Чтобы убедиться в этом, обратимся к рис. 23.9. На нем пока-

показано положение масс в тот момент, когда начинается взаимодействие
и когда оно прекращается. Обратите внимание на то, что расстоя-
расстояние d плюс расстояние, которое проходит т2 во время взаимодейст-
взаимодействия (верхняя линия), равно d плюс расстояние, которое проходит
т1 (нижняя линия). Следовательно, пути, пройденные массами тх
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и т2 во время взаимодействия, равны. Поэтому произведения силы

на путь, пройденный за время столкновения двух масс, равны и про-

противоположны, т. е., как мы и предполагали, кинетическая энергия
массы тг переходит в кинетическую энергию массы т2.

23.6. Еще одна трактовка простейшего случая столкновения тел

Имеется еще другой путь рассмотрения приведенного примера
столкновения тел, с помощью которого мы стремились облегчить

понимание того, что происходит в реальных условиях столкнове-

столкновения, когда силы имеют более сложный характер. Стремясь изучить
реальный процесс столкновения, мы должны выяснить, какого

типа силы должны действовать, чтобы вся кинетическая энергия,

утраченная одной массой, могла целиком передаваться другой.
Чтобы установить природу этих сил, мы будем рассматривать

сумму кинетических энергий тел, а не их кинетические энергии по

отдельности. Если сумма энергий в конце процесса — та же, что

и в его начале, то это значит, что все, что утрачено одной массой,

приобретено другой.
Если мы будем рассматривать, как изменяется кинетическая

энергия в процессе столкновения, мы заметим, что в промежуточных
стадиях столкновения кинетическая энергия, которую теряет масса

ти и кинетическая энергия, которую приобретает масса т2, не

равны друг другу.
Чтобы установить, как изменяется суммарная величина кинети-

кинетической энергии во время столкновения, обратим наше внимание

mi m2
A В начале

s ***лддо взаимодействия

\

в _l A о ^1 В U
o+us —>• взаимодействия

Рис. 23.10. Аде, и Ддг2 — расстояния, пройденные соответственно массами mt и т2 за короткий
промежуток времени их взаимодействия, s — первоначальное расстояние между тх и т2,
a s-f-As — по окончании взаимодействия. Следовательно, As есть изменение расстояния между
массами за время взаимодействия. Сравнивая верхнюю и нижнюю линии, находим, что

s-J-A*2=Aa:i-t-(s-|-As). Вычитая (A^i4*s) иэ обеих частей равенства, получаем Ajc2—A^4=As

на короткий промежуток времени, составляющий лишь малую долю

всего времени взаимодействия тг и т2 при их столкновении (рис.
23Л0). Обозначим расстояние между массами в начале этого периода
времени через s- В конце этого периода расстояние будет s + As.
Если т2 перемещается на расстояние Ах2> удаляясь от т1$ то рас-
расстояние между этими массами увеличивается на Дл:2. Если же тг
перемещается на Axt в прежнем направлении, т. е. приближаясь
к т2, расстояние между массами уменьшается на Ахг. Таким образом,
приращение расстояния между массами As выражается разностью
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между расстоянием Дл:2, пройденным массой т2, и расстоянием

Ахи пройденным массой тъ в прежнем направлении:

Если сила взаимодействия в течение рассматриваемого интер-
интервала времени постоянна и равна F, то кинетическая энергия, пере-
передаваемая массе т2, равна FAx2. Эта работа идет на ускорение дви-

движения т2. С другой стороны, кинетическая энергия, полученная от

массы тъ равна FAxx. Эта энергия отнимается у массы т19 потому
что сила, действующая на нее, противоположна направлению дви-
движения Ахх. Следовательно, изменение общей кинетической энергии
за промежуток времени, в течение

которого происходят эти явления, | —\Д$ {*-
определяется выражением

Поскольку Дл:2—Axx = Asf мы мо-

можем выразить изменение общей кине- расстояние

ТИЧеСКОЙ ЭНерГИИ СЛедуЮЩИМ Образом: Рис. 23.п. Когда расстояние между

Л „
?,.

взаимодействующими массами изме-

Апк = г AS. няется от s до s-j-As, полная кинети-

кинетическая энергия меняется на вели-

Например, при изменении расстоя-
*ину'равную ?™°BaHIIOft

пло-

ния между массами от s до s + As
общая кинетическая энергия меняется на величину, выражаемую
на рис. 23.11 площадью заштрихованного прямоугольника,
высота которого /\ а ширина As; AEK = FAs есть как раз
тот результат, который нам нужен. Уравнение показывает, что
изменение общего количества энергии за любой промежуток вре-
времени зависит только от силы взаимодействия и изменения рас-
расстояния между массами. Это единственные величины, которые
вошли в наши расчеты. Неважно, где находятся массы по отно-
отношению к другим телам. Не имеет также значения, какова была

сила взаимодействия, когда массы находились на каком-либо

другом расстоянии друг от друга* Следовательно, сила, которая
действует между массами, когда они находятся на других
расстояниях, не обязательно должна быть той же величины, как
и в течение рассматриваемого промежутка времени. Именно поэтому
мы получим возможность применить полученные результаты к столк-

столкновениям, в которых сила взаимодействия зависит только от рас-
расстояния, безотносительно к конкретной форме этой зависимости,

В следующем разделе мы увидим, как можно использовать урав-
уравнение AEk = FAjs при наличии таких сил, а настоящий раздел
закончим использованием этого уравнения для подтверждения со-

сохранения кинетической энергии в том простом случае столкнове-

столкновения, который мы рассматривали выше.

Для случая столкновения двух тел с силой, показанной на

рис. 23.11 (т. е. с силой F9 постоянной при всех расстояниях между
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телами, меньших d, и равной нулю при расстояниях, больших d),
общая кинетическая энергия уменьшается в начале столкновения.

После того как расстояние между массами достигает величины d,
масса Шх продолжает двигаться в направлении массы т2, в то время
как масса т2 неподвижна. Возвращаясь к рис. 23.8, мы видим, что

в следующий промежуток времени тг продвинется значительно

дальше, чем т2. А раз силы, действующие на т± и т2, равны и про-
противоположны, то кинетическая энергия, потерянная массой тъ

должна быть больше кинетической энергии, полученной массой т2.
Таким образом, имеет место потеря кинетической энергии. Этот

результат вытекает и из уравнения Д?к = FAs, так как рас-
расстояние между тг и т2 уменьшилось и FAs стало величиной отри-
отрицательной.

Пока тг приближается к /п2, кинетическая энергия продолжает
«исчезать». Однако в конечном счете общая кинетическая энергия
восстанавливается до начального значения. В то время как тх про-
продолжает замедлять свое движение, скорость т2 увеличивается, так

что расстояние между ними возрастает. Когда оно становится рав-
равным d, величина As (измеряемая с самого начала столкновения)
становится равной нулю. Следовательно, AEK = FAs = 0. Кинетиче-
Кинетическая энергия, утраченная при сближении двух тел, восстановилась.

После этого массы расходятся на все большие и большие расстоя-
расстояния, но силы взаимодействия уже отсутствуют. Следовательно, Ек
больше не меняется. Столкновение закончилось, и кинетическая

энергия сохраняет свою конечную величину, равную той, которая
имелась до начала столкновения.

Передачу кинетической энергии можно трактовать еще с одной
точки зрения. В предыдущей главе было выяснено, что центр масс

соударяющихся тел продолжает свое движение во время столкнове-

столкновения и после него, как будто столкновения и не было. Кроме того,
с точки зрения количества движения, центр масс движется так,
как если бы вся масса системы была сосредоточена в нем, и полное

количество движения относительно центра масс остается равным

нулю. Ведет ли себя центр масс таким же образом с точки зрения
кинетической энергии?

Рассмотрим столкновение двух масс тг и т2, движущихся
по одной прямой со скоростями vx и v2. Центр масс движется по

той же прямой со скоростью иц. Относительно центра масс рас-
рассматриваемые массы имеют скорости Ух и V2, направленные по

той же прямой. Скорость vx в точности равна скорости массы

mx относительно центра масс плюс скорость центра масс: vl = V1 + vn;
аналогично, для v2 имеем v2 = V2i + иц (при этом следует помнить,
что скорости, направленные вдоль одной прямой, складываются

алгебраически, с учетом знаков). Тогда полная кинетическая энер-
энергия рассматриваемых масс равна

Ек = m^J/2 + m2v2j2 = тх (V, + ицJ/2 + т2 {V2 + v^/2 =
= mxVl/2 + m2Vl/2 + {m1V1 + m2V2) 1>ц + (m, + m2) t;*/2.

128



С другой стороны, в разделе 22.5 было установлено, что т^х—
= —m2V2> т. е. полное количество движения относительно центра
масс равно нулю. Следовательно,

откуда

Ек =№112 + т2УЦ2) + (т, + щ) v2j2.

Последний член в точности равен кинетической энергии, обуслов-
обусловленной движением центра масс. Он представляет собой кинетичес-

кинетическую энергию полной массы системы, движущейся со скоростью

центра масс vn. Эта величина называется энергией поступательного
движения центра инерции (центра масс) системы. Она остается по-

постоянной в течение всего процесса столкновения. Что же касается

первого члена правой части равенства, то он зависит от скоростей
масс тх и т2 относительно центра масс; он выражает кинетическую

энергию этих масс, оцениваемую наблюдателем, связанным с цент-

центром масс. Эта величина называется внутренней кинетической энер-
энергией системы. Она изменяется в продолжение всего процесса столк-

столкновения, уменьшаясь в первой его стадии, достигая нуля в момент

наибольшего сближения (когда v1 = v2== vn> т. е. Vx = V2 = С)
и возрастая до первоначального значения к концу стадии упругого
взаимодействия. Описанное разделение кинетической энергии на

две части не ограничивается случаем двух тел, движущихся го

общей прямой; его справедливость может быть доказана для
любого числа тел, движущихся во всевозможных направлениях.
Нам придется вернуться к представлению о внутренней энергии
при обсуждении теплоты и движения молекул в гл. 25.

23.7. Сохранение кинетической энергии при взаимодействии

упругих тел

При столкновении, рассмотренном нами в предыдущем разделе,

переход кинетической энергии от одной массы к другой заканчивался

без потерь энергии. Этот результат не зависит ни от расстояния d,
в пределах которого действует сила F, ни от величины силы взаимо-

взаимодействия двух масс. Во время столкновения, при любом расстоянии
взаимодействия d и любой постоянной силе F, мы находим, что

общая кинетическая энергия в начале столкновения равна кине-

кинетической энергии в его конце. Насколько общим является этот

результат?
Покажем, что во всех случаях, когда сила взаимодействия за-

зависит только от расстояния между взаимодействующими массами,

общая кинетическая энергия в конце и в начале столкновения

неизменна *). Равные и противоположные силы F, действующие
на массы, могут зависеть от расстояния по любому закону, но при

*) Это всего лишь означает, что сила как функция расстояния остается без

изменения до и после удара. Силы, подобные трению, составляют исключение;

они меняют знак после удара
— так, что они всегда направлены против движения.
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этом необходимо, чтобы они обращались в нуль при определенном
значении расстояния между телами, с тем чтобы мы могли оценить

конечный результат взаимодействия. Пусть взаимодействие такого

рода начинается, когда массы находятся друг от друга на большем

расстоянии, чем указанное выше, и заканчивается, когда расстояние
между ними снова больше указанного (рис. 23.12).

Теперь мы можем применить полученную нами формулу
&EK = FAs к любой силе взаимодействия, зависящей только от

расстояния, примером которой может служить сила, показанная

\

F

Область
взаимодействия

V

11

As
Расстояние

Рис. 23.12. Зависимость силы от расстояния

между двумя взаимодействующими телами.

Сила становится равной нулю за предела-
пределами области взаимодействия. Во время взаи-

взаимодействия, когда расстояние между телами
изменяется на As, кинетическая энергия Ек
изменяется на величину FAs, соответствую-

соответствующую заштрихованной площади.

Расстояние

Рис. 23.13. Если два тела приближаются из-

издалека друг к другу до расстояния s, их
полная кинетическая энергия уменьшается
на величину, равную заштрихованной пло-

площади под кривой. Когда они снова расхо-

расходятся, величина их полной кинетической

энергии восстанавливается при условии,
что сила, как функция расстояния, остается

одинаковой как при сближении тел, так и

при их удалении друг от друга.

на рис. 23.12. Рассмотрим, что происходит с общим запасом ки-

кинетической энергии, когда расстояние s между двумя телами умень-
уменьшается на As, как это показано на рис. 23.12. Силу можно принять
постоянной; произведение FAs, представленное на рисунке за-

заштрихованной полосой, показывает уменьшение общей величины
кинетической энергии. Если при том же расстоянии s тела расхо-
расходятся на As, их полная кинетическая энергия возрастает на ту же

величину Fks. Мы видим, что если две взаимодействующие массы

сокращают свое взаимное расстояние от большей величины до s,
то они теряют всю ту кинетическую энергию, которая выражается
заштрихованной площадью под кривой зависимости F от s

(рис. 23.13). Если вслед за этим тела расходятся, они вновь приобре-
приобретают кинетическую энергию, выражаемую той же площадью. В конце

взаимодействия массы обладают той же кинетической энергией, как
и в начале, при условии, что закон изменения силы в функции рас-
расстояния остается неизменным при расхождении и сближении масс.

Мы расширили нашу теорему сохранения кинетической энергии
на случай любого столкновения, в котором силы зависят только
от расстояния. Взаимодействие такого рода называется упругим
взаимодействием, или упругим соударением.
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Взаимодействия тел, которые мы видим вокруг нас, например,
столкновения бильярдных шаров или мяча и ракетки, никогда не

бывают идеально упругими, но многие весьма близки к ним. Как
мы видели в разделе 23.5, при столкновении движущегося бильярд-
бильярдного шара с неподвижным кинетическая энергия практически не

теряется. Когда мы подойдем к физике атома и его частиц, таких,

как электрон, мы будем иметь дело с соударениями, которые еще

лучше соответствуют понятию абсолютно упругих. Когда один

электрон сталкивается с другим, потерю кинетической энергии не

удается обнаружить, хотя при столкновении очень быстро движу-
движущихся электронов может излучаться заметное количество энергии,

23.8. Кинетическая энергия и количество движения

При упругом взаимодействии двух тел их кинетические энергии
Ек1 и Ек2 на протяжении всего взаимодействия изменяются на рав-

равные, но обратные по знаку величины: —Д?к1 = Д?к2. Это равен-
равенство справедливо, так как общее количество кинетической энергии
Е^ + Е^ не изменяется.

Нам также известно из гл. 22, что изменения количеств дви-

движения двух тел равны и противоположны:

Это векторное соотношение всегда справедливо для двух тел, обра-
образующих изолированную систему; поэтому, в частности, оно спра-
справедливо и для упругих столкновений.

Однако сходство между уравнениями, описывающими измене-

изменение количества движения и изменение кинетической энергии, рас-
распространяется значительно дальше. Изменение количества движе-

движения характеризуется импульсом FA/, который является мерой пере-
передачи количества движения от одного тела другому, точно так же

как передача энергии характеризуется работой Fx&x.
Поскольку в этих двух процессах передачи не теряется ни коли-

количество движения, ни кинетическая энергия, мы можем составить

себе почти полное представление о конечном движении двух взаимо-

взаимодействующих масс. В обоих уравнениях содержится достаточно

данных, необходимых для определения конечных скоростей v'x
и v2. В частности, если движение происходит по общей прямой,
мы находим (при v.2=0)

V1=—Ц—-Vly V2 = ~—IV A)
ТП-^~\-ТП2 ТП-^-\-ТП2

х v

Если соударение не является лобовым (прямым)*), необходимы
дополнительные сведения, характеризующие это отклонение от

условий прямого (лобового) соударения, а также сведения о том,

каковы будут направления движения масс после соударения.

*) В этом и других разделах сопоставляются лобовой (прямой) и косой удары
шаров. При этом не приводятся точные определения этих понятий. Есть опасность,
что при таком методе изложения не все учащиеся легко поймут излагаемый ма-
материал. (Прим. ред.)
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Вывод формул для v'i и г?2 -Для лобового столкновения (иначе называемого

прямым ударом), при котором тела движутся по общей прямой (как в разделе

22.5), конечные скорости можно найти из уравнений

и — Ар1 =

(Для векторов, направленных по общей прямой, мы не пользуемся обозначением

векторов жирным шрифтом, но ставим знак плюс или минус для учета напра-

направления, как это делалось в гл. 5 ч. I.) Переписывая АЕК в виде разностей ко-

конечных и начальных значений кинетической энергии, получаем

— (/71^72— т&\12) = (m2v22/2—0).
Разлагая обе части равенства на множители, имеем

Каждая часть этого уравнения представляет собой произведение изменения

количества движения массы на ее среднюю скорость. Так как изменения коли-

количества движения равны и противоположны, можно сократить уравнение на —&Р\—
~ —(m\vi—miyi) в левой части и на Ар2 = (m2v2—0) в правой. Таким путем мы

получаем новую информацию, а именно, что

Подставляя это значение v2 в уравнение сохранения количества движения

— (m±v[— m^i) = m2u%,
имеем

>т1—т2
V\ = ;

' V\ .

mx^-m2

Так, зная связь между энергией и количеством движения, можно найти конечную

скорость массы тъ если известна ее начальная скорость. Подставляя, далее, v[
в уравнение v2= v1-\-vlt получаем конечную скорость второй массы:

2тл
V%=*" V

Полученные выражения для конечных скоростей справедливы для случая лобо-
лобового столкновения, когда массы движутся по оси х. При нелобовом (косом) столк-

столкновении (см. рис. 23.6) задача осложняется, и для ее решения необходимо иметь

данные о смещении центра шара относительно его положения при лобовом столк-
столкновении.

Среди сделанных нами допущений имелось также допущение, что масса т2
в начале столкновения находилась в покое (v2 — Q). Полученные нами уравнения

неприменимы, если т2 движется в момент начала столкновения. Однако более
общие уравнения, справедливые и в указанном случае, могут быть легко выведены
таким же методом.

Кроме того, необходимо отметить, что при выводе формул для v± и v2 мы мол-
молчаливо сделали одно допущение: мы предположили, что при взаимодействии
имело место изменение количества движения. Можно, однако, при рассмотрении
лобового соударения считать, что если v[~v1n v2 = 0, то в течение всего процесса

взаимодействия количество движения не изменяется и энергия от одного тела

к другому не передается. Не следует особенно смущаться этим утверждением,
так как можно считать, что в этом случае тх как бы проходит сквозь т2.

При построении схемы рис. 23.8 мы сделали следующие допуще-
допущения: сила F постоянна, она действует в пределах расстояния d,
a rrti

= Зт2. Затем, исходя из закона Ньютона, мы нашли, как это

вы можете видеть на рисунке, что v[ = vJ2 и v2 = Зух/2. Если под-
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считать v[ и v2 из уравнений раздела 23.7, основанных на сохране-
сохранении количества движения и кинетической энергии, результат полу-
получится тот же.

Результаты применения закона Ньютона и законов сохранения
должны всегда совпадать. Однако если F — сложная функция рас-
расстояния, то рассчитать движение тел, исходя из закона Ньютона,
довольно трудно. Часто мы вообще не знаем изменение F в функции
от расстояния, в то время как опыт указывает на то, что общая кине-

кинетическая энергия тел до столкновения и после него одинакова.

В подобной ситуации мы не можем полностью описать движение,
а законы сохранения тем не менее позволяют получить все основные

данные.

К таким процессам, например, относится столкновение бильярд-
бильярдных шаров. Силы, действующие между сталкивающими шарами,
точно нам не известны, но наблюдения показывают, что кинетиче-

кинетическая энергия шаров после соударения почти та же, что и до столк-

столкновения. Поэтому сила взаимодействия должна зависеть только

от расстояния между центрами шаров и обращаться в нуль, когда

центры шаров расходятся на расстояние, большее диаметра шара.
В частном случае равенства масс шаров (тх = т2) мы можем исполь-

использовать уравнение A) для описания лобового соударения между дви-

движущимися бильярдным шаром и неподвижным. Из этих уравнений
получаем: v[ = 0 и v'2 = v1; иными словами, если один бильярдный
шар ударяет другой «в лоб», движущийся шар должен остановиться,
а шар, находящийся в покое, должен начать двигаться со скоростью,

которой обладал первый шар. То, что т1 останавливается, а т2

начинает двигаться со скоростью vl9 есть как раз то, что мы наблю-

наблюдаем, как это показано на рис. 22.8.

Подобного рода анализ часто имеет значение в современной
ядерной физике. Здесь соударяющимися массами могут быть про-
протоны, нейтроны, мезоны или гипероны. Для некоторых случаев их

взаимодействия мы точно не знаем действующих сил. Но иногда
удается при наблюдении за кинетическими энергиями до и после

столкновения обнаружить среди этих взаимодействий упругие
столкновения.

Иногда частицы, траектории движения которых (треки) мы

можем видеть, соударяются с частицами, которые невидимы для
глаз. Если принять, что кинетическая энергия и количество движе-

движения сохраняются, и если известны массы, а также начальные и ко-

конечные скорости видимых частиц, то можно определить как массы,

так и начальные и конечные скорости невидимых частиц.

Джемс Чадвик открыл нейтрон в 1932 г. как раз подобным обра-
образом. В его опытах неподвижные протоны подвергались ударам неиз-

неизвестных невидимых частиц, которые появлялись в результате бом-

бомбардировки бериллия альфа-частицами полония. Траектории про-
протонов после столкновений были «видимы» и кинетическая энергия
протонов была измерена. После исследования большого числа столк-

столкновений Чадвик пришел к заключению, что все наблюдения могут
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быть объяснены, если допустить существование определенного

вида невидимых частиц с массой, почти равной массе протона.
Более того, когда невидимые частицы ударялись об атомы, переда-
передаваемая энергия была как раз равна той, которая ожидалась. «Неви-

«Невидимая» частица, которую открыл Чадвик, была названа нейтроном.
Это одна из частиц, из которых построены атомы; ее существование
до работы Чадвика только подозревалось. Один из опытов Чадвика
описан более подробно ниже.

Открытие нейтрона. Здесь мы прииодим схему установки Чадвика, исполь-

использованной в одном из его опытов, приведших к открытию нейтрона. Во время
бомбардировки бериллия а-частицами полония было обнаружено появление

неизвестных частиц. Эти невидимые частицы в свою очередь бомбардировали
атомы водорода или азота, находившиеся в покое. В результате этой бомбарди-

бомбардировки ядра водорода (протоны) или азота получали ускорение; Чадвик измерял

скорости этих частиц.

Рассматривая бомбардировку атомов водорода или азота неизвестными ча-

частицами (рис. 23.14), допустим, что мы отбираем лишь лобовые столкновения,

Атомы водорода
или др. вещества

P°
j Be

\\/
ос-частицы /

Протоны
или др. ядра

Рис. 23.14. Схема установки Чадвика.

которые будем считать абсолютно упругими. Пусть масса невидимой частицы т,
а ее скорость v. Если тр и v'p — масса и скорость протона, то

2т
Vn = : V.
р m + mv

Если mN и cN
— масса и скорость атома азота, то

2т

Так как масса атома азота составляет, как мы знаем, 14 атомных единиц массы,
а масса протона приблизительно равна одной единице (см. гл. 8), то, заменяя mN
на 14тр и деля первое уравнение на второе, получаем

«р/я'ы ==("*+14mp)/(m + mp).
В своих опытах Чадвик измерял v'p и v'N и получил их отношение равным 7,5;

следовательно,

(m + 14mp)/(m + mp) « 7,5, или т « 1,00 тр.
Повторяя опыт с другими веществами вместо водорода и азота, Чадвик вновь

обнаруживал наличие невидимых частиц с массой, приблизительно равной массе

протона. Все ранее полученные результаты были подтверждены, и в одном из
опытов массу частицы удалось измерить с точностью до 1%. Так был открыт
нейтрон.
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23.9. Изменение кинетической энергии тела при действии на него

нескольких сил

В этой главе мы рассматривали изменения кинетической энергии
тела, когда на него действует лишь одна внешняя сила. Даже когда

мы рассматривали взаимодействия двух тел, на каждое из них

также действовала только одна сила. Если мы теперь перейдем к

рассмотрению нескольких тел, то на каждое из них будут
действовать силы взаимодействия с каждым из других тел.

Как же в этом случае найти изменения кинетической энергии отдель-
отдельных тел?

Рассмотрим одно из тел. В какой зависимости находится ра-
работа, измеряющая кинетическую энергию, приобретаемую телом

или отнимаемую от него, от всей совокупности действующих на

тело сил и от расстояния, проходимого телом?
Найти ответ на этот вопрос можно двумя путями. Во-первых,

можно сложить все силы, действующие на тело, и получить равно-

равнодействующую силу. Эта равнодействующая сообщает телу
— его

центру масс — то же ускорение, как и все действующие силы

совместно. Все наши выводы о работе и кинетической энергии

останутся правильными, если сила, которую мы используем в наших

расчетах, действительно является равнодействующей силой. Ки-
Кинетическая энергия, которую мы получаем таким путем, является

полной энергией движения тела, за исключением энергии внутрен-
внутренних движений, таких, например, как вибрации или вращение
частей тела относительно его центра масс.

Во-вторых, можно рассчитать работу, произведенную каждой
из сил, действующих на определенном этапе движения, а затем

сложить величины работ всех сил. Сумма будет как раз равна
работе, произведенной равнодействующей силой. Чтобы проследить,
как получается этот результат, предположим, что тело движется

вдоль оси х. Тогда работа, произведенная каждой из сил Fai Fb, ...,

действующих на тело, выражается в виде

В каждом случае эта работа равна компоненте силы, действующей
в направлении движения, умноженной на путь х, который проходит
тело. Вся работа, следовательно, равна

где Fx — компонента равнодействующей силы в направлении дви-
движения.

Говоря языком физики, каждая сила представляет собой силу
тяги или надавливания со стороны некоторого внешнего агента,

воздействующего на движущееся тело. Если сила действует в на-

направлении движения, работа, выполняемая этой силой, выражает
передачу энергии от внешнего агента движущемуся телу. Если сила

действует в направлении, обратном движению, то и энергия пере-
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дается в обратном направлении от движущегося тела тем или иным

сторонним телам. Конечный результат всего процесса будет за-

зависеть от того, в каком направлении будет действовать резуль-

результирующая сила — в направлении движения или против него.

В первом случае движущемуся телу сообщается энергии больше,
чем отнимается у него. Во втором случае, наоборот, от движущегося

тела отнимается больше энергии, чем передается ему. Таким об-

образом, результаты настоящей главы можно обобщить, применяя
их в сложных случаях к любому числу взаимодействующих тел

и любому числу внешних сил.

23.10. Работа сил трения и потеря кинетической энергии
Если на тело действует сила трения — сила, не зависящая

исключительно от расстояния между двумя телами,— энергия,
по-видимому, превращается в другой вид. Кинетическая энергия
механического движения взаимодействующих тел уменьшается и,

в конце концов, становится равной нулю.
Рассмотрим движение массы, скользящей по поверхности стола

(рис. 23.15). Сила трения, действующая со стороны поверхности

и

77/77777777} 777777777777. У///////////

Рис. 23.16. Неупругий удар. Взаимодей-
Взаимодействие начинается, когда шар из замаз-
замазки касается пола. Во время взаимодей-
взаимодействия шар деформируется, и при его от-
отскоке взаимодействие заканчивается

раньше, чем шар займет положение, в

котором он находился в момент начала

взаимодействия.

Рис. 23.15. Масса со скоростью v скользит по

поверхности обыкновенного стола. В зоне / на
нижнюю поверхность массы действует горизон-
горизонтальная сила трения Fm, отнимая у массы кине-

кинетическую энергию. Потеря кинетической энер-
энергии измеряется работой, которая совершается
при замедлении массы под действием силы тре-
трения. Сила трения Fft действующая в зоне 2 со

стороны массы на поверхность стола, не совер-
совершает работы, так как стол неподвижен. Кине-
Кинетическая энергия столу не передается. На что

затрачивается эта энергия? Очевидно, она акку-
аккумулируется в области контакта 1 и 2, где мы

наблюдаем повышение температуры.

стола на массу, замедляет ее движение. Совершенная при этом

работа равна произведению силы трения на путь, пройденный
массой. Эта работа совершается за счет кинетической энергии
массы, так как направление силы трения противоположно движе-
движению; кинетическая энергия массы, следовательно, уменьшается.

Куда переходит эта энергия? Со стороны тела на стол действует
сила, равная и противоположная силе трения, но стол не дви-
двигается под влиянием этой силы. Следовательно, сила, действующая
на стол, не производит никакой работы, и кинетическая энергия
стола не увеличивается. Некоторая часть кинетической энергии
отнимается у массы, но эта энергия не переходит в кинетическую
энергию стола.
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Из многих наблюдений, однако, известно, что поверхности
массы и стола, находившиеся в контакте во время движения массы,

нагреваются. Энергия, потерянная движущейся массой, связана

с этим нагреванием. Мы можем получить некоторое представление
о связи между теплотой и потерянной энергией, если вспомним, что

температура газа пропорциональна средней кинетической энергии
его молекул (см. раздел 9.5). Это означает, что нагревание тела —

увеличение его температуры — приводит к увеличению кинетиче-

кинетической энергии движения его молекул. Таким образом, потерянную
массой кинетическую энергию, которая так и не превратилась
в кинетическую энергию движения стола, следует искать в уве-
увеличении энергии движений молекул нагретых поверхностей стола

и массы.

Рассмотрим другой пример фрикционного взаимодействия. Бро-
Бросим шар из замазки на пол; взаимодействие между полом и замазкой

начинается, как только шар и пол вступают в контакт между собой.

На шар начинают действовать силы, замедляющие его движение.

Изменяется также форма шара; при отскакивании взаимодействие

прекращается, когда центр масс шара находится ближе к полу, чем

в момент начала взаимодействия (рис. 23.16). Сила между шаром
и полом в этом положении шара равна нулю; когда же шар нахо-

находился в том же положении, но двигался вниз, сила не равнялась

нулю. В результате общая кинетическая энергия после соударения
оказывается меньше, чем до соударения, и шар из замазки под-

подскакивает, двигаясь с очень малой скоростью. Шар теряет часть

кинетической энергии, но при этом он слегка нагревается. Такого

рода взаимодействие имеет много общего со взаимодействием между
столом и скользящим по нему телом. Однако в рассматриваемом
примере силы трения действуют внутри шара из замазки, когда

при деформации шара одни слои замазки перемещаются относи-

относительно других.

Взаимодействие тел, при котором силы во время их разделения
меньше, чем при сближении, называется неупругим. После неупру-
неупругих соударений обычно наблюдается повышение температуры.
В гл. 25 будет рассмотрена связь этого повышения температуры
с превращением других видов энергии, а пока мы сосредоточим
внимание на процессах, в которых трением и нагреванием можно

пренебрегать.

23.11. Заключение

Каковы же основные положения, которые мы установили в на-

настоящей главе? Это прежде всего то, что при приложении силы к

движущемуся телу передача энергии телу выражается работой, т. е.

произведением пути, пройденного телом, на составляющую силы

в направлении движения. Если сила противоположна движению,
тело теряет энергию. Если сила действует в направлении движения,
энергия передается телу. Когда на тело действуют несколько сил,

равнодействующая сила изменяет движение тела, и соответственно
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общая работа этой равнодействующей является мерой изменения

кинетической энергии тела.

Когда взаимодействуют два тела и сила взаимодействия зависит

только от расстояния между ними, общая кинетическая энергия

после взаимодействия равна общей кинетической энергии до взаи-

взаимодействия. Соударение таких двух тел называется упругим.
То же самое мы можем сказать о взаимодействии нескольких

тел. Если они все начинают движение, находясь на таком рас-
расстоянии друг от друга, когда силы взаимодействия равны нулю,
и заканчивают движение на расстояниях друг от друга, удовлетво-
удовлетворяющих указанному условию, то их кинетическая энергия в начале

и конце процесса одинакова. Некоторые из тел могли приобрести
кинетическую энергию, другие могли утратить ее, но общая ве-

величина кинетической энергии остается постоянной. Это положение

о равенстве полной величины кинетической энергии в начале и

конце сложного процесса взаимодействия будет нами доказано

в общем случае в следующей главе. Здесь мы должны подчеркнуть,
что это положение справедливо только при условии, если силы

взаимодействия являются функциями расстояний между телами.
Иными словами, независимо от того, сближаются тела или уда-
удаляются друг от друга, на равных расстояниях силы должны ос-

оставаться одними и теми же.

Силы взаимодействия не всегда являются функциями только

расстояний. Вспомним примеры с массой, скольжение которой по

поверхности стола тормозится силами трения, а также шар из

замазки, отскакивающий от пола. Эти примеры показывают, что

когда силы зависят не только от расстояний, но являются функ-
функциями других переменных, кинетическая энергия движения, по-

видимому, непрерывно изменяется. Когда она при этом исчезает,

обычно наблюдается повышение температуры. В дальнейшем будет
показано, что это повышение температуры означает превращение

энергии механического движения в другой вид энергии.
Даже во время упругого соударения происходит кажущаяся

временная потеря кинетической энергии. Мы видели, что эта утра-
утраченная кинетическая энергия может быть в конце концов восста-

восстановлена. Если силы взаимодействия зависят только от относитель-

относительного положения тел, «утраченная» энергия фактически остается

запасенной в системе. Эта энергия называется потенциальной
энергией. Она является темой следующей главы.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ
1. Уголь сжигается в топке тепловой электростанции; образуется пар, кото-

который приводит в действие паровую турбину с электрическим генератором. Выра-
Вырабатываемая электроэнергия питает электромотор насоса, перекачивающего воду
из колодца в водонапорную башню, расположенную на вершине холма. Пере-
Перечислите все превращения энергии, которые имеют место в этом процессе.

2. Вагон фуникулера движется в гору со скоростью 5 м/с под действием силы

натяжения каната, равной 4-103 Н. Через 5 мин фуникулер оказывается на

вершине горы.
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a) Определить работу, выполненную при поднятии фуникулера на вер-

вершину горы.

b) Какова была бы эта работа, если скорость подъема фуникулера составляла

бы 2,5 м/с?
3. Лодочный мотор развивает мощность в 3 000 Дж/с, поддерживая постоян-

постоянную скорость лодки 9 км/ч. Чему равна сила сопротивления движению лодки?
4*. Можно ли прилагать усилие, не вызывая превращений энергии? (Раз-

(Раздел 23.2.)
5. Метровая линейка массой 0,2 кг покоится на столе, рядом с двумя куби-

кубиками высотой по 10 см каждый.
а) Если поднять линейку, держа ее горизонтально, и положить ее на кубики

(рис. 23.17, а), какая при этом совершается работа?
б) Если поднять сначала один конец линейки и положить его на один кубик

(рис. 23.17, б), а затем поднять другой конец и положить на другой кубик (рис.
23.17, в)} то чему в этом случае будет равна работа поднятия линейки?

6*. Какова кинетическая энергия килограммового молота, движущегося со

скоростью 20 м/с? (Раздел 23.4.)
7*. Как изменится кинетическая энергия автомобиля при увеличении его

скорости вдвое? (Раздел 23.4.)
8*. Два тела неравной массы имеют одинаковую кинетическую энергию

и движутся в одном направлении. Если приложить к каждому одно и то же за-

замедляющее усилие, то которое из тел пройдет больший путь до полной оста-

остановки? (Раздел 23.4.)
9. Сила 10 Н действует на ролик

массой 2 кг, находящийся первоначаль-
первоначально в покое на гладкой поверхности без

трения. Под действием силы ролик про-

прокатывается на 3 м.

а) Какова произведенная работа?
б) Какое количество энергии пе-

передано ролику?
в) Какова конечная скорость

ролика?
10. Сравните кинетические энергии

двух одинаковых тел А и В, если:

а) скорость А в два раза больше

скорости В;
б) А движется на север, а В— на юг;

в) А движется по окружности, а

В — по прямой;
г) А движется вниз, а В — с той

же скоростью вверх;
д) А состоит из двух частей, со-

соединенных пружиной, каждая из ко-

которых равна массе В.
П.Сила 30 Н действует на тело

массой 2 кг, находящееся в состоянии покоя; под действием этой силы тело про-

проходит 3 м вдоль гладкой горизонтальной поверхности без трения, затем сила

уменьшается до 15 Н и действует еще на расстоянии 2 м.

а) Какова конечная кинетическая энергия тела?

б) Какова его конечная скорость?
12. Вычислите вашу кинетическую энергию в джоулях во время езды на ве-

велосипеде.

13. Камень массой 2 кг вращается на конце веревки длиной 0,5 м со скоро-
скоростью 2 об/с.

а) Какова кинетическая энергия камня?

б) Какова действующая на него центростремительная сила?

в) Какую работу выполняет центростремительная сила за один оборот?
14*. Каково взаимодействие тел на рис. 23.8: отталкивание или притяжение?

(Раздел 23.5.)

Рис. 23.17. К задаче 5.
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15. Масса 10 кг проходит 2 м, преодолевая тормозящую силу, которая воз-

возрастает линейно на 4 Н через каждые 3 м пройденного пути (рис. 23.18). Какая

кинетическая энергия теряется массой, если тормозящая сила возрастает, на-

начиная со значения, равного нулю?
16*. Когда столкновение называют

упругим? (Раздел 23.7.)
17*. Если шарик из оконной за-

замазки ударяется в стену и прилипает
к ней, зависит ли сила взаимодействия
между шариком и стеной только от

расстояния между ними? (Раздел 23.7.)
18*. 3-килограммовый шар, дви-

движущийся со скоростью 6 м/с, сталки-

1 Z 3 вается с таким же шаром, движущим-

Расстояние, м ся с такой же скоростью в противопо-

противоположном направлении. После столкно-

Рис. 23.18. К задаче 15. вения каждый из шаров имеет ско-

скорость, равную по величине начальной

скорости, но противоположную ей по направлению. Можно ли считать это столк-

столкновение упругим? (Раздел 23.7.)
19*. Быстро движущаяся масса тх претерпевает прямое (лобовое) упругое

еюлкновение с покоящейся массой т2. Насколько велика масса т1 по сравнению

с массой т2, если первая очень медленно отходит назад по своему прежнему

пути? (Раздел 23.8.)
20. Взаимодействуют два тела. При сближении от 10 до 5 см между ними

действует сила отталкивания в 3 Н, а при расхождении от 5 до 10 см — только

в 1 Н. Чему равно изменение полной кинетической энергии этих тел по окончании

цикла сближения и расхождения от 10 до 5 см и обратно от 5 до 10 см?

21. Снаряд, летящий из противотанкового орудия и не содержащий взрыр-
чатого вещества, имеет скорость 103 м/с при массе 10 кг. Товарный вагон массой

около 104 кг во время маневров на железнодорожной горке имеет скорость 1 м/с.
Чему равны их количества движения и кинетические энергии? Почему снаряд
причиняет гораздо большие разрушения, чем вагон, при ударе обо что-либо?

22. Два тела массой по 3 кг каждое взаимодействуют друг с другом. В данный
момент первое тело движется со скоростью 0,5 м/с, а второе в том же направле-
направлении — со скоростью 0,3 м/с; таким образом, скорость сближения одного тела по

отношению к другому составляет 0,2 м/с. Если сила взаимодействия является

отталкивающей силой и равна 0,1 Н, то с какой скоростью уменьшается полнея

кинетическая энергия в заданный момент времени?
23. Тело, масса которого равна 1,5 кг, находится в покое. Другое тело, об-

обладающее массой 0,5 кг и движущееся со скоростью 0,2 м/с, наносит первому

телу удар. Столкновение происходит по закону центрального удара, а сила взаи-

взаимодействия зависит только от расстояния между ними.

а) Какова конечная скорость каждого тела?

б) В каком направлении будет двигаться каждое из тел после столкновения?

24. Между телом, обладающим массой т1= 2 кг и кинетической энергией
1 Дж, и телом массой т2, находящимся первоначально в покое, происходит цент-

центральное столкновение. Считая, что силы взаимодействия зависят только от рас-
расстояния между телами, определите переданную второму телу кинетическую
энергию для следующих случаев:

а) т2= 0,01 кг;

б) т2
= 2 кг;

в) /722=400 кг.

При каком соотношении масс т1 и т2 переданная кинетическая энергия:
г) максимальна?

д) очень мала?

(Чтобы представить себе эти соотношения яснее, вы можете построить график,
задаваясь рядом значений т2 *).)

•) Имеется в виду график зависимости ЕуЛ!Ек1от отношения m2/m-l. (Прим. ред.)
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25. Тело, имеющее массу 5 кг, находится в покое. К нему со скоростью 0,2 м/с

приближается другое тело массой 10 кг. Сила взаимодействия равна нулю на

расстояниях между телами, больших 0,1 м, и 4 Н на расстояниях, меньших этого.

(Обратите внимание на то, что некоторые ответы на вопросы по этой задаче легко

дать, пользуясь законом сохранения количества движения.)
а) Какова кинетическая энергия каждой из масс до столкновения?

б) Какова кинетическая энергия каждой массы после столкновения?

в) Какова будет кинетическая энергия каждой массы, когда расстояние
между телами станет минимальным? (Помните, что скорости тел в этот момент

равны.)
г) Каково минимальное расстояние между телами? (Ваш ответ на вопрос

п. в) позволит вам определить потери кинетической энергии двумя массами при

минимальном расстоянии между ними.)
26. Снаряд, предназначенный для поражения самолета, обладает кинетиче-

кинетической энергией Ек и количеством движения р. Снаряд взрывается. Что можно

сказать:

а) о количестве движения осколков;

б) о кинетической энергии осколков?
27. В одном из опытов, который привел к определению массы нейтрона,

Чадвик измерял скорости протонов, которые подвергались центральным ударам
со стороны нейтронов. Скорость протонов была 3,3» 107 м/с.

а) Какова скорость нейтронов до и после столкновения с протонами?
б) Чадвик измерял также скорость атомов азота во время центрального столк-

столкновения с нейтронами. Какова она?

в) Какова была скорость нейтронов после каждого из этих видов столкно-
столкновений?

28. Пусть грузовой вагон У, имеющий массу 2,5» 104 кг B5 тонн), дви-
движется вдоль горизонтального рельсового пути со скоростью 2 м/с и сцепляется с

F* I I

Рис. 23.19. К задаче 29. Рис. 23.20. К задаче 30.

первоначально неподвижным вагоном 2, имеющим массу 5» 104 кг. Тормоза
вагонов не работают и трение о рельсы незначительно.

а) Каково начальное количество движения вагона У?

б) Какова скорость двух вагонов после их столкновения?

в) Какова полная кинетическая энергия до и после столкновения? Можно
ли это столкновение считать упругим?

29. На ползун с твердой углекислотой действуют две силы: Fг и F2 (рис.
23.19). Во всех указанных ниже случаях движение начинается из состояния
покоя. Какова работа, затраченная на продвижение ползуна на 2 м, если:

а) F1=l0 H и F2 = 0;
б) Ft=0 и F2= 10 Н;
в) /71= 10 Н и F2= 10 Н?
30. Ползун весит 5 кг. На него в течение 2 с действует постоянная сила р =

= 50 Н под углом в 60° к горизонту (рис. 23.20).
а) Если ползун трогается с места, каково изменение его количества движения

за первые две секунды с момента приложения силы?

б) Какая работа совершается за эти две секунды? (Учтите, что Ек = ти2/2~
= (тиJ/2т = pV2m.)
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в) Что получилось бы, если бы сила была удвоена?
31. Электрическая лампочка, масса которой 100 г, падает с большой высоты

и достигает через 100 м падения скорости 20 м/с. Какая приблизительно энергия
передается при этом окружающему воздуху?

32. Предположим, что вы захотели определить силу, с которой тормоз дей-
действует на велосипед при резком торможении без буксования. Тормоз действует

на обод колеса. В вашем распоряжении име-

имеется рулетка для измерения длины пути.
Можно также воспользоваться участком'до-
участком'дороги с известным постоянным уклоном. Из-
Известен общий вес велосипеда с седоком. Часы

отсутствуют. Как поступить при данных об-
обстоятельствах?

33. Подковообразный магнит, масса ко-

которого М, установлен на столе (рис. 23.21),
лишенном трения. Стальной шарик массы т
со скоростью v подкатывается издалека к маг-

магниту, проходит через него и удаляется за

магнит. Пусть сила притяжения F измевяет-
с расстоянием и остается одинаковой как перед магнитом, так и позади не-

него. Какова конечная скорость шарика? Какова конечная скорость магнита?
34. а) Какова кинетическая энергия 2-килограммового шара, движущегося

по окружности радиусом в 1,0 м и совершающего 300 об/мин?
б) Какова была бы кинетическая энергия, если бы шар был разделен на

четыре равные части, движущиеся с той же скоростью по той же траектории с

интервалами в 90°?

в) Как изменилась бы кинетическая энергия, если бы тот же шар был пере-
перекован в правильное кольцо диаметром в 2,0 м, вращающееся с таким же числом

оборотов в минуту?

Рис. 23.21. К задаче 33.
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ГЛАВА

24 ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

В предыдущей главе мы рассмотрели передачу кинетической

энергии от одного движущегося тела другому и нашли, что при
столкновении потеря кинетической энергии одним телом должна
быть равна кинетической энергии, получаемой другим телом, если

сила взаимодействия зависит только от расстояния между телами.

Затем, с помощью закона сохранения количества движения, мы

смогли выразить конечные скорости двух тел при лобовом ударе
через массы и начальные скорости этих тел.

В этом случае закон сохранения количества движения —Д/7Х =
= Др2 и закон сохранения энергии —Д?к1 = Д?к2 кажутся уди-
удивительно схожими; однако в действительности между ними имеется

существенное различие. Изменения количеств движения равны
и противоположны в любой промежуток времени, поэтому коли-

количество движения остается постоянным в течение всего периода
взаимодействия. В то же время полная кинетическая энергия даже

при упругих столкновениях не одинакова во всех стадиях про-
процесса. Она восстанавливает свою первоначальную величину только

в конце взаимодействия. Во время соударения полная кинетическая

энергия сперва уменьшается, потом увеличивается. В промежуточ-
промежуточных стадиях некоторое количество кинетической энергии теряется.

Что происходит с этой потерянной энергией? Поскольку кине-

кинетическая энергия вновь полностью восстанавливается, она должна

быть каким-то образом запасена в системе взаимодействующих тел.

Этот запас мы и называем потенциальной энергией системы.

24.1. Пружинный амортизатор
Вот простой пример накопления энергии (рис. 24.1). Пусть

масса т скользит с постоянной скоростью по горизонтальной
поверхности без трения. Масса наталкивается на пружинный амор-
амортизатор, прикрепленный к массивному телу, которое трудно сдви-

сдвинуть с места. Когда масса ударяется о пружину, последняя сжи-

сжимается. Она действует на движущееся тело с силой, направленной
обратно движению, и замедляет его. Кинетическая энергия движу-
движущегося тела уменьшается, пока скорость его не станет равной нулю.
В этот момент кинетическая энергия исчезла, а сжатие пружины
стало максимальным. Вся энергия запасена в потенциальной форме.
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а)

После этого масса начинает двигаться в противоположном на-

направлении, пока масса не отделится от пружины со своей начальной

скоростью и прежней кинетической энергией. Вся кинетическая

энергия, утраченная во вре-
время сжатия

становлена.

ных стадиях

пружины, вос-

B промежуточ-
сжатия энергия

была частично кинетической
и частично потенциальной.

В предыдущей главе мы

видели, что кинетическая энер-
энергия полностью восстанавли-

восстанавливается, если сила зависит толь-

только от расстояния между взаи-

взаимодействующими телами. В

данном примере сокращение
длины пружины при сжатии

играет роль изменения рас-
расстояния. При этом кинетиче-

кинетическая энергия запасается в

другой форме и затем полно-

полностью восстанавливается. По-

Поэтому можно считать, что за-

закон изменения силы, разви-
развиваемой пружиной, одинаков
как при сжатии, так и при
растяжении.

Измерения силы, разви-
развиваемой пружиной в зависи-

зависимости от ее сжатия, подтвер-
подтверждают это предположение. На

рис. 24.2 изображена типич-

типичная кривая, рассмотренная в

гл. 20, для силы, возникаю-

возникающей при сжатии хорошей пру-
пружины. Эта сила не зависит

от предшествующих состоя-

состояний пружины. Она имеет одно
и то же значение при данном
сжатии независимо от того,

как достигнуто это состоя-

состояние: сжималась ли пружина

до заданной величины или сначала ее сжали немного сильней, а

затем дали распрямиться. Более того, сила не зависит от скоро-
скорости движения тела. Поскольку сила пружины всегда одинакова

при одном и том же сжатии, мы можем изобразить закон изме-

изменения силы в зависимости от сжатия одной кривой, как это сде-

сделано на рис. 24.2.
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Рис. 24.1. Столкновение между массой т и пру-

пружиной, прикрепленной к телу, обладающему
бесконечно большой массой, а) Масса т прибли-
приближается к пружине амортизатора со скоростью

v0. б) Масса т ударяется о пружину и начинает

ее сжимать, в) Пружина сжата; величина сжатия

определяется уменьшением первоначальной дли-
длины пружины на х единиц длины; расстояние

между массами равно s. Масса т потеряла часть

кинетической энергии, которая превратилась в

потенциальную энергию сжатой пружины, г)
При максимальном сжатии масса т останавли-

останавливается. Вся кинетическая энергия потеряна.

д) При обратном ходе пружины скорость и ки-

кинетическая энергия массы т возрастают, е) Мас-
Масса т возвращается к начальному положению.
Она обладает первоначальной скоростью v0 и

первоначальной кинетической энергией Взаи-
Взаимодействие закончено ж) Масса продолжает
движение в обратном направлении со скоростью

v0 и первоначальной кинетической энергией.



Для плохой пружины (например медной) предшествующее со-

состояние имеет значение. Силы, возникающие в такой пружине,

при сжатии и при распрямлении различны. Когда о такую пружину
ударяется движущаяся масса, она отскакивает, двигаясь медленнее,

чем до соударения. Медная пружина не упруга и, подобно ша-

шарику из замазки, выделяет теплоту как при сжатии, так и при

растяжении. В этом случае закон изменения силы при сжатии и

растяжении нельзя изобразить одной кривой.
Когда масса ударяется о пружину и, сжимая ее, теряет свою

кинетическую энергию, превращение кинетической энергии массы

в потенциальную энергию сжатой пружины измеряется работой.
Эта работа представлена заштрихованной площадью на рис. 24.3 под

I

и Cowomud

Рис. 24.2. Зависимость силы, разви-
развиваемой хорошей пружиной при ее

сжатии, от величины сжатия.

Сжатие

Рис. 24.3. Работа, произведенная
при сжатии пружины, измеряется

заштрихованной площадью.

кривой сила — сжатие от нуля (когда пружина не сжата) до х (рас-
(расстояние, на которое переместился конец пружины). Когда мы имеем

дело с хорошей пружиной, эта работа всегда одинакова для одного и

того же сжатия. Следовательно, потеря кинетической энергии
движущимся телом всегда одинакова. Какова кинетическая энергия
массы — безразлично. Если масса т обладает большей кинетиче-

кинетической энергией, она будет обладать большей кинетической энергией
и при прохождении через точку х, но изменение АЕК между нулем
и х — одно и то же. Эта потеря кинетической энергии, измеряемая

работой сжатия пружины, является потенциальной, запасенной
в пружине.

Безразлично, каким образом сжата пружина: с помощью дви-

движущейся массы или просто рукой. Если сжать пружину рукой так,
чтобы сокращение ее длины равнялось х, затем придвинуть к концу

пружины массу и отпустить пружину, то она, распрямившись,
сообщит массе кинетическую энергию, равную работе, которая была

проделана рукой. Потенциальная энергия пружины и в этом случае
измеряется площадью под кривой сила — сжатие. Эта кривая
является характеристикой пружины, совершенно не связанной
с движущейся массой.
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Для пружины, характеризуемой данной кривой сила — сжа-

сжатие, мы можем вычислить потенциальную энергию как функцию
сжатия х9 определяя площади под кривой от нулевой точки до

различных значений х. Если мы начертим график зависимости

этих площадей от значений х, то получится кривая потенциальной

энергии U. На рис. 24.4 представлена кривая, выражающая за-

зависимость потенциальной энергии пружины от ее сжатия х; для

этой же пружины на рис. 24.2 приведена кривая сила — сжатие.

!

Сжатие

Рис. 24.4. Зависимость потенци-
потенциальной энергии от сжатия пружи-
пружины, характеристика которой пред-

представлена на рис. 24.2.

Сжатие

Рис. 24.5. График зависимости F от х для
весьма упругой пружины (F=kx). Площадь
под прямой есть треугольник с основанием
х и высотой kx. Таким образом, потенциаль-

потенциальная энергия равна kx2f2.

Если кривая сила — сжатие достаточно проста, мы можем

найти формулу для потенциальной энергии U в функции от х.

Из рис. 24.5 видно, что в тех случаях, когда сила пропорциональна
сжатию: F = kx, площадь под кривой представляет треугольник
с основанием х и высотой kx. Следовательно, потенциальная энер-
энергия равна

U = высота • основание/2 = (kx) • х/2 = kx2/2.

Эта формула позволяет вычислять потенциальную энергию пру-
пружины, которая характеризуется линейной зависимостью упругой
силы от деформации.

Зависимость U от х (см. рис. 24.4) можно проверить экспери-
экспериментально. Для этого надо проделать следующую серию измерений:
будем сжимать пружину для различных значений х и затем от-

отпускать ее, каждый раз сообщая ускорение массе, величина которой
нам известна, и измеряя кинетическую энергию, приобретаемую
массой. Эта кинетическая энергия должна равняться потенциальной

энергии пружины, которой она обладает при сжатии, равном х.

Кинетическая энергия массы в тот момент, когда она отделяется
от пружины, равна потенциальной энергии сжатой пружины, потому
что потенциальная энергия целиком превращается в кинетическую
во время распрямления пружины. В промежуточных положениях
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увеличение кинетической энергии равно уменьшению потенци-
потенциальной энергии, а сумма их постоянна и определяется выражением

mv2/2 + U = E.

Постоянная Е есть потенциальная энергия при максимальном
сжатии пружины, когда v = 0. Она равна mv2/2 — кинетической

энергии, когда ?/ = 0, т. е. в тот момент, когда масса отделяется

от пружины. Е называется полной энергией пружины и массы.

Если мы прикрепим массу т к концу какой-нибудь пружины
и приведем систему в движение, то такая система совершает коле-

колебательное движение. Формула
mv2/2+U = ?

дает нам возможность, зная потенци-

потенциальную энергию U\ рассчитать ско-

скорость для любой стадии движения

(рис. 24.6). Например, мы знаем, что

в случае пружины с линейной зави-

зависимостью силы от сжатия колебания
массы будут носить гармонический ха-

характер (см. раздел 20.8). Мы также

знаем, что для такого рода силы

Следовательно, для простого гармо-
гармонического движения

Рис. 24.6. График зависимости по-

потенциальной энергии U пружины и

кинетической энергии mvz/2 привя-

привязанной к ней массы от деформации
пружины. Их сумма Е характери-
характеризуется горизонтальной прямой, по-

показывающей, что сумма потенциаль-
потенциальной и кинетической энергий постоян-

постоянна. Масса обладает необходимой и

достаточной энергией для сжатия

пружины до x—xt или растяжения

ее до х=х2.

Например, предположим, что постоянная k = 2 Н/м. Прикрепим
к пружине массу т = 8 кг, оттянем ее на расстояние 1 м от поло-

положения равновесия и затем отпустим. Какова будет скорость массы

при прохождении через положение равновесия? Каков будет период
колебаний массы?

Чтобы ответить на первый вопрос, мы должны учесть, что масса

еще не находится в состоянии движения в тот момент, когда мы

освобождаем пружину. Кинетическая энергия mo2l2 поэтому
равна нулю, полная энергия Е равна потенциальной энергии U*
Таким образом, для этого момента времени

? = й*я/2 = BН/м)-A мJ/2-1 Дж.
С другой стороны, когда масса проходит через положение равно-
равновесия х = 09 полная энергия целиком выражается только кинети-

кинетической энергией:
E = mv2/2 = (8 kt)-v2/2=1 Дж.

Следовательно, v2 —1/4 (м/сJ, а скорость равна 1/2 м/с.
На второй вопрос (каков период колебаний?) можно ответить

двумя простыми способами. Во-первых, из раздела 20.8 мы знаем,

что моделью простого гармонического движения может служить
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равномерное движение по окружности. Если амплитуда в простом

гармоническом колебании равна 1 м, то ему соответствует вращение
по окружности радиусом в 1 м и длиной в 2я м. Точно так же,

если максимальная скорость в простом гармоническом колебании

равна 1/2 м/с, то скорость соответствующего равномерного движе-
движения по кругу тоже равна 1/2 м/с. Следовательно, период колебания

составляет

2ям/A/2м/с) = 4яс.

Этот результат можно проверить, воспользовавшись вторым спо-

способом расчета периода колебаний. В разделе 20.8 было установлено,
что период

В данном случае
Т = 2л\/~8 кг/BН/м) = 4я с.

Результаты совпадают,

24.2. Потенциальная энергия двух взаимодействующих тел

Рассмотрим, как мы уже делали это в гл. 23, массу, которая
испытывает лобовое столкновение с другой массой. Предположим,
что масса А движется в направлении массы В, находящейся в

состоянии покоя (рис, 24.7). Как было показано в разделе 23.5,

@ » • Начала взаимодействия

Минимальноерасстояние-равные скорости
•! Клетт наорои/ена

Клетка удалена

Рис. 24.7. Взаимодействие между двумя массами начинается на расстоянии d между ними.

В момент, когда расстояние между ними минимально, они движутся с одинаковой скоростью.

Накроем их в этот момент легкой клеткой. Массы будут продолжать движение с равными

скоростями и с мимимальной кинетической энергией. При удалении клетки в любой момент

массы оттолкнутся и восстановят свою первоначальную кинетическую энергию.

когда А достигает области взаимодействия d, ее движение начинает

замедляться и она теряет кинетическую энергию, тогда как В
начинает двигаться все быстрее и быстрее. Однако В не приобретает
столько же кинетической энергии, сколько теряет Л. Часть кине-
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тической энергии теряется. Когда А и В находятся на самом близ-

близком расстоянии друг от друга, они движутся с одинаковой ско-

скоростью, и их полная кинетическая энергия является минимальной.

Предположим, что как раз в этот момент на них набрасывается
клетка (масса которой ничтожна), чтобы помешать разъединению
А и В. Тогда вся система — А, В и клетка — продолжает двигаться
с неизменной скоростью и постоянной кинетической энергией. Она
будет двигаться с этим минимумом кинетической энергии, пока не

удалим клетку. Если рассматривать только кинетическую энергию,
может показаться, что система обладает меньшим количеством

энергии, чем первоначально. Однако при удалении клетки, когда
массы А и В оттолкнутся друг от друга, кинетическая энергия вос-

восстанавливается до первоначального значения. В связи с этим по-

полезно напомнить, что здесь мы рассматриваем лишь такие взаимо-

взаимодействия, при которых силы зависят только от расстояния между
Л и В и не зависят от того, сближаются они или удаляются друг
от друга. Характер этих сил позволяет считать соударение упругим.

В то время, когда надета клетка, кинетическая энергия системы

меньше ее первоначального значения, и мы говорим, что недостаю-

недостающая ее часть накоплена в виде потенциальной энергии. Можно

сохранять такое состояние системы сколь угодно долго. Но как

только мы представим взаимодействующим массам возможность

разъединиться, их кинетическая энергия увеличится как раз на

ту величину, которая была запасена в виде потенциальной энергии,
когда клетка удерживала массы прижатыми друг к другу.

Всякий раз, когда две массы принудительно удерживаются

на некотором расстоянии друг от друга, такая система обладает
определенным запасом потенциальной энергии. Все это не зависит

от скорости движения системы или от того, каким образом про-
произошло столкновение масс. Потенциальная энергия превращается
в кинетическую, как только мы позволяем массам свободно дви-

двигаться. Эта система схожа с пружинным амортизатором, накоплен-

накопленную потенциальную энергию которого можно сохранить с помощью

стопора, удерживающего пружину в сжатом состоянии. В случае

столкновения, однако, у нас нет «видимой» пружины. Мы имеем

дело только с силами и говорим, что потенциальная энергия за-

заключена в силовом поле взаимодействия. Силовое поле ведет себя

подобно воображаемой пружине. В действительности нам бы сле-

следовало говорить наоборот: в пружине потенциальная энергия фак-
фактически заключена в силовом поле взаимодействия ее атомов.

Пружина, которую мы видим и используем, всего лишь указывает

на то, где находятся эти атомы.

Чтобы яснее представить себе, что происходит с атомами, рас-

рассмотрим столкновение двух больших масс. Когда они вступают
в контакт, атомы одного тела так близко подходят к атомам другого
тела, что возникают большие силы взаимодействия и в межатомных

силовых полях обеих масс накапливается энергия. Мы могли бы,
например, изобразить столкновение двух товарных вагонов в виде
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сжатия неких пружин, имитирующих межатомные силы (рис. 24.8,
а и б). Можно также изобразить взаимодействие атомов без всяких

пружин с помощью силовых полей, накапливающих энергию

(рис.24.8, в).
Только некоторые тела (например резиновые или стальные

шарики) способны накапливать энергию во время столкновения в

обратимой форме. Столкновения других тел приводят к неупорядо-
неупорядоченным перемещениям атомов; при этом взаимодействующие массы

т т
_.. .

Рис. 24.8. а) Столкновение двух грузовых вагонов, б) Как накапливается энергия их оттал-
отталкивания^ Можно представить себе это так, что в результате удара сжимается огромное коли-

количество пружинок между атомами, в) Более точную картину можно получить, если рассматри-
рассматривать не межатомные пружины, а энергию, которая накапливается в силовых полях атомами.

нагреваются и кинетическая энергия их уменьшается. Такого рода
столкновения называют неупругими. При наблюдении неупругого
столкновения двух больших масс мы замечаем, что силы взаимо-

взаимодействия не одинаковы в фазах сближения и восстановления, ко-

которыми характеризуется процесс взаимодействия при ударе. Не-

Некоторое количество кинетической энергии, непосредственно до-

доступной измерению, при неупругом соударении всегда теряется.

(Потерю энергии можно вычислить, используя выражение mv2/2

для каждой большой массы и не прибегая к анализу движения
отдельных атомов.) Поскольку эта утраченная кинетическая энер-

энергия непосредственно не восстанавливается, мы не считаем ее по-

потенциальной.
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При упругих столкновениях потенциальная энергия зависит

только от расстояния s между массами А и В. Она равна работе,
которую необходимо произвести для того, чтобы сблизить тела для

этого расстояния. На рис. 24.9 эта работа изображена заштрихо-
заштрихованной площадью под кривой сила — расстояние. Так как потен-

потенциальная энергия является функцией лишь расстояния, она не

зависит от того, каким способом массы сближаются до расстояния
s,— катятся ли они навстречу друг другу, обладая некоторой
кинетической энергией, или же

мы берем их в руки и сближаем. г у
Результирующая потенциальная ВА/
энергия будет одной и той же. ^ ' •

Плодотворность понятия по-

потенциальной энергии заключается

Расстояние

Рис. 24.9. График зависимости силы
от расстояния между двумя взаимо-

взаимодействующими массами. Заштрихо-
Заштрихованная площадь выражает работу,
необходимую для того, чтобы сбли-
сблизить массы до расстояния s. Она рав-
равна потенциальной энергии масс на

этом расстоянии.

Рис. 24.10. Упругое взаимодействие между тела-

телами Л и В. Если взять достаточно малый проме-

промежуток времени А*, то сила, действующая на

каждое тело, может считаться практически по-

постоянной, так что работа, совершенная этой
силой, равна произведению этой силы на сос-

составляющую смещения по направлению силы.

Эта работа равна потенциальной энергии, от-

отданной силовым полем и принятой телом в ви-

виде кинетической энергии.

в том, что потенциальная энергия является функцией состояния

системы в данный момент и не зависит от «истории жизни» системы,

т. е. от пути, которым это состояние достигнуто. Поэтому у нас нет

необходимости ограничивать себя соударениями тел, движущихся
по некоторой, прямой линии. Пока силы взаимодействия между
двумя массами зависят только от расстояния между ними, каждому
данному расстоянию соответствует определенная потенциальная

энергия. Массы могут двигаться в любых направлениях.
Рассмотрим подробнее столкновение такого рода. Движение

каждой массы можно разложить на две составляющие, одна из

которых направлена по прямой, соединяющей массы, а другая
—

перпендикулярно к этому направлению (рис. 24.10). Одна из этих

составляющих совпадает с направлением силы взаимодействия /\
другая перпендикулярна к ней. Из гл. 23 мы знаем, что сила,

перпендикулярная к направлению движения, не совершает работы.
Значит, составляющие движения, перпендикулярные к направле-
направлению силы F, не участвуют в превращениях энергии. С другой
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стороны, если силы совпадают по направлению с направлением

движения, работа совершается и происходят трансформации энер-
энергии. Следовательно (поскольку силы равны по величине и направ-
направлены вдоль Д$л и AsB), сила взаимодействия, умноженная на из-

изменение расстояния между массами, является мерой перехода
потенциальной энергии в кинетическую, точно так же как и при
центральном ударе.

Можно применить этот метод к любой изолированной системе

взаимодействующих масс, как бы сложна она ни была, при условии,
что все силы являются ньютоновскими, т. е. силы взаимодействия
между каждой парой масс равны и противоположны и зависят

только от расстояния между массами. При этих условиях потен-

потенциальная энергия может быть определена, и полная механическая

энергия (кинетическая плюс потенциальная) изолированной систе-

системы остается постоянной.

Теперь мы видим, что потенциальную энергию можно связать

с энергией, аккумулированной в горючем, например бензине или

ядрах атомов. Используя горючее, мы не освобождаем энергию,
как в примере с клеткой, а при наличии подходящих условий пре-

превращаем энергию, запасенную горючим, в кинетическую энергию
больших масс или в кинетическую энергию беспорядочного дви-

движения молекул.
Основываясь на представлениях о кинетической и потенциаль-

потенциальной энергии, можно понять многие из тех сложных превращений
энергии, которые происходят в природе.

24.3. Потенциальная энергия тяготения у поверхности Земли

Обратимся теперь к потенциальной энергии, которая связана

с притяжением между Землей и другими предметами. Рассмотрим
систему, состоящую из Земли и массы т, которая очень мала по

сравнению с массой М Земли. Если тело, поднятое над поверхно-
поверхностью Земли, мы освободим от удерживающих его связей, оно будет
падать. Одновременно и Земля незначительно сместится навстречу
телу. Каждая из масс приобретет кинетическую энергию, тогда
как потенциальная энергия системы уменьшится.

В любой момент времени количества движения тела и Земли

равны и противоположны. Поэтому скорость v тела и скорость V
Земли удовлетворяют уравнению

mv = MVf или V = mv/M.

Из этого уравнения можно определить соотношение между
кинетической энергией Земли и кинетической энергией тела. Для
кинетической энергии Земли получаем

?к3 = MV2/2 = M (tnv/MJ/2 = (m/M) (mv2/2).

Поскольку mv2/2 является кинетической энергией Ект массы т,
мы видим, что соотношение между кинетической энергией Земли
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и кинетической энергией небольшой падающей массы всегда равно

Поэтому, если масса т очень мала по сравнению с М, кинетической
энергией Земли можно пренебречь по сравнению с кинетической

энергией тела. Когда т падает на Землю, то практически вся по-

потенциальная энергия системы, состоящей из Земли и массы т,

превращается в кинетическую энергию движения /п.

Теперь предположим, что расстояние, которое пролетает т,
мало по сравнению с радиусом Земли. Это действительно имеет

место в любом лабораторном опыте. Тогда силу притяжения mg
между Землей и телом можно принять постоянной и направленной
вертикально вниз.

Под влиянием силы тяготения тело, начинающее свое движение

из состояния покоя, набирает скорость с постоянным ускорением
g, направленным вниз. Как было показано в разделе 5.8, если при
падении проходится путь d и скорость тела при этом возрастает от v

до v'9 то справедливо равенство

и приращение кинетической энергии равно

Е'кт— EKm = m(v'*—v*)/2
Левая часть этого уравнения выражает приращение кинетической

энергии, а правая
— работу (силу, умноженную на путь), изме-

измеряющую величину потенциальной энергии, перешедшей в кинети-

кинетическую энергию при уменьшении на d расстояния между малой

массой и центром Земли.

При падении с высоты h над поверхностью Земли до высоты Ь!

тело проходит расстояние d = h—h' и потенциальная энергия
изменяется на

(Знак минус перед mgh указывает на убывание потенциальной
энергии и увеличение кинетической.) Отсюда можно заключить,

что потенциальная энергия на высоте h равна

U = mgh.

Действительно, для изменения потенциальной энергии это дает

правильное выражение. Принимая, что U = mgh, мы должны счи-

считать, что Uf=mgh\ откуда V—U = mg(h'—/i), что, как мы уже

знаем, правильно выражает изменение потенциальной энергии.

Однако мы получим то же самое выражение изменения потенци-

потенциальной энергии, если к выражениям самой потенциальной энергии
будем прибавлять постоянную Uo, имеющую любое значение,
т. е. положим

U = U0 + mgh и U' =

Тогда получим
Uf —U = mg{h'—h).
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Таким образом, значение величины Uo не влияет на результат
вычисления изменения потенциальной энергии.

При решении физических задач мы имеем дело только с изме-

изменениями потенциальной энергии и поэтому можем выбирать для

UQ любое удобное для нас значение. Когда рассматривается
движение вблизи земной поверхности, мы часто принимаем

U0 = 0. Это означает, что потенциальная энергия тела, нахо-

находящегося на земной поверхности, принимается равной нулю.
Даже и при таком выборе нуля потен-

потенциальной энергии нам зачастую при-
приходится оговаривать, какой именно

уровень мы принимаем за уровень
земли: поверхность улицы, поверхность
балкона здания, дно ямы (рис. 24.11)
или уровень моря. Любой удобный для
нас выбор будет одинаково закон-

законным. Кроме того, имея дело со спут-
спутниками, которые могут находиться на

больших расстояниях от Земли, мы

обычно принимаем за нуль потенциаль-

потенциальную энергию тела, находящегося беско-
бесконечно далеко. Выбор начального значе-

значения потенциальной энергии не имеет

существенного значения.

В уравнении

U'—U = mg(h'—h) = — mgd

mgd является произведением силы mg,
действующей на массу т вертикально
вниз, на высоту падения d. Следователь-

Следовательно, это выражение дает изменение ки-

кинетической энергии при падении с вы-

высоты h до h':
Рис. 24.11. За нулевой уровень
потенциальной энергии можно

выбрать любую высоту, посколь-

поскольку нас интересует только изме-
изменение потенциальной энергии.

_ р' р

Следовательно,

Это уравнение показывает, что изменения потенциальной и кине-

кинетической энергии равны и противоположны. При падении потен-

потенциальная энергия уменьшается, а кинетическая на ту же величину

возрастает. Работа mgd является мерой этого превращения. При
движении вверх кинетическая энергия уменьшается, а потенциаль-

потенциальная возрастает на ту же величину. И снова превращение энергии
измеряется величиной mgd.

Так как любое изменение потенциальной энергии сопровож-
сопровождается равным и противоположным изменением кинетической

энергии, сумма потенциальной и кинетической энергии остается
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неизменной. Поэтому можно переписать наше последнее уравнение
так:

Левая часть этого уравнения дает полную энергию Е в данный
момент времени, а правая часть выражает полную энергию в любой

другой момент времени. Это урав-
E=U+EKнение говорит о том, что полная

энергия ?L

— одна и та же в каждый момент

времени. Она постоянна, хотя ве-

величины U и Ек могут меняться.

Этому закону сохранения энергии
подчиняется любая система, если

она изолирована от внешних влия-

влияний, которые могли бы совершать
работу над системой и тем самым

изменять величину ее полной энер-
энергии. Необходимо ясно понимать и

помнить, что никакие внешние си-

силы не действуют на изолированную
систему.

Высота

Рис. 24.12. График потенциальной, кине-

кинетической и полной э«ергии тела массы т,

движущегося вблизи поверхности Зем-

Земли. Единственной силой, приложенной к

телу, является сила тяжести. Потенци-

Потенциальная энергия системы «Земля—масса т»

принята равной UQ при h=Q. При за-

заданном значении полной энергии рас-

рассматриваемая масса может подняться до

такой максимальной высоты «тах, на ко-

которой уже не остается никакой кинетиче-

кинетической эеергии.

у
Соотношение между полной, потенциальной и кинетической

энергиями показано на рис. 24.12.
Если принять UQ = 0, то полную энергию можно выразить

в виде

E=U + EK = mgh + яш2/2.

Это уравнение нередко бывает очень полезно, потому что дает воз-

возможность определить скорость массы т в различных ее положениях

независимо от пути, по которому перемещается масса. Например,
когда снаряд при движении вверх проходит высоту ht его скорость v

равна скорости, с которой он потом будет проходить эту высоту

при падении; это справедливо потому, что величина U = mgh на

этой высоте — одна и та же при движении вверх и вниз; Е — ве-

величина постоянная, поэтому и mv2/2 должно иметь одно и то же

значение независимо от направления движения,

Применим теперь уравнение

Е = mgh + mv2/2

при решении следующей задачи: пусть масса 1 кг, двигаясь в том

или ином направлении, обладает на высоте 3 м над земной поверх-
поверхностью скоростью 1 м/с. Какова будет скорость массы на высоте 2 м?

Скорость массы легко вычислить, если известна ее кинетиче-

кинетическая энергия. И поскольку полная энергия не изменяется, кине-

кинетическая энергия массы на высоте 2 м будет равна разности между
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полной энергией и потенциальной энергией на этой высоте. Полная

энергия равна начальной потенциальной энергии (на высоте 3 м)

U = mgh= 1.9,8-3 = 29,4 Дж

и начальной кинетической энергии

?к = та2/2 = A-12)/2 = 0,5 дж.
Это дает

E = U + EK = 29,4 + 0,5 = 29,9 Дж.
На высоте 2 м потенциальная энергия равна

U' = mgh'= 1-9,8.2-19,6 Дж.

Поэтому кинетическая энергия на высоте 2 м равна

Е'К = Е— f/r = 29,9—19,6= 10,3 Дж.

Отсюда, подставив т=\ кг, найдем v' =4,54 м/с.
В каждом из рассмотренных выше движений полная энергия Е

остается постоянной, пока сила тяготения является единственной
силой, действующей на тело.

Но полную энергию массы

можно изменить, например,
сообщив ей толчок и произ-
произведя, таким образом, над ней

некоторую работу. Если за-

затем мы позволим телу свобод-
свободно падать, то оно будет об-
обладать другой величиной пол-

полной энергии Е, которая ос-

останется постоянной, если на

тело не будут действовать
внешние силы.

В этом разделе, так же как

и в приведенном выше приме-
примере столкновения массы с пру-

пружинным амортизатором, мы

смогли найти потенциальную

энергию, потому что она за-

зависела только от положения

массы. Уменьшение этой по-

потенциальной энергии в точно-

точности равно увеличению кине-

кинетической (рис. 24.13). Как и в случае пружинного амортизатора,
сумма потенциальной и кинетической энергии остается постоянной.

Следующие два примера демонстрируют большую важность

понятия потенциальной энергии тяготения. Например, применяя
молот для забивания свай, мы увеличиваем потенциальную энергию
тяготения большой массы, поднимая ее на некоторую высоту. При
свободном падении массы ее потенциальная энергия превращается
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Рис. 24.13. Во время прыжка с трамплина в

воду происходит непрерывное превращение

кинетической энергии в потенциальную и

наоборот.



в кинетическую. За счет этой энергии происходит вбивание сваи

в землю.

Построив плотину, можно удержать воду выше ее обычного

уровня. Позволяя затем воде падать с высоты плотины на более

низкий уровень, мы превращаем ее потенциальную энергию в

другие формы — механическую энергию мельницы, электроэнергию
и т. д. Каждый килограмм воды, падая с высоты 10 м, может со-

совершать работу, равную 1-9,8-10 = 98 Дж. Падение килограмма
воды с высоты 10 м каждую секунду дает количество энергии, до-
достаточное для питания одной электрической лампочки.

Рабочая лошадь *) может выполнять в секунду работу, равную
750 Дж. Три такие лошади, периодически сменяющие одна другую,
смогут доставлять энергию, достаточную для питания нескольких

электролампочек; в течение года это будет стоить нескольких сотен

долларов. Электростанция, использующая потенциальную энерггю
воды или угля, позволяет снизить стоимость этой энергии в де-

десять раз.

24.4. Потенциальная энергия гравитационного поля Земли в

общем случае
В предыдущем разделе речь шла о потенциальной энергии тяго-

тяготения массы т вблизи Земли. Мы предполагали при этом, что сила

гравитационного поля вблизи Земли постоянна. С другой стороны,
мы знаем, что, когда расстояние между двумя массами подвергается
большим изменениям, силы притяжения между ними изменяются

в зависимости от расстояния. Каково же точное выражение для
потенциальной энергии тяготения в этом более общем случае?
Какова, например, потенциальная энергия тяготения системы,

состоящей из Земли и спутника?
Как мы знаем из гл. 21, сила притяжения между Землей массы М

и спутником массы т равна GMm/r2, где г — расстояние от спутника
до центра Земли. Кривая зависимости силы от расстояния на рис.
24.14 является графическим изображением этой функции.

Площадь под этой кривой между двумя заданными значениями

расстояния есть мера работы, которая совершается при данном
изменении расстояния. Например, заштрихованная площадь пред-
представляет работу, необходимую для увеличения расстояния от г'

до г. Используя математические методы, несколько более сложные,
чем те, которые мы применяем в этом курсе, можно найти площадь
под кривой сила — расстояние, начиная от некоторого значения

расстояния г до бесконечности. Эта площадь, бесконечно прости-
простирающаяся вправо от г, равна GMm/r. Таким образом, эта площадь

равняется работе, необходимой для того, чтобы увеличить рас-

*) Способность лошади производить работу была оценена Джемсом Уаттом,
который стремился найти наглядную меру сравнения с эффективностью своего

парового двигателя. Предложенная им единица мощности равняется 746 Дж/с;
она получила название «лошадиная сила», 1 Дж/с был назван ваттом (Вт) в честь

Уатта.
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стояние между телами от г до бесконечности. Такая работа изме-

измеряет количество энергии, которое превращается в потенциальную

энергию удаления двух тел друг от друга, стремящихся сблизиться,
но принужденных оставаться вдали друг от друга. Эта работа
поэтому равна разности UM—Ur между потенциальной энергией

при бесконечно большом расстоянии
^ 1 между телами и их потенциальной
1$ \ энергией на расстоянии г, т.е.

Расстояние

Рис. 24.14. График зависимости силы
гравитационного притяжения от рас-
расстояния до центра Земли. Площадь
между г' и г выражает работу, кото-

которую нужно затратить, чтобы увели-
увеличить расстояние между Землей и те-

телом от г' до г. Правая часть площади

кривой выражает работу, необходи-
необходимую для выведения тела с расстоя-

расстояния г в бесконечность.

Решая это уравнение относительно

UГ1 мы видим, что потенциальная энер-
энергия при расстоянии г равна

тт Tr GMm

Принимая потенциальную энергию

при бесконечно большом расстоянии

между телами равной нулю, полу-
получаем

//
GMm

Получив эту формулу, мы можем так-

также доказать, что она правильна.
Зная потенциальную энергию, можно получить полную энер-

энергию Е, прибавив к потенциальной энергии кинетическую ?к:

Таким образом, в рассматриваемом случае, т. е. при движении
тел на больших расстояниях от Земли, так же как и при их дви-

движении вблизи Земли и при движениях под действием пружин,
величина полной энергии системы остается постоянной. При всяком

движении, происходящем под влиянием только силы тяготения,

увеличение потенциальной энергии при удалении тел друг от друга
в точности равно уменьшению их кинетической энергии. Например,
когда спутник, вращаясь вокруг Земли, удаляется от нее, скорость
его вращения уменьшается, а когда он приближается к Земле, его

скорость увеличивается. Те же соотношения верны и для вращения
Земли вокруг Солнца.

Доказательство правильности формулы Ur=— CMtn/r, выражающей величину
потенциальной энергии тяготения. При движении спутника из точки Р, находя-

находящейся на расстоянии г от центра Земли, до другой точки Р\ находящейся на рас-
расстоянии г+ Аг от него, кинетическая энергия спутника изменяется на величину
Д?к, равнопротивоположную изменению потенциальной энергии тяготения между
этими двумя точками:

Д?к =— AU =— (Up,— Up),
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Если предположить, что величина

..

_

GMm
Ur- —

правильно выражает потенциальную энергию тяготения на расстоянии гот центра

Земли, то

/ GMm

Другой способ вычисления того же изменения кинетической энергии заклю-

заключается в рассмотрении работы силы тяготения, совершаемой при перемещении
спутника из Р в Р'. Эта работа равна средней силе тяготения, умноженной на

проекцию Дг перемещения на направление этой силы:

Д?к =— /гсрЛ>".
Знак минус написан потому, что при положительном Дг спутник движется от

Земли и теряет кинетическую энергию; при отрицательном Дг кинетическая

энергия спутника возрастает.
Приравнивая два выражения изменения кинетической энергии, находим

(GMm GMm\

или

r(r-\- Дг) г (t
Отсюда

GMm

Если же вместо средней силы на некотором участке пути мы захотели бы найти

силу в заданной точке Р, нам пришлось бы сужать участок Дг до нуля. Тогда
мы получили бы

GMm

что является правильным выражением силы тяготения.

Получение правильного выражения доказывает, что мы исходили из верного

выражения потенциальной энергии тяготения. Всякое другое выражение для Ur
привело бы нас к другому выражению силы, и мы убедились бы в ошибочности
исходного выражения.

24.5. Энергия и скорость выхода спутника за пределы земного

притяжения. Энергия связи с Землей.

Какая энергия должна быть сообщена ракете при запуске для
того, чтобы она могла выйти за пределы земного тяготения? В пре-
предыдущем разделе было установлено, что потенциальная энергия
тяготения массы т, удаленной от центра Земли на расстояние г,
равна

.. GMm

где М — масса Земли, а потенциальная энергия при бесконечном
удалении принята за нуль. Для запуска ракеты с поверхности
Земли (где г = гз) с энергией, достаточной для того, чтобы она

практически покинула поле земного тяготения без остаточного
запаса энергии, ей нужно сообщить начальную кинетическую
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энергию

Тогда уменьшение кинетической энергии от +GMm/r3 до нуля в

точности компенсирует увеличение потенциальной энергии от

—GMm/гз до нуля, т. е., как и следовало ожидать, Л?н=—Д(Л
Это значение кинетической энергии выражает минимальный запас

энергии, необходимый, чтобы ракета покинула поле притяжения
Земли. Как видно из формулы, эта энергия выхода ?к прямо про-

пропорциональна массе космического корабля; как можно было ожи-

ожидать, более тяжелые ракеты требуют большей энергии. Подставив
числовые значения гравитационной постоянной G, массы Земли М

и ее радиуса г3 (см. гл. 21), мы найдем, что необходимая энергия
выхода составляет 6,24-107 Дж на i а кдый килограмм массы ракеты.
Если ракета имеет массу в одну топну A000 кг), для полного ухода
из сферы притяжения Земли требуется 6,24-1010 Дж.

Можно найти также начальную скорость v2y которой должна

обладать ракета, чтобы уйти из поля земного тяготения. Поскольку
кинетическая энергия всобще равна /ж>2/2, кинетическую энергию
выхода из земного притяжения можно написать в виде:

Так как масса ракеты входит в оба выражения кинетической энер-
энергии выхода, ее можно сократить, откуда получаем:

vl/2 = GM/r3 = 6,24.107 Дж/кг,

что уже не зависит от массы ракеты. (Если выразить Дж через
основные единицы системы СИ, то оказывается, что 1 Дж/кг = 1 м/с2.)
Таким образом,

^2 = |/ 2,48-107= 1,12-104 м/с,

или 11,2 км/с. Скорость v2j обычно называемая второй космической

скоростью, не зависит от величины запускаемой массы. Это —

наименьшая начальная скорость, которая должна быть сообщена
всякому телу, чтобы оно могло покинуть Землю безвозвратно.

Многие из наших самых интересных ракет предназначены не

для выхода из сферы притяжения Земли, а для вывода спутника
на более или менее устойчивую орбиту, проходящую вокруг Земли
на высотах порядка сотен километров от ее поверхности. Небезын-

Небезынтересно сравнить энергию вывода спутника на орбиту с энергией
его вывода за пределы земного притяжения. Для упрощения вы-

вычислений сделаем два вполне приемлемых допущения. Во-первых,
будем считать орбиту круговой; это требует очень точного соблю-
соблюдения определенных условий запуска, что, впрочем, достижимо.

Во-вторых, примем, что радиус орбиты равен радиусу Земли; если

спутник, например с экипажем, движется непосредственно за

пределами атмосферы Земли, то различие в радиусах будет лишь

около двух или трех процентов.
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Чтобы обращаться по круговой орбите радиуса /"з с постоянной

скоростью v, спутнику массы т требуется центростремительная

сила /ш^/гз, создаваемая силой земного тяготения GMm/rl-
Таким образом,

mv2/r3 = GMm/r23y или mv2 = GMtn/r3.

Отсюда кинетическая энергия обращающегося по орбите спутника
равна

E 22

Это составляет как раз половину кинетической энергии выхода из

поля земного притяжения. Другими словами, выведение спутника
на круговую орбиту, проходящую вблизи практической границы
земной атмосферы, требует лишь половинной затраты энергии по

сравнению с безвозвратным выводом того же корабля за пределы
поля земного тяготения.

С другой стороны, движущийся по орбите спутник не выходит

за пределы этого поля и потому, помимо кинетической энергии,
обладает также потенциальной энергией тяготения U=—GMm/гз,
соответствующей радиусу гз. Поэтому полную энергию системы

«спутник
— Земля» можно выразить в виде

Е = Ек + U = GMm/2r3 + (—GMm/r3) - — GMm/2r3.

Что означает знак минус перед выражением полной энергии? В пре-
предыдущем разделе мы условились принять за нуль потенциальную

энергию при бесконечном удалении. Если и кинетическая энергия
при этом равна нулю, то полная энергия тоже равна нулю. Отри-
Отрицательная же полная энергия означает, что мы должны совершить

работу, или сообщить системе энергию, чтобы привести ее в со-

состояние нулевой энергии, соответствующее отсутствию скорости
и бесконечному удалению спутника. Когда спутник обладает мень-

меньшей энергией, чем требуется для выхода из поля тяготения Земли,
мы говорим, что спутник связан с Землей. Наименьшая энергия,
которую нужно сообщить телу для преодоления связи и выве-

выведения его за пределы поля, называется энергией связи.

В случае спутника, обращающегося у границ атмосферы Земли
и обладающего отрицательной полной энергией, нужно сообщить
ему такую же положительную энергию (энергию связи), чтобы
довести его полную энергию Е до нуля. Таким образом, в данном

случае

энергия связи = + GMm/2r3.
Если обращающийся вблизи Земли спутник весит одну тонну,
энергия связи составляет 3,12-1010 Дж. Когда тот же спутник по-

покоится на Земле перед запуском, его полная энергия равна— GMm/гз,
так что его энергия связи составляет +GMm/r3 = 6,24-1010 Дж
(ровно вдвое больше, чем в случае уже обращающегося спутника).
Ваша собственная энергия связи на поверхности Земли составляет

6
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около 4-109 или 5-109 Дж. Можно даже подсчитать энергию связи

Земли с Солнцем, которая оказывается равной:

энергия связи = GMcm3j2r0J
где г0

— радиус земной орбиты. Вывод этой формулы совершенно
аналогичен выводу соответствующей формулы для спутника Земли.

Подставляя значения, приведенные в гл. 21, находим, что энергия
связи Земли с Солнцем несколько превышает 2-1085 Дж, Это не-

немалая энергия!
В общем случае, когда тело в поле тяготения обладает полной

энергией
E = mv2/2—GMm/r,

которая отрицательна, это тело «связано» полем, причем энергия
связи равна

—E = GMm/r—mv2/2.
В атомной физике тоже приходится иметь дело с важными

случаями энергий связи, как, например, электрона с протоном в

атоме водорода. Однако масштабы этих энергий — совершенно

другие и обусловлены они электрическими, а не гравитационными
силами. Мы отложим рассмотрение этих энергий связи до части

IV курса,

24.6. Полная механическая энергия

В этой главе мы рассматривали потенциальную энергию си-

систем, части которых взаимодействовали с равнопротивополож-
ными силами, направленными по прямой, соединяющей их центры
масс. Эти части взаимодействовали как материальные точки, т. е.

каждая вела себя так, как если бы вся ее масса была сосредоточена
в ее центре масс. Даже гравитационное притяжение близко распо-
расположенных тел к Земле, по всей видимости, как бы обусловлено

притяжением к ее центру. Однако ниоткуда не следует, что во всех

механических системах всегда действуют столь простые силы взаи-

взаимодействия и что отдельные части этих систем можно принимать за

точки. Что происходит с энергией в механических системах, в

которых не все силы взаимодействия ведут себя таким образом?
Чтобы ответить на этот вопрос, рассмотрим игрушечную кару-

карусель (рис. 24.15), которая приводится в движение падающим гру-
грузом. Никому не придет в голову анализировать эту систему при
рассмотрении ньютоновских сил взаимодействия между атомами.

Но рассматривая карусель как совокупность небольших масс

и определяя их скорости, можно рассчитать кинетическую энергию
каждой такой массы. Затем, сложив эти данные, мы можем найти

полную кинетическую энергию вращающейся карусели. Можно
также измерить высоту, пройденную грузом М, и его кинетическую
энергию, Когда такой опыт проводится с системой, снабженной
подшипниками, обладающими ничтожно малым трением, то ока-

оказывается, что кинетическая энергия, полученная каруселью и
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массой М9 равна уменьшению потенциальной энергии тяготения по

мере того, как груз приближается к земной поверхности. Полно-
Полностью раскрутившись, веревка затем начинает наматываться в обрат-
обратном направлении; при этом груз поднимается и карусель вращается
все медленнее. Когда карусель перестает вращаться, груз почти

достигает своего первоначального положе-

положения. Груз не возвращается в исходное по-

положение только потому, что часть механи-

механической энергии благодаря трению перехо-
переходит в другие формы энергии.

Можно рассматривать все более и более

сложные механические системы и, не анали-

анализируя детально силы взаимодействия, опре-
определять их кинетическую и потенциальную

энергию. Сумма этих энергий выражает
полную механическую энергию системы.

Если трение очень мало, энергия может

претерпевать превращения из потенциаль-

потенциальной в кинетическую и обратно, но при этом

полная механическая энергия остается по-

постоянной.

Бывают, однако, затруднения; иногда

трение не может быть снижено настолько,

чтобы им можно было пренебречь. В та-

таких случаях наблюдается исчезновение ча-

части механической энергии и нагревание
деталей механической системы* В следую-
следующей главе будет показано, каким образом
можно учесть ту энергию, которая от-

отдается в виде теплоты. Затем мы увидим, почему можно считать,

что энергия всегда сохраняется*

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1*. В какой из моментов, изображенных на рис. 24.1, масса имеет наибольшее

ускорение? (Раздел 24.1.)
2*. Каким образом можно определить жесткость k пружины из рис. 24.5?

(Раздел 24.1.)
3. Масса 4 кг скользит со скоростью 2 м/с по гладкой поверхности без трения

и ударяется о пружинный амортизатор. Амортизатор во время его прямого (сжа-
(сжатие) и обратного (распрямление) хода создает постоянную силу величиной 120 Н,

а) Можно ли считать это столкновение упругим? По каким признакам?
б) Какова кинетическая энергия в начале взаимодействия?
в) Какова величина сжатия пружины?
г) Каково отношение кинетической энергии к потенциальной при сжатии

пружины на 10 см?

4. Тело массой 3 кг, движущееся со скоростью 2 м/с, сталкивается с пружин-
пружинным амортизатором, сила которого F меняется по закону F— 100 х, где х—сжатие

пружины в метрах.

а) Начертите график зависимости F от х при х, меняющемся от 0 до 0,4 м.

б) Какова потенциальная энергия, накопленная пружиной, для #=0,1 м?

Какова в этой точке кинетическая энергия массы?
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Рис. 24.15. Веревка, в не-

несколько битков намотанная на

вал, через ролик соединена с

грузом М. Если мы запустим

карусель, ее движение будет
постепенно ускоряться по ме-

мере падения груза М.



в) Что произойдет, если пружину сжать рукой на 0,1 м, подвести к ней тело

массой 3 кг и затем освободить пружину?
5. Кривая сила — сжатие для некоторой пружины изображена на рис. 24.16.

а) Определите работу, необходимую для сжатия пружины на 0,3 м.

б) Какова в этом состоянии потенциальная энергия пружины?
в) После сжатия пружины до 0,3 м поместим перед ней тело массой 2 кг.

Отпустим пружину. Какова кинетическая энер-
гия массы, когда она проходит точку, соответ-

ствующую сжатию пружины на 0,2 м?
6. Если вам дали две пружины различных

размеров, как вы установите их, чтобы получи-
лась кривая сила — сжатие, приведенная на

рис. 24.16?

7. Масса 10 кг, движущаяся со скоростью
10 м/с, сталкивается с пружиной и сжимает ее

на 0,2 м. В обратном направлении масса отска-

отскакивает со скоростью 8 м/с.
а) Определите потерю кинетической энер-

энергии массы.

б) Что происходит с потерянной энергией?
в) Какая из кривых сила — сжатие, изо-

изображенных на рис. 24.17, ближе всего соот-

соответствует свойствам данной пружины?
8. Упругая пружина сжата на 0,2 м силой 20 Н.

а) Определите постоянную k пружины (отношение силы к сжатию).
б) Напишите уравнение, выражающее зависимость потенциальной энергии,

накопленной этой пружиной, от ее сжатия.

$7 0,2 0,3 0,4-
Сматщ

Рис. 24.16. К задаче 5.

600г 600r- 600т-

0,1
Метры

а)

0,2 0,1
Метры

б)

0,2 О 0,1
Метра

в)

ОД

Рис. 24.17. К задаче 7.

9*. На рис. 24 10 изображены две массы, имеющие некоторый запас энергии

при расстоянии s между ними и движущиеся вправо. В каком направлении стали

бы они двигаться, если бы их поместили в то же самое место и затем отпустили?
(Раздел 24.2.)

10. На рис. 24.18 изображен роликовый конек с установленной на нем мас-

массой М. Масса М с помощью четырех упругих планок (ножовочных полотен) при-
прикрепляется к некоторой базе и равна массе конька плюс масса базы. Если, удер-
удерживая конек, оттянуть массу влево и затем отпустить, масса начинает двигаться

вправо, а конек с базой — влево. Как будет происходить дальнейшее движение
системы? Указать формы энергии на различных этапах движения системы.

11. Что произойдет, если массу 3 кг в задаче 4 зацепить за пружину аморти-

амортизатора?
12. Почему на рис. 24.7 у большого шара нет прироста кинетической энергии,

пока он испытывает силу со стороны клетки?
13. Рассмотрим пружинное игрушечное ружье, вроде изображенного на рис.

24.19. Поршень массы т связан с концом легкой пружины, жесткость которой к.
Ружье выстреливает шарик массы М. При заряжении ружья-поршень проталки-
проталкивается к заднему концу ствола до тех пор, пока пружина не сожмется на некоторое
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расстояние, и там защелкивается спусковым механизмом. Сжатие пружины при
этом равно d. Пренебрегая для простоты трением, требуется обосновать ответ на

вопрос, вся ли потенциальная энергия пружины будет передана шарику?
14. Линейно-упругая пружина жесткостью k сжата между двумя ползунами,

массы которых равны тг и т2. Пружину сжимают на расстояние х и затем связы-

связывают нитью. Оба ползуна первоначально находятся в

покое.

а) Чему будет равна полная кинетическая энер-
энергия обоих ползунов после пережигания нити?

б) Каковы будут количества движения ползунов
и как они будут связаны между собой?

Рве. 24Л8. К задаче 10. Рис. 24.19. К задаче 13.

в) Как выразится кинетическая энергия каждого ползуна через его коли-

количество движения и массу?
г) Какую часть полной энергии приобретает каждый ползун? Каково отно-

отношение энергий ползунов?
15. Пружинный амортизатор, который характеризуется зависимостью F=

= 100 х (где F — в ньютонах, ах — в метрах), сжат на 0,1 м. Тело массой 0,5 кг

подведено к концу пружины, кото-

-„/кр&шещеиие^лг х рая затем освобождается.
* 1 I i I f Г~7 I а) Каково количество движения

массы в момент разъединения с пру-

пружиной?

б) Определите количество дви-
движения для масс 0,125 кг, 2 кг и

8 кг.

в) Какова энергия каждой из

масс в момент разъединения с пру-

пружиной?

16. На рис. 24.20 изображен
график зависимости перемещения

от времени для двух взаимодейст-
взаимодействующих масс: т1

= 3 кг и т2
= 1 кг.

А

X

**3xs

Q03 V.12 Q16 Q2Q Щ

Рис. 24.20. К задаче 16. Рис. 24.21. К задаче 18.

а) Какова начальная кинетическая энергия массы тх?
б) Какова конечная кинетическая энергия массы т-^
в) Какова конечная кинетическая энергия массы т2?
г) Какова минимальная общая кинетическая энергия?
д) Какова максимальная потенциальная энергия?
17*. Молодой человек, весящий 70 кг, залезает по веревке на высоту 5 м.

Насколько возрастает его кинетическая энергия? (Раздел 24.3.)
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18. а) Шарик (рис. 24.21) массой 0,25 кг движется без трения вправо со ско-

скоростью 2 м/с по поверхности, профиль которой изображен на рисунке. На какую

максимальную высоту поднимется шарик по наклонной поверхности? Каково

будет его дальнейшее движение?
б) Какое движение будет совершать шарик, если он начнет его из точки Р?

На какую высоту он поднимется по наклонной поверхности? Какова энергия
связи (дополнительная энергия, необходимая для выхода шарика из ямы, обра-
образованной поверхностью, по которой он движется)?

в) Найти энергию связи для случая а).
19. Пружина с линейной характеристикой и постоянной ?=40 Н/м подве-

подвешена вертикально. К ее концу прикреплено тело массой 0,8 кг. Затем пружина
о телом оттягивается вниз на 0,15 м и освобождается.

а) На какую высоту поднимается после этого тело?

б) Определить максимальную скорость тела.

в) Как изменился бы ответ по пп. а) и б), если бы опыт проводился на Луне?
20. Камень массой 0,2 кг брошен вверх под углом 60° к горизонту со ско*

ростью 20 м/с из точки, расположенной над Землей на высоте 20 м.

а) Какова полная энергия камня?

б) Какова полная энергия камня, когда он находится на высоте 15 м?

в) Найдите скорость камня на высоте 15 м.

21. Шар массой т падает с высоты h, как показано на рис. 24.22, и сжимает

пружину жесткостью k на отрезок х. Масса пружины
пренебрежимо мала по сравнению с массой шара.

а) Выразить максимальное сжатие пружины х че-

через m, h и k.

б) Вычислить х, если т=4 кг, /г=3 м и &=

= 500 Н/м.
22. Когда тело массой т движется в гравитацион-

гравитационном поле Земли от г до г' и его расстояние от центра

Земли изменяется, то потенциальная энергия тела из-

изменяется на величину AU=—GmM(l/r'—1/г), гда
М — масса Земли. Покажите, что, если тело поднима-

поднимается вверх на высоту Ar=(r'—г), которая пренебре-
пренебрежимо мала по сравнению с расстоянием до центра Зем-

Земли, приведенная формула упрощается и принимает вид

23. Силовое поле между двумя протонами оттал-
отталкивает их друг от друга. Как изменяется потенци-

Рис. 24.22. к задаче 21. альная энергия пары протонов, если их приближать
друг к другу?

24*. Спутник, обращающийся по круговой орбите вокруг Земли, обладает
кинетической энергией Ек. Сколько еще потребуется энергии, чтобы вывести его

за пределы земного притяжения? (Раздел 24.5.)
25*. Ракета массой т останавливается, достигнув высоты 10г3, считая от

центра Земли. Сколько еще энергии потребуется ей сообщить для ее выхода из

сферы земного притяжения? (Раздел 24.5.)
26*. Каково соотношение вторых космических скоростей 10-миллиграммовой

песчинки и однотонной ракеты, если пренебречь сопротивлением воздуха? (Раз-
(Раздел 24.5.)

27. Найти энергию связи протона и электрона в ядре водорода, если рас-

расстояние между ними равно 0,5» Ю-10 м, а сила взаимодействия определяется

формулой F=2,3> 10~28/r2, где г— расстояние в метрах, a F— сила в ньюто-

ньютонах. (Помните, что электрон, находясь под действием силы притяжения, не

может оставаться в покое. Допустите, что он двихсется вокруг протона по

окружности.)
28. Найти энергию связи (с точностью до двух значащих цифр):
а) между человеком массой 70 кг и Землей;
б) между Землей и Луной.
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29. Может ли заметно повлиять на вашу энергию связи с Землей та кинети-
ческая энергия, которой вы обладали бы на экваторе вследствие вращения Земли?

30. а) Какая работа потребуется, чтобы запустить килограммовый спутник
так, чтобы он обращался по земной орбите, но оставался в точке, диаметрально

противоположной Земле за Солнцем (рис. 24.23)?
б) Какая работа потребуется, чтобы этот спутник покинул Солнечную си-

систему, начав движение из упомянутой точки"?

в) Каково отношение энергии, необходимой для ухода из Солнечной системы,
я энергии преодоления земного притяжения для космического корабля, запу-
запускаемого в обоих случаях с Земли?

31*. Имеется очень сложный механизм с рыча-

рычагами и зубчатыми колесами. Известно, что внутри
втого механизма нет двигателя, но трение в нем

весьма мало. С каждой стороны из механизма выпу-

выпущено по нити. Чтобы поднять тело, подвешенное на

правой нити, на 0,1 м, приходится оттянуть левую
вить на 6 м. С какой силой надо тянуть левую
нить, чтобы поднять на правой нити груз весом в

12 Н? (Раздел 24.6.)
32. Дренажная трубка отходит от края дороги

в некоторым уклоном вниз. Шарик, брошенный
вверх по трубе, возвращается с большей скоро-

скоростью, чем начальная. Удивляет ли вас этот резуль-

результат? Как его объяснить?

33. Демонстрационная тележка с пружинным амортизатором катится по

столу по инерции со скоростью v0 и сталкивается с покоившейся тележкой такой

же массы. Жесткость амортизатора равна k. Считая трение в колесах и а^морти-
ваторе настолько малым, что можно исходить из сохранения механической энер-

энергии, выразить сжатие пружины амортизатора через и0, т и k в момент наибольшего

сближения тележек. Решить задачу в системе координат, отнесенной к центру
масс, т. е. рассматривать все движения в системе отсчета, движущейся таким

образом, что полное количество движения обоих тележек все время равно нулю.

Рис. 24.23. К задаче 30.



ГЛАВА

25 ТЕПЛОТА, МОЛЕКУЛЯРНОЕ ДВИЖЕНИЕ
И СОХРАНЕНИЕ ЭНЕРГИИ

Книга скользит по столу и останавливается; создается впечат-

впечатление, что энергия исчезла, но книга и стол слегка нагрелись.
Накачивая шину велосипедным насосом, мы производим большую
работу, которая, однако, не приводит к появлению какой-либо

привычной формы механической энергии, но воздух в шине и осо-

особенно насос явно нагреваются. Мы толчем лед в мешке, многократно
ударяя его молотком; мы здесь тоже совершаем большую работу,
но на этот раз нет никакого повышения температуры; произошло
лишь таяние части льда в результате нашей работы. Можно при-
привести много примеров, в которых затраченная на систему работа
не компенсируется изменением механической энергии системы;

происходит как бы утечка механической энергии. Но во всех таких

случаях при внимательном наблюдении и тщательных измерениях
неизменно обнаруживается изменение в каких-либо других свой-
свойствах системы. Ниже будет показано, что эти изменения можно

связать с появлением энергии в новых, не рассматривавшихся еще

нами, формах и что при надлежащем учете этих форм энергии можно

удержать представление о сохранении энергии.
Всякий, вероятно, согласится с тем, что для исчерпывающего

описания физической системы требуется нечто большее, чем уста-

установление ее чисто механических свойств. Помимо массы, количе-
количества движения, кинетической энергии, потенциальной энергии и

т. п., необходимо также указать температуру, химический состав,
агрегатное состояние системы (твердое ли оно, жидкое или газооб-

газообразное) и т. д. Охарактеризовав все эти свойства, мы можем ут-
утверждать, что мы определили состояние системы. Если некоторая
часть механической энергии исчезла, но одновременно наблюдается
изменение какого-либо другого свойства системы, например тем-

температуры, можно утверждать, что изменилось состояние системы.

Можно с уверенностью полагать, что при этом должно было

произойти изменение некоей «внутренней» формы энергии системы,

при котором полная энергия не изменилась* Чтобы это проверить,
нужно уметь не только распознавать случаи изменения внутренней
энергии системы, но и точно учитывать соответствующие прираще-
приращения или убыли этой энергии- Тогда, если энергия действительно
сохраняется, следует ожидать, что вложенная в систему энергия
в точности равна приращению внутренней энергии плюс энергия,
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возвращенная системой, возможно, в каком-либо ином виде. Сле-

Следует также выяснить, не существует ли, помимо механической

работы, каких-либо других средств переноса энергии через гра-
границы рассматриваемых систем. Мы убедимся, что таким средством
является тепловой поток, обусловленный разностью температур,
что этот поток доступен измерению и что он эквивалентен механи-

механической работе в смысле изменений внутренней энергии системы.

25.1. Давление газа

Начнем с повторного рассмотрения довольно простой системы —

модели газа, описанной в гл. 9, но при этом используем накоплен-

накопленные нами сведения по динамике, чтобы получить более ясное пред-
представление о соотношениях между движением молекул, давлением,

температурой и энергией.
Рассматривая молекулярную теорию газа, мы нашли, что, ос-

основываясь на модели движения молекул, бомбардирующих стенки

сосуда, можно установить связь давления газа с числом, скорос-
скоростями и массами молекул. Теперь наша задача будет заключаться

в том, чтобы найти более точную форму этого соотношения.

Начнем с особенно простой и, может быть, несколько далекой
от действительности модели, а затем будем постепенно ее уточнять

по мере расширения наших сведений. Рассмотрим отдельную моле-

молекулу, приближающуюся к стенке прямо по нормали со скоростью V.

Если масса молекулы т, то ее количество движения будет mv.

В случае, если при ударе о стенку молекула останавливается, все

ее количество движения будет передано стенке. Стенка получает
импульс, равный mv. Теперь представим себе промежуток вре-
времени t, в течение которого о стенку ударяется п таких молекул.
Полный импульс в направлении, перпендикулярном к стенке,

равен тш. Если число п ударяющихся молекул достаточно велико,
стенка воспринимает практически непрерывно действующую силу.
Эта сила, умноженная на время t> также выражает величину пол-

полного импульса. Следовательно,

Из этого уравнения вытекает, что средняя сила равна

F = mvn/t.

Наша задача — связать силу, действующую на определенную
площадь стенки, с числом молекул, бомбардирующих стенку,
Для этого надо знать, сколько молекул, участвующих в этой бом-

бомбардировке, в течение заданного времени t находится в малой
области пространства, примыкающей к стенке (рис. 25.1). Это
легко установить, определив величину объема, примыкающего
к стенке, откуда поступает п молекул. Предположим, что на пло-

площадь стенки А попало п молекул. Все они могли поступить только
из малого объема с основанием А и высотой vt. Ни одна из молекул,
проходящих за время t расстояние vt, не может достичь стенки,
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если в начале интервала t она находится за пределами этого объ-
объема, Наоборот, все молекулы, находящиеся от стенки на расстоя-
расстоянии, меньшем vt, обязательно достигнут стенки, потому что им

предстоит пройти более короткое расстояние. Отсюда можно за-

заключить, что все п молекул в начале периода времени t должны

Рис. 25.1. а) Молекулы движутся по направлению к стенке со скоростью v. Из какого объема

молекулы за время t успеют достичь площадки Л? б) Точками изображены начальные поло-
положения молекул. Концы стрелок указывают на положения молекул через время tf если они
не успели достичь стенки. Можно заметить, что все молекулы, начавшие движение на рассто-
расстоянии vt от стенки, достигают стенки за время i. Следовательно, искомый объект имеет осно-

основание А и высоту vt.

находиться в пределах объема vtA. Следовательно, число молекул
в единице объема равно:

число молекул/объем = n/vtА.

В газе при равномерном распределении температуры равные
объемы конечных размеров содержат примерно одинаковое число

молекул. Если газ находится в замкнутом сосуде, то число молекул
в единице объема выражается отношением общего количества моле-

молекул N к объему V сосуда. Поэтому для нашей модели газа

n/vtA = N/V и n = vlAN/V.

Подставляя найденное значение п в уравнение F = mvnlt, получаем
F = (mv/t)(vtAN/V) = mv2AN/V.

Средняя сила, действующая на единицу площади, называется дав-

давлением Р. Значит, согласно нашей упрощенной модели газа, дав-
давление выражается формулой

Таким образом, мы получили уравнение, связывающее дав-
давление газа с числом молекул в единице объема и с кинетической

энергией молекулы.
Для упрощения расчетов мы предполагали, что молекулы после

удара о стенку останавливаются. Однако такая модель газа не

соответствует действительности. Одна из молекул может на ко-

короткое время «прилипнуть» к стенке сосуда, но общее число мо-

молекул, движущихся по направлению к стенке и от стенки, должно

быть одинаковым, иначе в сосуде через некоторое время не ока-

по



залось бы газа. Более того, количества движения молекул, дви-

движущихся к стенке сосуда и от нее, должны быть равны по величине

и противоположны по направлению. Если предположить, что

молекулы от стенки движутся медленнее, то энергия молекуляр-

молекулярного движения газа должна уменьшаться. Это возможно лишь в том

случае, когда газ отдает свою энергию во внешнюю среду, мы же

рассматриваем неизменное состояние газа.

Теперь мы можем усовершенствовать нашу модель, включив

в нее не только те молекулы, которые движутся к стенке, но и те,

которые движутся в обратном направлении. Каждой молекуле,

которая отдает стенке количество движения то, соответствует

другая молекула, с равным по величине, но обратным по направ-
направлению количеством движения. Следовательно, импульс и давление,

действующие на стенку, вдвое превышают те значения, которые
мы приняли раньше. В то же время и число молекул на единицу

объема газа также должно быть в два раза больше того, которое
мы принимали в расчет. В самом деле, кроме молекул, движущихся
к стенке, необходимо учитывать также молекулы, перемещающиеся
в обратном направлении.

Вернемся теперь к формуле, выражающей давление газа. Уд-
Удваивая и давление, и число молекул в объеме, мы не нарушим

равенства, Следовательно, выражение

Р = mv2N/V

остается справедливым для молекул газа, перемещающихся между

двумя противоположными стенками сосуда. Эта формула соответ-

соответствует более точной модели газа.

Хотя мы сейчас займемся дальнейшим улучшением нашей

модели, однако и в ее настоящем виде она уже соответствует всем

характерным свойствам газа, рассмотренным в гл. 9. Коротко
говоря, это выражается в том, что давление пропорционально
числу молекул в единице объема N/V и кинетической энергии mv2/2

каждой молекулы. Этот результат согласуется с законом Бойля —

Мариотта и с идеей о том, что абсолютная температура газа по

шкале Кельвина пропорциональна кинетической энергии газа.

Значит, при данной температуре mv2 имеет одно и то же значение

для различных молекул.
Таким образом, на основании нашей модели можно предска-

предсказать, что давление независимо от природы газа должно быть про*
порционально числу молекул и обратно пропорционально зани-

занимаемому ими объему. Это именно то, что мы обнаружили на

опыте для реальных газов в условиях, когда межмолекулярные
расстояния достаточно велики.

Устанавливая соотношение Р = mv2N/V9 мы ввели в молеку-
молекулярную модель газа все основные факторы, влияющие на

величину давления. Однако мы введем в нашу модель еще два
последних усовершенствования: пусть молекулы движутся во всех

направлениях (вместо единственного направления, перпендик>-
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ларного к стенке) и с разными скоростями (вместо единой для всех

молекул).
В реальном газе имеет место беспорядочное тепловое движение

молекул, благодаря чему они подлетают к стенке под всевозмож-

всевозможными углами, а не только под прямым углом. Если учесть это по-

поведение молекул, то придется в нашей формуле для давления за-

заменить то1 на 1/Bmv2 (как показано ниже, в тексте, набранном
мелким шрифтом). Этот результат таков, как если бы только V8
всех движений молекул происходила перпендикулярно к стенке,

а 2/3 — параллельно стенке. Следовательно, давление газа

Р = i/3mv2N/V.

Но так как mv2/2 есть кинетическая энергия ?к, то

4smv* = */s(mv*/2) = */3EK.

Поэтому мы можем выразить давление следующим образом:

Это уравнение означает, что давление составляет 2/3 кинетической

энергии молекулы, умноженной на число молекул в единице объ-
объема. В такой форме оно подчеркивает роль кинетической энергии
молекул при определении величины давления.

Учет беспорядочного движения молекул. Мы показали, что поток молекул,
движущихся по направлению, перпендикулярному к стенке, и ударяющих об нее,
создает давление

Когда молекулы, бомбардирующие стенку, находятся в состоянии хаотического

движения, давление определяется по формуле

Появление коэффициента х/з в этом случае можно объяснить следующим
образом. Во-первых, составляющая количества движения молекул, параллель-
параллельная стенке, не приводит к возникновению силы, действующей на стенку. Объ-
Объясняется это тем, что вдоль любой линии, параллельной стенке, всегда движутся
равные количества молекул в противоположных направлениях. При этом состав-
составляющие количества движения, параллельные стенке, создаются одинаковым числом

молекул, движущихся в прямом и прямо противоположном направлении; поэтому
их равнодействующая равна нулю.

Исключив таким образом параллельную составляющую, перейдем к рас-
рассмотрению перпендикулярной компоненты количества движения. Вместо коли-

количества движения то и скорости v мы теперь должны будем пользоваться их состав-

составляющими то^
и v^9 перпендикулярными к стенке. Поэтому вместо выражения

то2 мы должны писать: mv\. Другими словами, квадрат скорости заменяется

квадратом одной из ее составляющих.

В газе все направления скоростей молекул равновероятны. Поэтому необ-

необходимо найти соотношение между средним квадратом перпендикулярной состав-

составляющей v±
и квадратом вектора v при любом направлении вектора скорости. Это

можно сделать, выразив v2 через квадраты его составляющих по трем взаимно

перпендикулярным осям х, у, г, причем за ось г примем направление, перпенди-

перпендикулярное к стенке. Как показано на рис. 25.2, &=vl+vl+v\. Если вектор

имеет одинаково часто любое данное направление, то средние значения и%, Vy и v\
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должны быть одинаковыми, т.е. vl=v%=vl, где черточка означает среднее
значение. Таким образом,

Так как vL=vz, то v2= 3v]_, или 1^=48tP. Множитель V3 показывает различие

между давлениями, создаваемыми направленным перпендикулярно к стенке

и беспорядочным потоками молекул. Посколь-

Поскольку молекулы движутся по всевозможным на-

направлениям, то давление газа

У

Рис. 25.2. По теореме Пифагора для

заштрихованного треугольника име-

имеем а2=г^+1>* . Аналогично для тре-

треугольника со сторонами vat Vp и о

имеем v*=v

¦

следовательно,

Внесем теперь вторую поправку*
Скорости молекул в газе не одинаковы

и массы молекул тоже могут быть раз-
различны. Последнее уравнение подска-

подсказывает, что надо делать, чтобы учесть
эти обстоятельства. Из него видно,

что в среднем вклад каждой молекулы
в полное давление газа пропорциона-
пропорционален ее кинетической энергии. Иными

словами, это уравнение определяет
величину давления лишь при условии,
если мы трактуем Ек как величину
кинетической энергии одной молекулы, v*=vZ+vy+vZ-

усредненную по всем молекулам. Эта

средняя энергия равна сумме кинетических энергий всех отдельных

молекул, деленной на число молекул.

Следует иметь в виду, что рассмотренная здесь кинетическая

энергия отнесена только к движению центра масс молекулы, без

учета кинетической энергии движения отдельных частей молекулы,
колеблющихся или вращающихся относительно ее центра масс.

Когда мы говорим о кинетической энергии как о произведении
количества движения mv каждой молекулы на скорость v, с ко-

которой молекула движется по направлению к стенке, то речь идет
только о движении центра масс. Эта скорость центров масс молекул

определяет число молекул, достигающих стенки в единицу времени,
и величину импульса, передаваемого стенке каждой молекулой.
Поэтому давление газа зависит только от средней кинетической

энергии движения центров масс молекул.

25.2. Температура и кинетическая энергия молекул. Тепловая

энергия
В гл. 9 мы узнали, что все газы при достаточно малой плотности

ведут себя одинаково. Молекулярная модель газов предсказывает
это их общее свойство. Закон Бойля — Мариотта

Р = QN/V.

связывает давление любого газа с числом молекул на единицу
объема NIV при определенной температуре. Экспериментально
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установлено, что коэффициент пропорциональности 8 зависит от

природы газа.

В разделе 25.1 мы установили, что согласно молекулярной
модели газа

P = */3EKN/Vy
где ?к — /яи*/2 есть средняя кинетическая энергия движения центра
масс молекулы газа. Это соотношение полностью совпадает с за-

законом Бойля — Мариотта, но содержит значительно большую
информацию. Оно показывает, что коэффициент пропорциональ-
пропорциональности 8 равен 2/3 средней кинетической энергии молекулы газа:

6 = ¦/,?,.

Поскольку коэффициент 6 одинаков для всех газов при одинаковой

температуре, то можно считать, что средняя кинетическая энергия
не зависит от массы молекулы.

При изменении температуры от точки таяния льда до темпе-

температуры кипения воды или до любой другой температуры все газы

с малой плотностью ведут себя одинаково. Расширение газов при
постоянном давлении (или увеличение давления при постоянном

объеме) происходит в одинаковой пропорциональной зависимости

от температуры. Это одинаковое изменение отношения PV/N для
всех газов при изменении температуры позволило нам в разделе 9.4

выбрать газы для установления основной температурной шкалы.

Мы воспользовались для определения абсолютной температурной
шкалы выражением

Коэффициент пропорциональности k был выбран таким образом,
чтобы температура таяния льда соответствовала 273° Кельвина (при
этом, как и в термометрах Цельсия, интервал между температурой
таяния льда и температурой кипения воды составляет 100°).

Теперь мы можем сделать один из самых важных выводов. Мы

знаем, что коэффициент пропорциональности 8 в законе Бойля —•

Мариотта измеряет температуру, а с другой стороны, 8 равняется

% средней кинетической энергии молекулы. Следовательно, тем-

температура (как мы предвидели в гл. 9 и в разделе 25.1) есть мера
кинетической энергии теплового движения

—

мера энергии хао-
хаотического движения центров масс молекул.

Какова же средняя энергия движения центра масс одной моле-

молекулы при данной температуре? Из уравнения

можно вычислить k. Например, нам известны значения Pf N, V и Т

для одного моля молекул (любого газа) при атмосферном давлении
и температуре таяния льда: Р = 1,01- 10б Н/м2, Af = 6,02-102^ моле-

молекул, У = 22,4 л = 2,24.10-2 м3, Т = 273 °К- Отсюда

, РУ_A,0Ы05 Н/м2). B,24.Ю-'м»), „ 1ft,a>
NT F02-1023 молекул).273СК

'

Дж
'NT F,02-1023 молекул).273СК

'

молекул-СК
#
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Это дает нам численное соотношение между температурой и средней
кинетической энергией молекулы. Поскольку

средняя кинетическая энергия молекулы равна z/2kT, Подставляя
значение &, получаем

где Ек измеряется в джоулях на молекулу, а Г —• в °К. При комнат-

комнатной температуре, например, кинетическая энергия движения центра
масс молекулы равна 6-10~21 Дж.

Температура есть мера средней кинетической энергии движения

центра масс молекулы. Молекулы любого газа обладают этой

энергией, а, кроме того, нередко и энергией в других ее формах.
Один моль любого газа должен иметь энергию в этой форме, равную

F,02-1023).B,05.10-23)= 12,4 Дж

на каждый градус шкалы Кельвина.
Сообщить энергию газу можно многими различными способами:

энергичным перемешиванием газа наподобие того, как это делается

в кулинарии при взбивании яичных белков, трением стенок со-

сосуда с газом, подвергая газ действию потока тепла, и т. д. При
этом мы, конечно, не предполагаем, что сосуду с газом сообщена
некоторая скорость и что он, например, летит по комнате. В этом

случае увеличится кинетическая энергия газа и сосуда в целом (это
энергия стройного движения молекул), а температура газа оста-

останется той же (это энергия нестройного, теплового движения моле-

молекул). Мы ведь заинтересованы в том, чтобы передать энергию внутрь
газа, его молекулам, не перемещая газ в целом. В этом случае

энергия, сообщаемая газу, вся превращается в кинетическую

энергию движения центров масс его молекул. Если мы одному молю

гелия (или любого другого инертного газа) сообщим дополнитель-

дополнительную энергию 12,4 Дж, его температура повысится на 1 °К. Вся

энергия, которую мы сообщаем этим газам, полностью идет на

увеличение движения центров масс молекул.

Молекулы инертных газов Не, Ar, Ne и др. особенно просты —

они состоят из одного атома. Более сложные молекулы, такие, как

О2, N2, CH4, которые состоят из двух или более атомов, ведут себя
иначе. Для того чтобы поднять температуру одного моля этих

газов на 1 °К, требуется энергии больше, чем 12,4 Дж, Атомы
в сложной молекуле колеблются и вращаются вокруг центра масс

(рис. 25.3). Поэтому, когда мы сообщаем энергию газу, только часть

ее идет на увеличение энергии движения центра масс; другая
часть идет на увеличение энергии вращения и колебаний атомов

в молекуле. Поскольку температура измеряет только энергию
движения центров масс молекул, многоатомному газу требуется
сообщить больше энергии, чтобы достигнуть определенного повы-

повышения температуры,
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Энергию движения центров масс молекул и энергию вращения

и колебания атомов в молекуле часто называют тепловой энергией.

В действительности тепловая энергия не обязательно вся должна

являться кинетической энергией; она может включать и потенци-

потенциальную энергию атомов, зависящую от расстояния между ними

внутри молекул.
Когда энергия сообщается газу, некоторое количество ее может

перейти во внутреннюю потенциальную энергию молекул. В ве-

веществах с небольшими межмолекулярными расстояниями
— в

(О
Рис. 25.3. а) Вся энергия, сообщаемая газу с одноатомными молекулами, переходит в движе
ние центров масс молекул, б) Сложные молекулы могут вращаться и колебаться, поэтому
часть поступающей в газ энергии тратится на увеличение энергии этих движений и часть -=»

на повышение температуры.

жидкостях и твердых телах — молекулы непрерывно взаимодейст-

взаимодействуют друг с другом. В этом случае, кроме кинетической энергии
движения молекул, следует учитывать среднюю потенциальную
энергию взаимодействия между молекулами; при поступлении
в вещество энергии извне часть ее расходуется на изменение сред-
средней потенциальной энергии взаимодействующих молекул. Поэтому
понятие тепловой энергии для жидких и твердых веществ должно

включать и потенциальную энергию взаимодействия молекул.
Теперь становится ясным различие между температурой и теп-

тепловой энергией (или теплотой). Температура измеряет только

среднюю энергию движения центра масс, приходящуюся на одну
молекулу. Тепловая энергия, кроме этого, включает энергию всех

других внутренних движений, а также потенциальную энергию,
зависящую от расстояния между молекулами. Поэтому даже при
одинаковой температуре тепловая энергия, приходящаяся на одну

молекулу, может быть различной в разных состояниях одного

и того же вещества. Например, пока вода кипит, ее температура
остается постоянной, но мы должны сообщать значительное коли-

количество энергии, чтобы отдалять молекулы друг от друга (превращать
воду в пар). Наоборот, когда водяные пары конденсируются, моле-

молекулы собираются вместе без заметного изменения кинетической

энергии, но при этом выделяется большое количество «скрытой
теплоты» благодаря тому, что среднее расстояние между молекулами
и средняя межмолекулярная потенциальная энергия уменьшаются.
Мы видим, что «скрытая теплота» не является изменением энергии
движения центров масс молекул, поскольку температура остается

постоянной.
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25.3. Механическая энергия перемещения тел в целом и их

внутренняя энергия
Когда тела, изолированные от внешней среды, взаимодействуют

друг с другом, их полное количество движения, как мы видели

в гл. 22, не меняется. Механическая энергия, однако, сохраняется
только в том случае, если отсутствуют диссипативные силы, такие,
например, как трение. Если же действуют силы трения, которые
зависят от факторов, не связанных с расстоянием между непосред-
непосредственно наблюдаемыми массами, механическая энергия, которая

доступна нашему наблюдению, заметно уменьшается; так, например,
обстояло дело в примере с книгой, скользящей по столу. Дейст-
Действительно ли закон сохранения энергии ограничен, в отличие от

закона сохранения количества движения, или энергия лишь меняет

свою форму и местонахождение так, что ее присутствие не является

больше явным?

Представим себе закрытую коробку, в которой движутся два

шара с равной массой т. Пусть один шар движется со скоростью V,
пока другой имеет скорость—V, причем встречаются они в сере-
середине коробки. Если коробка покоится, мы считаем, что количество

движения этой системы равно нулю. Пока мы не заглядываем в

коробку, мы не видим движения шаров, и их кинетическая энергия
является скрытой.

Пусть теперь вся система, состоящая из коробки и шаров, дви-
движется мимо нас на север со скоростью v того же направления, что

и V, в то время как шары движутся в коробке назад и вперед со

скоростями V и —V относительно коробки. Кажущаяся кине-

кинетическая энергия Mv2/2 (где М составляет массу коробки вместе

с массой двух шаров, т. е. М равно Л1кор + 2т) представляет собой
лишь часть полной кинетической энергии. Полная кинетическая

энергия системы Ек складывается из кинетической энергии коробки
(масса -МКор), движущейся со скоростью V, и кинетической энергии
шаров. Если бы коробка была прозрачной, мы могли бы видеть,
что один шар т движется со скоростью ^+ V, а другой — со ско-

скоростью v— V. Следовательно, полная кинетическая энергия Еи

равна

Еп = MKOVu2/2 + m{v + VJ/2 + т (v—Vy/2 = Mv2/2 + 2 (mV2/2).

Последний член правой части этого уравнения показывает, что,

кроме кинетической энергии MV2/2 переносного движения масс,
полная энергия системы может содержать некоторое количество

энергии внутреннего движения. Эту энергию обычно нельзя на-

наблюдать извне.

С другой стороны, количество переносного движения масс, об-

образующих систему, является ее полным количеством движения*

Действительно, складывая количества движения всех масс, со-

составляющих систему, получаем
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т. е. полное количество движения равняется количеству перенос-
переносного движения. Эти уравнения очень похожи на те, которые были

выведены в разделах 22.5 и 22.6 при рассмотрении вопроса о центре
масс. Действительно, в рассматриваемом примере следует при-
признать, что скорость коробки v есть не что иное, как скорость центра
масс системы, а скорости + V и —V шаров являются их скоростями
относительно центра масс.

Этот простой пример иллюстрирует весьма общее явление. Энер-
Энергия часто заключена в такие формы, которые не проявляются в

виде кинетической энергии тел, доступных непосредственному
наблюдению, в то время как количество движения чаще доступно

прямому наблюдению. В качестве конкретного примера рассмотрим
показанное на рис. 22.14 соударение между мячом для гольфа массы

тх
= 45,7 г и шариком из замазки массы т2

= 69,7 г. При рассмотре-
рассмотрении центра масс этих шаров было показано, что их количество движе-

движения сохранялось в продолжение всего процесса соударения. До соуда-

соударения мяч для гольфа имел количество движения т^ъ а после

соударения оба слипшихся шара обладали количеством движения

(тх + m2)v' = (тг + rn2)v^ Таким образом,

m1v1 = (m1 + mi)vJl.

При соударении мяч для гольфа внес в систему кинетическую энер-
энергию Ек = т&1/2, а после соударения кинетическая энергия види-

видимого механического движения оказалась лишь Ёк = (mx. + m^v\l29
что гораздо меньше начальной кинетической энергии, как это

видно при подстановке выражения vn
= [/n1/(m1+ m2)lvl9 выте-

вытекающего из уравнения сохранения количества движения, в выра-
выражение для кинетической энергии. Окончательно получаем

Для заданных масс шаров находим Ек = D5,7/115,4)ЕК = 0,4 Ек.
Конечная кинетическая энергия составляет лишь 40% от началь-

начальной; 60% начальной кинетической энергии исчезло из поля зрения.
Что же происходит с этой энергией? Мы считаем, что удар мяча

для гольфа о шар из замазки ускоряет движение молекул как шара
из замазки, так и мяча. Происходит, крОхМе того, необратимое
деформирование шара из замазки, сопровождающееся изменениями

потенциальной энергии взаимодействия молекул. В данном случае
значительная часть кинетической энергии мяча превратилась в

энергию беспорядочного движения атомов и молекул и в прираще-
приращение потенциальной энергии их взаимодействия. Все это — внут-
внутренняя энергия, скрытая от нашего взора. Мы теряем следы неко-

некоторой части энергии и наблюдаем только ту часть, которая заклю-

заключена в переносном движении центра масс шаров.
Нам хочется верить, что никакая часть энергии при этом не

исчезает; но как нам это доказать, если только очень небольшая
часть полной энергии доступна нашему наблюдению? Очевидно,
мы должны найти способ изхмерения той энергии, которая перехо-
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дит в молекулярное движение и затрачивается на изменение межмо-

межмолекулярных расстояний. Принципиально говоря, мы, может быть, и

смогли бы учесть движения и изменения положений микроско-
микроскопических и субмикроскопических частиц вещества; но в практи-
практической жизни нам необходимо научиться оценивать величину энер-

энергии, накопленной в макротелах, не прибегая к микроскопическим
исследованиям.

Здесь мы вплотную подошли к очень важному обобщению закона

сохранения энергии. Нам остается лишь установить изменения внут-

внутренней энергии, что легко сделать с помощью общих методов изме-

измерения температуры и объема. Это позволит распространить закон

сохранения энергии на целую новую область явлений. Располагая

таким методом, мы сможем определять изменения энергии иссле-

исследуемого тела, не зная фактического расположения и движения

образующих его микроскопических частиц.
Мы уже имеем ключ к оценке энергии, определяемой внутрен-

внутренними движениями и положениями молекул. При соударении мяча

для гольфа с шаром из замазки температура обоих повышается.

Когда автомашина внезапно останавливается, ее видимая кинети-

кинетическая энергия исчезает, но тормоза нагреваются. Когда метеор
замедляет свое движение, входя в атмосферу Земли, он раскаляется
до такой степени, что обычно полностью испаряется. Когда энергия
теряет непосредственно наблюдаемую кинетическую или потен-

потенциальную форму, мы часто отмечаем повышение температуры*
Температура газа есть мера средней величины mv2 его молекул,

По крайней мере для простых (одноатомных) газов число молекул,

умноженное на разность температур, измеряет энергию, которая
поступает или выделяется в результате хаотического внутреннего
движения. Для других веществ (для которых мы не имеем столь

простой модели) сообщаемая им энергия, помимо увеличения

энергии хаотического движения, может также затрачиваться на

изменение внутренней потенциальной энергии, например на уве-
увеличение расстояния между атомами* Тем не менее, если объем

вещества в основном остается тем же, можно считать, что увели-
увеличение внутренней энергии всегда приводит к изменению темпе-

температуры. В горячем теле больше внутреннего движения, чем в хо-

холодном*

Обратимся теперь к истории возникновения представления о

внутренней энергии. Бэкон, Галилей, Бойль, Гук, Ньютон и дру-
другие считали, что температура тела может быть связана со «степенью

движения» частиц, из которых оно состоит. Бойль в качестве ил-

иллюстрации приводил движение гвоздя, вбиваемого в доску* Когда
гвоздь забит в доску по самую головку, доска препятствует даль-

дальнейшему движению гвоздя, и он под ударами молотка нагревается:
движение молотка больше не может передаваться гвоздю в целом,

говорил Бойль, теперь оно передается «корпускулам» в гвозде,

заставляя их двигаться быстрее, и благодаря этому гвоздь нагре-
нагревается.
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Экспериментальному доказательству того, что внутренняя

энергия должна входить в общий энергетический баланс, было

посвящено немало исследований. Румфорд наблюдал повышение

температуры стволов пушек при их сверлении и показал, что оно

непосредственно обусловлено энергией, доставляемой конной тягой.

Вскоре после этого, в результате использования паровых машин,
стало ясно, что по крайней мере часть внутренней энергии, заклю-

заключенной в топливе, может превращаться в механическую энергию.
Количественные доказательства эквивалентности различных видов

энергии принадлежат немецкому физику Юлиусу Роберту Майеру
A814—1878) и английскому физику Джеймсу Прескотту Джоулю
A818—1898) *).

Ко времени Майера и Джоуля стали уже известны многие

процессы превращения энергии: механической во внутреннюю,
механической в электрическую, внутренней в механическую, элект-

электрической во внутреннюю и т. п. Джоуль подверг количественному

экспериментальному исследованию многие случаи подобных пре-
превращений. Во всех опытах он выражал результаты через механи-

механическую энергию, измеряемую работой преодоления силы тяжести

при поднятии грузов, а также через внутреннюю энергию (назы-
(называвшуюся в ту эпоху «теплотой»), измеряемую повышением тем-

температуры определенной массы воды. Постоянство переводного
множителя, связывавшего результаты этих двух видов измерений,
прочно утвердило представление о «внутренней энергии» как ре-
реальном виде энергии. Чтобы показать эквивалентность механиче-

механической и внутренней энергии, мы теперь перейдем к подробному
описанию одного из опытов такого рода,

25.4. Количественное исследование превращения механической

энергии во внутреннюю
Джеймс Прескотт Джоуль показал, что при потере определен-

определенного количества механической энергии происходит всегда одина-
одинаковое изменение температуры определенной массы воды, т, е.

всегда одинаковое изменение внутренней энергии. Пусть вода
заключена в изолирующий сосуд, например в сосуд Дюара. В воде

расположена крыльчатка, способная приводиться во вращение
падающим грузом массы т, как показано на рис. 25.4. Если под-
подшипники мешалки хорошо смазаны, то работа сил тяготения по

перемещению массы т измеряет ту потенциальную энергию массы

т, которая затрачивается на перемешивание воды. Когда груз
останавливается, прекращается движение мешалки и воды, и мы

находим, что температура воды повысилась. При этом с начала до

конца опыта произошло только два изменения: груз медленно пере-
переместился вниз на расстояние h, так что величина mgh, измеряющая

*) Майер был физиком, изучавшим энергию животного происхождения; это

привело его к исследованию энергии вообще. Джоуль, владелец успешно работав-
работавшей пивоварни, был учеником Дальтона. Джоуль внес много ценного в науку,
особенно в учение об электричестве и в вопрос о сохранении энергии,
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потенциальную энергию тяготения, стала равной нулю, а вода

нагрелась.
Если механическая энергия и «теплота» эквивалентны, мы всегда

будем наблюдать одно и то же повышение температуры, когда

данная величина работы затрачивается на нагревание данного ко-

количества воды. И действительно, огромное количество различных

экспериментов показывает, что повышение температуры зависит
только от величины передаваемой энергии, а не от силы, расстояния

Рис. 25.4. Установка для проведения эксперимента Джоуля по исследованию перехода меха-

механической энергии во внутреннюю. По мере движения груза вниз мешалка перемешивает воду.

Когда груз опустится, пройдя расстояние h, он потеряет потенциальную энергию mgh (т *—»

масса груза), при этом вода нагреется. Следует заметить, что грузы перемещаются с неболь-
небольшой скоростью и их кинетическая энергия невелика.

или конструкции мешалки. Например, если мы удвоим массу пада-

падающего тела и дадим ему падать только половину первоначального

расстояния, работа, проделанная гравитационной силой, будет
такой же, как раньше. И мы обнаружим при этом совершенно
такое же повышение температуры воды, несмотря на то, что весь

опыт был осуществлен в значительно более короткий промежуток
времени.

25.5. Тепловой поток
Рассеяние механической энергии при трении не является един-

единственным способом увеличения температуры тела. Вы можете со-

согреть руки, либо потирая их друг о друга, либо опустив их в го-

горячую воду. В последнем случае энергия более быстрого беспоря-
беспорядочного движения молекул горячей воды передается холодным

рукам, т. е. телу, молекулярное движение которого выражено
слабее. Когда происходит такая передача тепловой энергии от

более нагретого к менее нагретому, мы говорим, что теплота «течет»

от первого тела ко второму.
Следует различать два пути перехода механической энергии во

внутреннюю энергию данного тела. Энергия может быть превра-
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щена из механической во внутреннюю или непосредственно в дан-

данном теле, или где-либо, а затем передана телу с помощью теплового

потока. Можно доказать экспериментально, что способ сообщать

телу тепло не имеет значения. Количество тепловой энергии, ко-

которая поступает в тело, одинаково в обоих случаях.
Представим себе два сосуда, один, как в опыте Джоуля, с оп-

определенным количеством воды, другой с маслом, количество кото-

которого не равно количеству воды, Проводя эксперимент Джоуля,
описанный в предыдущем разделе, с каждой жидкостью в отдель-

отдельности, мы находим, что для повышения температуры воды на 1Q

требуется произвести работу, равную х Дж, а чтобы увеличить

температуру масла на 1Q, требуется у Дж. Продолжим теперь
опыты с водой и маслом, убедившись в том, что их начальные тем-

температуры равны начальной температуре в первом опыте. Будем
теперь перемешивать одну воду до тех пор, пока не израсходуем
(х, + у) Дж механической работы, Температура воды повышается

больше чем на 1Q. Затем мы помещаем сосуд с маслом так, чтобы

он тесно соприкасался с сосудом с водой. Считаем всю систему

изолированной от окружающей среды. Температура масла повы-

повышается, а воды падает. В конце концов наступает равновесие:
температура обеих жидкостей становится одинаковой и остается

постоянной. Измеряя окончательную температуру воды и масла,

мы находим, что она ровно на 1Q выше, чем в начале опыта.

Этот опыт позволяет сделать заключение: из (х-\-у) Дж работы,
сообщенных воде, у Дж перешли к маслу посредством теплового

потока. Мы сделали это заключение, потому что точно знаем ко-

количество работы (у Дж), необходимое для повышения температуры
масла на 1Q. Остальные х Дж вызвали повышение температуры
воды на 1Q. Таким образом, мы показали, что работа, необходимая
для повышения температуры данной жидкости на определенное
число градусов, одна и та же независимо от того, передается ли

энергия тепловым потоком или механическая энергия рассеивается

непосредственно в жидкости,

25.6. Количественное соотношение между расходом энергии
и повышением температуры

Определим количество энергии, которое необходимо затратить
для повышения температуры 1 г воды на 1 °С. Если мы используем
для этого механическую энергию, то потребуется 4,2 Дж. Мы
можем также нагреть 1 г воды на 1 °С, сообщив ему энергию с по-

помощью потока тепла от горячего масла. Определить эту энергию
можно, воспользовавшись установкой Джоуля. Оказывается, что

масло, нагревая воду тепловым потоком, теряет при этом то же

количество энергии, т. е. 4,2 Дж. Таким образом, 4,2 Дж увели-
увеличивают температуру воды на одну и ту же величину независимо

от способа передачи этой энергии воде.

Можно сочетать оба способа нагревания. Поместим сосуд, со-

содержащий 1 г воды, в ванну с горячим маслом, изолированную
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от внешней среды; пусть в сосуде с водой, как и в установке Джо-

Джоуля, находится мешалка. Сообщим 1 Дж механической энергии 1 г

воды путем вращения мешалки. Одновременно вода получает энер-
энергию в виде потока тепла со стороны масла, на что указывает па-

падение температуры масла. Пусть таким путем вода получит осталь-

остальные 3,2 Дж. Мы видим, что в итоге полное увеличение внутренней
энергии грамма воды составляет 4,2 Дж* Это можно установить
по повышению температуры воды на 1 °С, что происходит незави-

независимо от того, сообщаем ли мы воде 4,2 Дж посредством потока тепла

или путем превращения механической энергии* На основании этих

опытов мы приходим к заключению, что увеличение внутренней

энергии определяется суммой затраченной механической энергии
AW и теплоты AQ, переданной потоком тепла:

AW + &Q.

Величина этой суммы не зависит от соотношения между AW и AQ,
Мы можем передать энергию воде многими способами, даже

бросая камни в воду. Результат будет один и тот же. Всякий раз,

когда мы сообщаем грамму воды 4,2 Дж энергии, его температура
повышается на 1 °С. Чтобы поднять температуру 2 г воды, потре-
потребуется ровно в два раза больше энергии. Подобным образом, всякий

раз, когда 12,4 Дж передаются молю гелия D г), температура его

повышается на 1 РС Как показывают наблюдения, повышение

температуры различно для различных веществ, но для одного и

того же вещества в одной и той же области температур оно ос-

остается постоянным.

Точные измерения показывают, что для повышения температуре
1 г воды на 1 °С с 14,5 до 15,5 °С требуется 4,185 Дж. Это количество

энергии называется калорией *). Калория, таким образом, является

еще одной единицей энергии. Мы могли бы измерить кинетическую

энергию движения любого предмета в калориях точно так же, как

и в джоулях* Например, масса 3 кг, движущаяся со скоростью
2 м/с, имеет 3-22/2 = 6 Дж или 6/4,185^1,45 кал кинетической

энергии. Однако джоуль непосредственно связан с единицами силы

и длины, поэтому эту единицу энергии обычно применять удобнее.
Мы в дальнейшем так и будем поступать,

25.7. Сохранение энергии
Одно и то же число джоулей механической энергии всегда дает

одинаковое количество тепла* Если передавать теплоту определен-
определенному количеству воды, повышение температуры будет всегда одним

*) Единицы, подобные калории, уже давно вошли в обиход при рассмотрении
процессов передачи тепла. Их применение объясняется легкостью оценки вели-
величины энергии, переносимой тепловым потоком, путем передачи этой энергии
известной массе воды и измерения повышения температуры. Следует иметь в

виду, что кроме обычной калории (кал) используется килокалория (ккал). Кило-
Килокалория в 1000 раз больше калории. Килокалория — единица, которой в на-

настоящее время широко пользуются также при оценке энергосодержания (кало-
(калорийности) пищи.
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и тем же* На эти и многие другие вопросы, связанные с превраще-
превращением механической энергии в теплоту, мы можем теперь дать от-

ответы. Однако опыты Джоуля и опыты с тепловым потоком не дают

ответа на все вопросы, возникающие при размышлениях о теплоте

и механической энергии. Можем ли мы, например, превратить
теплоту в механическую энергию с той же скоростью, с какой

механическая энергия превращается в тепловую? Можем ли мы

получить 4,2 Дж механической энергии из теплоты, выделяемой
граммом воды, когда ее температура понижается на 1 °С? Наши

предыдущие опыты подсказывают, что такой процесс принципи-
принципиально возможен, но это необходимо доказать строго* Ведь многое

в повседневной жизни, даже дверные замки, действует в прямом

направлении совершенно иначе, чем в обратном.
Простой способ проверки количественных соотношений при

переходе тепла в механическую энергию заключается в том, чтобы,
сообщив точно известное количество тепла AQ тепловому двига-

двигателю, измерить работу, которую он производит. При этом мы долж-

должны быть уверены в том, что двигатель в конце процесса имеет такую

же энергию, какую он имел вначале; или же нам необходимо знать,

какое количество энергии, полученной извне, удержал двига-

двигатель, или какое количество он отдал из имевшегося в нем запаса

энергии.
Чтобы исключить погрешности, зависящие от энергетического

состояния двигателя, нужно привести его в конце опыта к точно

такому же состоянию, в котором он находился вначале. Такой

эксперимент показывает, что двигатель не только поглощает те-

теплоту AQ и производит работу. Получив AQ тепла, он производит

некоторую работу, но, кроме того, и выделяет определенное коли-

количество тепла. Если мы хотим установить, может ли внутренняя

энергия полностью превращаться в механическую, из расчета

джоуль на джоуль, мы должны знать разность между количеством

тепла, которое поступает в двигатель, и количеством тепла, выде-

выделяемого им; этот полезный расход тепла мы должны сравнить с

получаемой работой. Следовательно, мы должны измерить все

тепло, поступающее в двигатель и выделяемое из него; последнюю

величину мы можем установить, наблюдая за изменениями темпе-

температуры окружающей среды. В этих условиях мы можем сравнить
полезный расход теплоты с полезной работой, измеряемой произ-
произведением силы на расстояние.

Такого рода опыты проводились много раз. Французскому
ученому Гирну удалось определить количество тепла, поступающее
и выделяемое паровым двигателем на текстильной фабрике; одно-

одновременно он измерил и полную величину работы, совершаемой
двигателем.

В результате было установлено, что теплота (выражен-
(выраженная в джоулях) действительно превращается в равное по величине

количество механической энергии: 4,2 Дж теплоты превращается
в 4,2 Дж механической энергии,
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Несмотря на полную эквивалентность тепловой и механической

энергий, независимо от того, переходит ли теплота в механическую

энергию или наоборот, между этими двумя процессами имеется

существенное различие. Можно легко превратить весь имеющийся

запас механической энергии в теплоту; однако если не допускать
никаких других изменений в системе, то в механическую энергию
можно превратить лишь часть теплоты. Часть теплоты, поступаю-
поступающей к двигателю при высокой температуре, обычно должна выде-
выделиться из него при более низкой температуре, и только остальная

часть поступающей в двигатель тепловой энергии целиком пре-
превращается в механическую. Тот факт, что переход энергии из

одной формы в другую совершается полностью без потерь, является

выражением первого закона термодинамики. Второй закон термо-
термодинамики определяет, какая часть энергии может быть превращена
из одной формы в другую.
Мы теперь считаем, что теплота и механическая энергия

— это

лишь две различные формы энергии, а при переходе из одной формы
в другую энергия не исчезает и не возникает. Энергия, подобно
количеству движения, сохраняется; но для того чтобы убедиться
в этом, нам пришлось найти меру теплоты и научиться учитывать

внутреннюю энергию системы, а также механическую энергию
в целом. Ни один опыт сам по себе не убеждает нас полностью

в том, что энергия сохраняется. Однако мы не сомневаемся в спра-
справедливости закона сохранения, учитывая ход всевозможных физи-
физических и химических процессов. Бесчисленное множество таких

процессов происходит на каждом шагу: химические реакции, выде-
выделение теплоты, работа машин и т. п. При этом энергия всегда

сохраняется. Если бы энергия исчезала, мы бы давно почувство-
почувствовали это исчезновение. Если бы существовали какие-нибудь таинст-

таинственные источники, от которых поступала бы энергия, прирост
энергии стал бы заметным.

Наша уверенность в правильности закона сохранения энергии
основывается как на этих самых общих соображениях, так и на

тщательной проверке огромного числа всевозможных процессов

превращения энергии.
Вводя представление о потоке тепла в добавление к понятию

о механической работе, мы расширяем закон сохранения энергии
за пределы простых механических систем. Это было достигнуто
благодаря введению нового механизма передачи энергии. Вслед
за теплопроводностью были открыты и другие механизмы передачи
энергии. Например, энергия Солнца передается Земле без затраты
механической работы в отсутствие теплового потока, который воз-

возникает между горячими и холодными телами, находящимися в

контакте: солнечную энергию переносит к Земле излучение
—

видимые и невидимые лучи, испускаемые Солнцем. Если мы го-

говорим о законе сохранения энергии в масштабе Вселенной, мы

обязаны учитывать энергию излучения точно так же, как необхо-
необходимо было принимать во внимание импульс излучения для того,
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Стенки-отражатели

Горячее
тело

'

Холод/foe
тело

Квакуум-

насосу

чтобы объяснить поведение тел, испускающих или поглощающих

свет.

Опыт и теория убеждают нас в том, что энергия действительно

сохраняется, если учитывается излучение. Однако если передача
тепла с помощью обычного теплового потока может рассматриваться
как микроскопический вариант механизма передачи энергии, то

механизм переноса энергии излучением совсем иной. Понять этот

механизм мы сможем лишь после изучения свойств излучения. Здесь
мы не будем входить в дальнейшие детали. Но, даже не изучая этого

механизма, мы можем расширить закон сохранения энергии и

включить в него излучение, осуще-
осуществив эксперименты, подобные тем, с

помощью которых мы уже расширили
закон сохранения энергии, включив

в него представление о потоке теп-

тепла. Для этого можно точно извест-

известное количество световой энергии, из-

излучаемой в течение определенного

времени, направить на зачерненную

поглощающую свет поверхность. При
этом поверхность нагревается, и мы

можем измерить энергию, которая
идет на ее нагревание, а также оста-

остаточную тепловую энергию источника

света. Оказывается, что сумма этих

энергий равна энергии, затраченной
на питание источника. Таким образом,

мы убеждаемся в том, что часть энергии без потерь перешла от ис-

источника света к черной поверхности.
Излучение не всегда бывает видимым. Например, мы можем

поместить горячее и холодное тела внутрь сосуда, стенки которого
являются хорошими отражателями излучения (рис. 25.5). Создадим
в этом сосуде такой вакуум, при котором обычный тепловой поток

не может иметь места. Несмотря на это, нагретое тело теряет энер-
энергию, а холодное приобретает. Энергия переходит от одного тела

к другому в виде излучения. При этом полная энергия системы

остается постоянной.

Передача энергии путем излучения, так же как и передача коли-

количества движения, требует времени. Свет от Солнца достигает Земли

через 8,3 мин. Насколько нам известно, в природе не существует
скоростей, больших скорости света в вакууме* Передача энергии
другими способами происходит значительно медленнее, но рас-
расстояния обычно настолько малы, что обнаружить запаздывание

передачи энергии во времени очень трудно.
Во многих процессах, происходящих в обычных механических

системах, как, например, столкновение бильярдных шаров, дви-
движение Земли вокруг Солнца и даже работа парового двигателя,

роль излучения в передаче энергии настолько незначительна, что
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Рис. 25.5. Нагретое и холодное тела

помещены внутри вакуум-сосуда с

отражающими стенками. В хорошо

откачанном сосуде энергия не может

передаваться молекулами воздуха.

Тем не менее, нагретое тело охлаж-

охлаждается, а холодное
— нагревается,

поскольку тепловая энергия передает-
передается с помощью излучения.



им обычно можно пренебречь. Однако излучение необходимо учи-
учитывать не только при рассмотрении передачи энергии излучения
звезд, но и в обычных процессах поглощения и излучения света

атомами вещества.
Все физические явления, от развития звезд и до жизни свет-

светлячка, в сущности представляют собой непрерывную цепь превра-

превращений — одной формы энергии в другую. Эти превращения энергии

удается проследить в масштабе всей Вселенной. Физикам известен

теперь еще один вид энергии — ядерная энергия, которая является

источником излучения звезд. Наука в целом и физика в частности

опираются на универсальный закон сохранения энергии *). Вер-
Вершиной наших знаний является утверждение, что энергия в той

или иной избранной нами области изменяется только при условии,
если имеет место обмен энергии между данной областью и всем

тем, что ее окружает. Если за эту область мы примем Вселенную,
то нельзя ожидать каких-либо изменений ее полной энергии, так

как ничего не существует вне Вселенной. Утверждение, что полная

энергия Вселенной постоянна, является основой большинства кос-

космологических теорий. Но все это является лишь смелым обобще-
обобщением нашего опыта, который весьма ограничен. Мы живем в ма-

маленьком уголке Вселенной и проверили справедливость физиче-
физических законов за очень ограниченный период времени. С нашей

точки зрения, энергия сохраняется с большой точностью, но воз-

возможно, что небольшие количества исчезнувшей или возникающей

энергии ускользнули от нашего внимания. Если бы, например,
полная энергия Вселенной на протяжении нескольких миллиардов
лет удвоилась, мы, вероятно, даже не заметили бы этого изме-

изменения. Существуют космологические теории, которые выдвигают
идею непрерывного возникновения энергии. Это — один из важ-

важнейших вопросов современной науки. Космологи упорно работают
над тем, чтсбы выяснить, действительно ли энергия полностью

сохраняется всюду во Вселенной. И именно теперь впервые появи-
появилась возможность с помощью решающих экспериментов установить,
какая из конкурирующих теорий соответствует действительности.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1*. Молекула массой т со скоростью v движется по нормали к стенке, уда-

ударяется об нее и отскакивает со скоростью —v. Чему равен импульс, сообщенный
молекулой стенке? (Раздел 25.1.)

*) В этой и других главах среди имен, названных в связи с установлением за-
законов сохранения, нет имени Ж. В. Ломоносова. Авторы упустили из виду юг

безупречно проверенный исторический факт, что Ломоносову в этой области при-

принадлежат основные заслуги. 5 июля 1748 г. в письме к Эйлеру Ломоносов сформу-
сформулировал «всеобщий закон природы»

— закон сохранения материи и движения

(энергии), а в другом письме к нему же в 1756 г. сообщал об экспериментах, дока-
доказывающих закон неизменности общей массы вещества в химических реакциях.
См., например, статью С. И. Вавилова в сборнике «Люди русской науки», стр.9,
Физматгиз, 1961. (Прим. ред.)
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2. 10-граммовые пули вылетают из ствола пулемета с частотой 400 выстрелов
в минуту; достигнув скорости 300 м/с, они ударяются о стенку и останавливаются.

Подсчитайте:

а) силу, действующую на стенку;

б) кинетическую энергию пуль, ударяющихся о стенку в течение 1 мин;

в) кинетическую энергию пуль на расстоянии 1 м от стенки. Удвоив полу-
полученный результат, сравните его с ответом по п. а).

3*. Каково давление Р на стенку площадью Л, испытывающую толкающее

усилие F? (Раздел 25.1.)
4*. Почему давление газа пропорционально числу молекул в единице объема?

(Раздел 25.1.)
б*. Какова зависимость полной кинетической энергии поступательного дви-

движения молекул газа от числа молекул N, объема V и давления газа Р? (Раздел
25.1.)

6. Газ двигает поршень цилиндра, увеличивая объем цилиндра на AV. Дав-
Давление газа Р, площадь поршня А. Сила, создаваемая давлением газа на поршень,
перемещает его на расстояние Ах, при этом работа .FA* передается некоторому
стороннему механизму. Показать, что работа F&x равна PAV. Это выражение
для работы очень удобно во всех случаях, когда мы имеем дело с газом или жид-
жидкостью, перемещающими поршень; работа равна произведению давления на из-
изменение объема.

7*. Как изменится давление газа в стальном цилиндре при изменении тем-

температуры от 25 до 100 °С? (Раздел 25.2.)
8*. Как изменится средняя кинетическая энергия поступательного движения

газа при его нагревании от 25 до 100 °С? (Раздел 25.2.)
9*. Один моль гелия, находящегося при температуре 100 °С, смешивается

с одним молем аргона, имеющего температуру 30 °С. Какова температура смеси?

(Раздел 25.2.)
10*. Один моль гелия, температура которого 100 °С, смешивается с одним

ыолем газа X, имевшего температуру 20 °С. В смеси устанавливается температура
50 °С. Может ли молекула газа X быть одноатомной? (Раздел 25.2.)

11. 2/5 энергии молекул некоторого газа связано с движением атомов друг
относительно друга внутри молекул, а 3/5 — с движением центров масс молекул.

а) Какова средняя кинетическая энергия движения центра масс одной моле-

молекулы при температуре газа 300 °К?
б) Какая энергия сообщается молю F,02» 1023 молекул) этого газа при уве-

увеличении его температуры на Г?
12. В цилиндре находится 1 моль одноатомного газа (гелий или аргон) при

температуре 273 °К и атмосферном давлении A,02-105 Н/м2). В этих условиях
газ занимает объем 2,24» Ю-2 м3. Переместим поршень цилиндра таким образом,
чтобы объем газа уменьшился до 2,45* 10-4 м3.

а) Какую механическую работу мы совершаем при этом? (Изменением дав-
давления пренебрегаем.)

б) Какова конечная температура газа, если цилиндр полностью изолирован
от внешней среды? (Помните, что 12,4 Дж энергии увеличивают температуру
одного моля газа на 1°.)

в) На какую часть первоначальной величины должно измениться давление?
13. а) Оцените скорость движения молекул кислорода при комнатной темпе-

температуре, исходя из следующих условий: 32 г кислорода при комнатной темпера-
температуре B0 СС) и атмосферном давлении A,02* 106 Н/м2) занимают объем 2,4« 10~2 м3.

б) Такой же объем водорода при той же температуре весит только 2 г. Оцените
среднюю скорость движения молекул водорода при комнатной температуре.

в) Исходя из ответа на п. а), оцените с точностью до 10% среднюю скорость
движения молекул азота при комнатной температуре.

г) Какова средняя скорость (с погрешностью не более 10%) движения мо-

молекул воздуха при комнатной температуре?
д) Какова скорость движения молекул кислорода при комнатной температуре

и давлении, превышающем атмосферное в 2 раза?
14*. Определить полное количество движения молекул одного моля газооб-

газообразного гелия в замкнутом сосуде при температуре 300 °К. (Раздел 25.3.)
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15. Мешок с песком подвешен на длинной веревке. Пуля из ружья попадает

в мешок и застревает в нем.

а) Опишите происходящий при этом процесс превращения энергии.
б) При условии, что вес пули 10 г, скорость движения в момент удара в мешок

300 м/с и вес мешка 1990 г, определите кинетическую энергию: 1) свободно ле-

летящей пули; 2) пули и мешка после их столкновения и 3) «исчезнувшую» кинети-

кинетическую энергию.

в) Какая часть первоначальной кинетической энергии пули превращается
в тепло?

16*. Почему в установке, изображенной на рис. 25.4, важно, чтобы грузы
опускались медленно? (Раздел 25.4.)

17. В одном из своих наиболее известных опытов Джоуль перемешивал 7 кг

воды мешалкой, приводимой в действие двумя грузами по 14 кг каждый, опу-
опускающимися вертикально с высоты 2 м. После каждого перемешивания он под-

поднимал грузы и повторял опыт. На сколько может увеличиться температура воды

после 10-кратного повторения опыта? (Эта задача обратна той, которую ставил

перед собой Джоуль в его знаменитом эксперименте. Вам известно, что 4,2 Дж

увеличивают температуру грамма воды на 1°, а Джоуль именно это стремился

установить в своих экспериментах.)
18*. Кусок свинца многократно ударяют молотком. Растет ли его внутренняя

энергия? Поступает ли теплота в свинец извне? (Раздел 25.5.)
19*. Нагретый камень помещается в ведро с холодной водой. Совершает ли

камень работу, передавая энергию воде? (Раздел 25.5.)
20*. Если ведро предыдущей задачи изолировано от окружающей среды теп-

теплонепроницаемой оболочкой, что происходит с полной внутренней энергиеч
камня и воды в процессе остывания камня и нагревания воды? (Раздел 25.5 )

21*. Сколько джоулей требуется для повышения температуры 50 г воды на

5 градусов? (Раздел 25.6.)
22. Поместим 18 г воды (один моль) при температуре кипения в цилиндр

и превратим всю воду в пар. Цилиндр закрыт легким поршнем без трения, так что

пар остается все время при атмосферном давлении.

а) Какой объем занимал бы водяной пар, если бы он вел себя как идеальный
газ? (Пар не является идеальным газом, но ошибка этого допущения не пре-

превышает 10%.)
б) Какая работа должна быть проделана паром, чтобы преодолеть атмосфер-

атмосферное давление и вытолкнуть поршень из цилиндра при условии, что вся вода пре-

превратилась в пар?
в) Если для превращения 1 г воды в пар требуется 540 калорий, то сколько

тепла необходимо для превращения всей воды в пар и выталкивания пор-
поршня?

г) Какая часть общего количества тепла идет на выталкивание поршня?
23. Один моль гелия при температуре 24 °С находится в соприкосновении

с водой, температура которой 26 °С. Система изолирована от окружающей среды.
Конечная температура обоих веществ 25 °С. Сколько было воды?

24. Хороший пловец затрачивает около 120 000 Дж за полминуты. Три чет-

четверти этой энергии превращается в бесполезное тепло, остальная — в механиче-

механическую работу рук и ног.

а) Оцените среднюю силу, препятствующую перемещению пловца, если он за

30 с проплывает 50 м.

б) Опишите процессы перехода энергии из одного вида в другой при плавании.

в) Какова судьба механической энергии, затраченной пловцом, когда он

закончил дистанцию? Где следует ее искать и в какой форме?
25. Два сосуда с пренебрежимо малой массой заполнены газом. Сосуд А

содержит 1 моль гелия при температуре 60 °С, сосуд В содержит 1 моль аргона (это
тоже благородный газ) с температурой 10 °С.

а) Сосуды соприкасаются друг с другом и изолированы от внешней среды.

Через некоторое время температура газов становится одинаковой. Чему равна эта

температура и почему она имеет такую величину?
б) Сосуды объединены в один общий сосуд с объемом, равным их сумме.

Какова конечная температуря Еловой смеси?
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в) Пусть сосуд В содержит вместо аргона 1 моль азота при температуре 10 °С.
Теплый гелий и холодный азот смешиваются, как указано в п. 6). Будет ли ко-

конечная температура в этом случае выше или ниже, чем в случае б)?
г) Приведите ясную аргументацию вашего ответа по п. в).
26*. Почему тормозные барабаны нагреваются, если поддерживается постоян-

постоянная скорость автомобиля при спуске по длинному крутому уклону? (Раздел 25.7.)
27. Если энергично потирать руки, они нагреваются, но по достижении

некоторой предельной температуры нагрев прекращается, как бы долго их ни

терли. Как объяснить начальный нагрев и конечное установление постоянной

температуры?
28. Фотограф-любитель пользовался в фотокомнате электрическим вентиля-

вентилятором для охлаждения при работе в жаркую погоду. Он включал вентилятор при
закрытых дверях и форточке за два часа до начала работы. Разумно ли он по-

поступал?
29. Альпинист совершает восхождение к вершине горы, поднимаясь за час

на 500 м по высоте.

а) Какой потенциальной энергией будет обладать альпинист после пятича-

пятичасового восхождения?
б) Тело человека представляет неэффективную химико-механическую машину,

в которой 25% химической энергии переходит в механическую и 75% превра-
превращается в бесполезное тепло. Исходя из такой эффективности человека, определите
химическую энергию, затраченную в течение пятичасового восхождения.

в) За 24 часа человек, не занимаясь альпинизмом, должен получать 2,2» 10е

калорий энергии. Сколько калорий должен получать альпинист в виде пищи,

если он совершает восхождение каждое утро?
г) Если альпинист каждый день спускается с горы, то он теряет накопленную

нм потенциальную энергию. Почему это не позволяет уменьшить калорийность
его рациона?

30. Ракета приводится в движение горячим газом, находящимся
в изолированном баке. Горячий газ вытекает через сопло и толкает ракету
вперед.

а) Каково происхождение количества движения, которое приобретает ракета?
б) Откуда берется кинетическая энергия ракеты?
в) Предположим, что в момент старта газ, вытекающий из ракеты, попадает

в резервуар, находящийся на земле. Если мы измерим температуру собранного
резервуаром газа после отрыва ракеты, будет ли она больше, меньше или равна

температуре газа в самой ракете?
31. а) Цилиндр, содержащий гелий, закрыт подвижным поршнем, трением

которого можно пренебречь. При быстром перемещении поршня гелий сжимается

и нагревается. Почему это происходит? Обсудите механизм нагревания с точки

врения поведения молекул.
б) Цилиндр с подвижным поршнем содержит сжатый гелий. Если освободить

поршень, гелий перемещает его и охлаждается. Объясните охлаждение с точки

врения поведения молекул.
в) Большой, хорошо откачанный сосуд содержит небольшой резервуар со

сжатым гелием. На резервуаре находится клапан с дистанционным управлением,

с помощью которого гелий из резервуара выпускается. Когда гелий полностью

выйдет из резервуара, изменения температуры не произойдет. Объясните с точки

зрения молекулярной теории, почему не произошло изменения температуры при
расширении гелия.

г) Хотя сжатый гелий не изменяет температуры при расширении, другие
газы заметно охлаждаются в этих условиях. О чем это говорит и как вы можете

охарактеризовать эти газы?



ЛАБОРАТОРНЫЕ РАБОТЫ

II 1.1. Изменение скорости под действием постоянной силы

Из повседневного опыта известно, что для приведения в движе-

яие покоящегося тела или для изменения скорости движущегося
тела необходимо приложить к этому телу силу. Но для установ-
установления количественной зависимости между величиной приложенной
силы и изменением скорости необходимо произвести измерения*
Эту зависимость можно исследовать с помощью установки, пока-

показанной на рис, III. 1. При сборке этой установки очень важно

Рис. III.1.

зажать упор на конце стола как можно крепче, чтобы он мог мгно-

мгновенно остановить тяжелую тележку.
Нагруженную одинаковыми брусками или кирпичами тележку,

поставленную на колесики из-под роликовых коньков, можно
перемещать вручную с постоянной силой. Чтобы удостовериться
в постоянстве силы, можно тянуть тележку за тонкую резиновую
петлю, следя за тем, чтобы она была все время одинаково растянута.
Тележка тащит за собой бумаж^у:^ ленту, проходящую под моло-
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точном отметчика времени, в качестве которого можно использовать

электрический звонок, закрепленный на конце стола. По отметкам,
сделанным молоточком на ленте через промежутки времени, равные
периоду колебаний молоточка, нетрудно определить скорость
тележки в различных точках ее пути. По тем же отметкам можно

построить график зависимости скорости тележки от времени.
Опыт лучше всего проводить на гладком горизонтальном столе.

При необходимости следует выровнять стол подкладыванием клинь-
клиньев под ножки с проверкой горизонтальности с помощью уровня.
Шероховатые, способные крошиться кирпичи следует завернуть
в целлофан или оберточную бумагу, чтобы кирпичные крошки не
попадали на поверхность стола.

До измерения скорости при постоянной силе необходимо удо-
удостовериться в том, что после начального толчка тележка движется

Рис. III.2.

с почти постоянной скоростью, когда ее не тянут. Для этого на-

нагрузим тележку двумя кирпичами и проделаем опыты с несколь-

несколькими бумажными лентами, сообщая тележке начальные толчки

разной резкости. Тщательно осмотрим ленты. В каком случае

скорость более постоянна: при быстром или медленном движении

тележки?
Затем можно исследовать влияние постоянной силы тяги на

движение тележки. Резиновая петля зацепляется за тележку (рис.
III.2), а другой конец петли прицепляется к концу метровой ли-

линейки. Один из участников опыта удерживает тележку, а другой
тянет за линейку и растягивает резиновую петлю, например, до
длины в 80 см. Первый участник пускает в ход отметчик времени
и через несколько секунд, по сигналу, отпускает тележку. По тому
же сигналу второй участник начинает двигаться и тянуть за собой

тележку, стараясь сохранять первоначальную длину резиновой
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петли. Чтобы добиться этого, необходимо попрактиковаться на

нескольких пробных опытах.

После этого можно прицепить позади тележки бумажную ленту
и, нагрузив тележку кирпичами, произвести описанный опыт с

получением отметок времени на ленте. Если к концу опыта не

удается сохранить прежнюю длину растянутой резинки, показания

конца бумажной ленты отбрасываются. Используем полученные
отметки для построения графика скорости как функции времени
(см. опыт 1.5). При этом нет необходимости пользоваться всеми

отметками для вычисления скоростей. Достаточно выбрать не-

несколько серий по 10 отметок и для каждой серии измерить скорость
в метрах на 10 ударов отметчика времени. Исследовать надо
только отрезок ленты, соответствующий той части опыта, от-

относительно которой была уверенность в постоянстве приложенной
силы.

Проведем опыт с новой лентой, нагрузив тележку четырьмя

кирпичами и используя прежнюю резиновую петлю с прежним рас-
растяжением. Нанесем полученные данные на предыдущий график.
Какое можно сделать заключение об ускорении при действии по-

постоянной силы?

Является ли приложенная сила тяги единственной силой, дей-
действующей на тележку?

При какой (большей или меньшей) массе ускорение при дей-
действии постоянной силы больше?

II 1.2. Зависимость ускорения от силы и массы

Изменение скорости тела пропорционально промежутку вре-
времени, в течение которого на тело действовала постоянная сила.

Иными словами, постоянная сила вызывает постоянное ускорение,

Это и было нами установлено в предыдущем опыте. Теперь иссле-

исследуем количественно ускорение заданной массы под действием
различных сил и ускорение различных масс под действием задан-

заданной силы.

Ускорение под действием разных сил. Для приложения различ-
различных ускоряющих сил воспользуемся сначала одной, потом двумя,

тремя и, наконец, четырьмя одинаковыми резиновыми петлями

(см. рис. III.2). Будем проводить описанные выше опыты с отмет-

отметками времени на ленте, нагружая тележку четырьмя кирпичами.

Определяя ускорение по отметкам на лентах, построим график
зависимости ускорения от величины силы, т. е. от числа резиновых
петель.

Поскольку из предыдущего опыта нам известно, что при дей-
действии постоянной силы ускорение постоянно, нам нет надобности
вычислять его для разных моментов времени одного и того же

опыта. Его можно определить по приращению скорости между
двумя равными отметками времени, не затрагивая начала ленты,

где отметки сливаются. (При этом не следует выбирать слишком
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длинный путь, включающий конечную стадию движения, во время
которой трудно сохранять постоянство силы.)

К какому заключению приводит полученный график? Что можно

сказать об отношении силы к ускорению в данной серии измерений?
Допуская отсутствие трения в установке, следует ли ожидать,

что линия графика пройдет через начало координат? С какой сто-

стороны от начала координат должна в действительности пройти линия

графика?
Влияние величины массы на ускорение, вызванное постоянной

силой. Пользуясь одной резиновой петлей, определим ускорение
тележки при нагружении ее двумя, тремя и четырьмя кирпичами.
Построим график зависимости отношения силы к ускорению от

числа кирпичей.
Какое заключение можно сделать на основании этого графика?

Достаточно ли точек на нашем графике, чтобы это заключение было

убедительным? Если остается свободное время, исследуйте уско-
ускорение для одного и пяти кирпичей и включите результаты в график*

Нельзя ли, пользуясь полученным графиком, выразить массу
самой тележки, принимая за единицу массу кирпича? Каким об-

образом можно было бы определить массу свинцовой чушки или тяже-

тяжелого камня с помощью описанной установки? Попытайтесь это

сделать.

II 1.3. Инертная и гравитационная массы

Простым приспособлением для измерения инертной массы раз-
различных тел являются инерционные весы, изображенные на рис. II 1.3.

Будем помещать на площадку весов различные количества

какого-либо вещества и качественно исследуем изменения периодов

Рис. Ш.З.

колебаний нагруженных весов. При каких массах период больше:

при больших или малых? Как влияет масса на ускорение площадки
весов, оттянутой вбок примерно на 2 см и затем отпущенной? Со-
Согласуется ли это со вторЫхМ законом Ньютона?
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Найдем соотношение между количеством вещества на площадке

весов и периодом их колебаний, после чего построим график за-

зависимости периода от массы. Это можно сделать следующим об-

образом.
Сначала определим период ненагруженных весов путем изме-

измерения времени как можно большего числа колебаний, которое
только можно без труда сосчитать. Поскольку период весов очень

мал, их колебания трудно считать обычным визуальным путем.
Вместо этого можно держать небольшую полоску бумаги около

одного из ножовочных полотен, использованных в качестве пружин

весов, и считать щелчки, производимые бумажной полоской при
зацеплениях ее полотном ножовки. При этом обычно легче вести

счет сериями: по три или четыре щелчка.

Отберем шесть одинаковых предметов, например струбцин,
рассматривая их как единицы массы. Измерим период весов, на-

нагруженных каждой из струбцин в отдельности, как показано на

рис. IIL4. Сколько колебаний нужно отсчитать и сколько секунд

Рис. Ш.4.

они должны занимать, чтобы была уверенность, что ошибка не

превышает 2%? С точностью до скольких процентов инертная масса

разных струбцин одинакова?
Далее, определим периоды с нагрузкой весов двумя, тремя

и т. д. выбранными единицами массы и используем полученные

данные для построения графика периода как функции массы (числа
струбцин), помещенной на площадку весов.

Измерим теперь период весов при нагрузке в виде тела неиз-

неизвестной массы из произвольного материала, например камня. Поль-

Пользуясь ранее полученным графиком зависимости периода весов от

массы нагрузки, определим инертную массу камня, принимая
массу одной струбцины за единицу. Затем обычным взвешиванием

определим гравитационную массу каждой струбцины в граммах.
С точностью до скольких процентов гравитационная масса струбцин
оказалась одинаковой? Попытаемся определить гравитационную
массу камня, исходя из всех полученных данных. Проверим этот

результат прямым взвешиванием г.амня на обычных весах. Не
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выходит ли расхождение между двумя последними результатами
за найденные ранее пределы экспериментальных ошибок взвеши-

взвешивания на инерционных весах?

Если бы и для любых других тел были получены подобные ре-
результаты, то какое заключение можно было бы сформулировать
об инертной и гравитационной массах одного и того же тела? Равны
ли они или пропорциональны друг другу, или совершенно не свя-

связаны друг с другом? Одинаковыми или разными единицами следует

Рис. II 1.5. Рис. II 1.6.

пользоваться для измерения инертной и гравитационной масс?
Как изменился бы результат нашего опыта, если бы он произво-
производился на Луне?

Чтобы выяснить экспериментальным путем, влияет ли сила тя-

тяжести на показания инерционных весов, нагрузим их массивным

железным стержнем, для чего проденем через среднее отверстие

стержня кусок проволоки подходящего диаметра и вставим стержень
в отверстие площадки весов. Благодаря такому устройству стержень
повиснет на площадке. Измерим период колебаний нагруженных
таким способом весов.

Затем немного приподнимем стержень так, чтобы он не опи-

опирался вставленным в него куском проволоки на площадку весов.

Сохраним это положение стержня, подвязав его на нити к пере-
перекладине, закрепленной в муфте штатива (рис. III.5). Каково со-

соотношение периодов в последних двух случаях?
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Получится ли различие в периодах инерционных весов при двух
способах их крепления, показанных на рис. II 1.5 и II 1.6?

Каким образом можно использовать инерционные весы для

измерения ускорения автомобиля?

II 1.4. Силы, действующие на брошенный шарик
Рис. II 1.7 представляет собой импульсный фотоснимок траек-

траектории брошенного тела (масштаб 1 : 10). Шарик был брошен в

воздух под углом 27° к горизонту. Промежуток времени между
последовательными экспозициями составлял 1/30 с. Шарик на

Рис. III.7.

снимке перемещался слева направо. Траектория шарика на снимке

похожа на те, которые описаны в разделе 20.4.

Рассмотрим фотоснимок. Постоянна ли горизонтальная состав-

составляющая скорости шарика? Что можно сказать о силах, приложен-
приложенных к шарику, если горизонтальная составляющая скорости не-

непостоянна?

Если более подробно проанализировать снимок и определить
изменения скорости, вызванные равнодействующей силой, то можно

получить гораздо больше сведений о силах, действующих на шарик,
чем при беглом взгляде на наш снимок.

Проследим изменения скорости шарика, происходящие за по-

последовательные промежутки времени в 0,1 с (тройные интервалы
на снимке). Для этого наложим на наш снимок лист миллиметровой
или простой кальки, прикрепим его к снимку скрепками и отметим

точками центры изображений шарика. Проведем прямые, соеди-
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няющие каждую третью точку со следующей третьей (т. е. с про-'

пуском по две точки). Эти прямые представляют собой перемещения
шарика за последовательные равные промежутки времени в 0,1 с,

и потому длины этих отрезков пропорциональны средним скоро-

скоростям, которые шарик имел в эти промежутки времени. Приращения
скорости за эти промежутки времени можно найти геометрическим

построением, показанным на рис.
II 1.8, а, на котором вектор vx
перечерчен в виде штрихового от-

отрезка.
Остается ли направление векто-

вектора приращения скорости одина-
одинаковым в последовательные про-
промежутки времени? Остается ли по-

постоянной абсолютная величина это-

этого приращения? Какое отсюда
можно сделать заключение относительно направления равнодей-
равнодействующей силы, приложенной к шарику?

Какое приращение скорости за кащдый из рассматриваемых
промежутков времени по 0,1 с должно быть вызвано одной только
силой тяжести?

Как направлена эта составляющая приращения скорости?
Вычислите эту составляющую Avg в метрах в 0,1 с и вычтите ее

(по правилу вычитания векторов) из каждого полного приращения

Рис II 1.8.

Рис. III.9.

скорости Д*>, найденного на кальке (рис. III.8, б). При графическом
вычитании приращение скорости, обусловленное силой тяжести,

должно вычерчиваться в том же масштабе, в котором получен
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снимок. Используя масштабную линейку с миллиметровыми деле-
делениями, можно убедиться, что предметы на снимке изображены
в одну десятую натуральной величины.

Одинаковы ли по абсолютной величине все векторы А^г осталь-

остальной части приращения скорости?
Опишите качественно свойства силы, обусловливающей прира-

приращения скорости Avr.
Каково, по вашему мнению, происхождение этой силы? Какое

заключение можно сделать о массе брошенного тела?

Рис. III. 10.

Постройте на том же чертеже траекторию, по которой полетел

бы шарик, если бы на него не действовали никакие силы, кроме
силы тяжести. Как объяснить форму траекторий, показанных на

рис. III.9 и ШЛО (масштаб приблизительно 1 : 11,5)?

II 1.5. Центростремительная сила

Равномерное движение по окружности совершается с ускоре-

ускорением; несмотря на то, что абсолютная величина скорости не изме-

изменяется, направление вектора скорости претерпевает непрерывное

изменение (см. раздел 6.7). Но из закона Ньютона известно, что

для поддержания ускорения требуется сила. Спрашивается, как

зависит сила, действующая на тело при его равномерном движении
по окружности, от скорости тела, его массы и радиуса окружности?

Для ответа на этот вопрос воспользуемся простым устройством,
показанным на рис. III. 11. (Стеклянная трубка с наружным диа-

диаметром 9 мм и длиной около 15 см имеет оплавленные концы. Для
предохранения трубки от случайного излома следует обернуть ее
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целлулоидной лентой в два слоя. Пробка — резиновая, с двумя

отверстиями. Нить сплетена из нейлоновой лески, ее длина около

1,5 м. На нити подвешен набор железных шайб весом 6 г каждая.

Шайбы можно снимать и добавлять; для закрепления шайб исполь-

используется разогнутая канцелярская скрепка.) Это устройство позво-

позволяет измерять интересующую нас силу во время движения тела.

Если держать отрезок стеклянной трубки над головой и слегка

раскачивать его так, чтобы его

конец описывал окружность ма-

малого радиуса, то резиновая проб-
пробка, привязанная к концу нити,

продетой через стеклянную труб-
трубку и поддерживающей на дру-
другом конце железный груз, будет
двигаться по горизонтальной ок-

окружности большего радиуса. Вес
железного груза будет натяги-

натягивать нить и создавать горизон-

горизонтальную силу, необходимую для

удержания движущейся пробки
на окружности. Эта сила и на-

называется центростремительной.
При наличии одного грузи-

грузика в виде железной шайбы, под-
подвешенной на нижнем конце нити,

покрутите пробку над головой,
слегка придерживая нить под стеклянной трубкой. Не приходится
ли крепче придерживать нить при увеличении скорости движения

пробки? Что происходит, когда вы перестаете придерживать нить?

Теперь займемся количественным исследованием зависимости

силы, вызывающей в данном случае ускорение, от скорости пробки,
ее массы и радиуса ее траектории. Сначала установим зависимость

силы от скорости при постоянных массе и радиусе.

Вытянем через стеклянную трубку в сторону пробки достаточ-
достаточный отрезок нити, чтобы пробка кружилась по траектории радиусом
около 100 см. Для контроля постоянства радиуса этой траекто-

траектории используем метку на нити в виде зажима, защемляющего

нить несколько ниже стеклянной трубки. Подвесим на нижнем

конце нити шесть или более таких же шайб, как в предыдущем
опыте.

Чтобы определить скорость движения пробки, один из участ-
участников опыта должен измерить время определенного числа оборотов
пробки, приводимой в движение другим участником. Зная время
известного числа оборотов, вычислим период Т и частоту f=\/T
обращения пробки. Повторим опыт при большем числе железных

шайб, подвешенных на нити.

Построим график зависимости периода от числа подвешенных

шайб. Каким другим графиком удобнее воспользоваться для вы-
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ражения полученных результатов? Попробуем построить график
частоты или квадрата частоты вместо графика периода. Какова

зависимость центростремительной силы от частоты при постоянной

массе и постоянном радиусе круговой траектории?
Для исследования зависимости центростремительной силы от

массы тела, движущегося по окружности, можно вращать сразу

две пробки вместо одной. Какого результата можно ожидать и

на каком основании? Труднее провести экспериментальное иссле-

исследование зависимости центростремительной силы от радиуса тра-

траектории при постоянных массе и частоте. Нельзя ли подсказать

путь такого исследования? Какова зависимость центростремитель-

центростремительной силы от массы, радиуса и частоты?

Во время опыта можно заметить, что при круговом движении

пробки отрезок нити между пробкой и стеклянной трубкой не

вполне горизонтален. Вес пробки оттягивает его вниз. Нельзя

ли объяснить, почему это проявление силы тяжести не влияет на

соотношение между силой (измеряемой числом одинаковых желез-

железных шайб), длиной нити, считая от трубки до пробки, и частотой

вращения пробки?

II 1.6. Закон равных площадей

Кеплер установил, что планеты движутся по эллиптическим

траекториям, причем воображаемая прямая, проведенная от Солнца
к планете, в равные промежутки времени очерчивает равные пло-

площади. С планетами нельзя экспериментировать, но можно поставить

опыт с маятником.

Шарик маятника, качающийся взад и вперед по короткой дуге,
движется почти по прямой горизонтальной линии. Если при этом

слегка щелкнуть по шарику в поперечном направлении, то он

начинает описывать эллипс. В случае планеты возвращающая сила

направлена к одному из фокусов эллиптической орбиты, а воз-

возвращающая сила, действующая на шарик маятника, направлена
к центру эллипса. Описанный ниже опыт позволяет выяснить,

очерчивает ли также и маятник равные площади в равные проме-
промежутки времени.

Сделаем импульсный фотографический снимок положений ша-

шарика маятника за время одного оборота (рис. III. 12). Фотоаппарат
располагается над маятником (на кольце штатива диаметром 17,5 см).
Объектив обращен вниз. Непосредственно под объективом распо-
располагается стробоскопический диск, вращаемый электромотором.
Шарик маятника освещается двумя осветителями (от волновой

кюветы) с противоположных сторон. Наилучшие результаты полу-
получаются, когда размах колебаний маятника соответствует углу в 10—
15° с вершиной в точке подвеса. Таким образом, чем длиннее нить

маятника, тем больше должен быть эллипс. При отсутствии необ-
необходимого фотографического оборудования можно исследовать

снимок, воспроизведенный на рис. III.13. (Рис. III.14 — увеличен-
увеличенная репродукция снимка, приведенного на рис. III. 13.) Они были
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получены на установке, показанной на рис. III. 12. Прочерчивает
ли линия, проведенная от шарика к центру эллипса, одинаковые
площади в равные промежутки времени?

II 1.7. Изменения количеств движения при взрыве

Имеем две тележки, первоначально находившиеся в покое и

затем разъезжающиеся в противоположные стороны под действием
внезапно возникающей силы, обусловленной как бы «взрывом».
Как изменяются количества движения тележек?

Чтобы вызвать внезапное появление силы, используем пружину,
сжатую связями, которые затем устраняются (рис. III. 15), (Для

Рис. III.15.

зарядки «взрывателя» следует втолкнуть стержень в трубку с пру-
пружиной и зацепить торец стержня за металлическую накладку на

торце тележки. Для «взрыва» необходимо стукнуть по вертикаль-

вертикальному стержню, опускающему горизонтальный стержень.) Отпустим
пружину при покоящейся тележке. Что при этом происходит?
Повторим это при различных грузах, положенных на тележку.
Какие заключения можно сделать относительно горизонтальной
составляющей количества движения тележки до и после «взрыва»?

Поставим вторую тележку перед первой так, чтобы пружина

при своем освобождении толкала вторую тележку. Что теперь

происходит при освобождении пружины? Повторим этот опыт при

различных грузах на тележках. Что можно сказать качественно

о скоростях тележек при нагружении их массами? Какая тележка,
по вашему мнению, приобретает большее количество движения

после «взрыва»?
Чтобы сделать этот опыт количественным, необходимо измерять

скорости и массы тележек. Не обязательно, однако, определять
скорости в метрах в секунду: годятся любые единицы. Можно

выражать скорости через отрезки пути, проходимые тележками
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в одинаковые промежутки времени. Допустим, что тележки от-

отскакивают друг от друга из положения на полпути между двумя

деревянными барьерами и имеют одинаковые скорости. В таком

случае звук удара обеих тележек о барьеры мы услышим в одно

и то же время. Если же одна из тележек движется быстрее другой,
то она ударится о барьер раньше, и мы услышим два отдельных

звука вместо одного. Можно, однако, переместить точку взаимного

отталкивания тележек в такое место, чтобы более быстрая тележка

Тележла /

Рис. III.16.

проходила больший путь до удара о барьер, чем более медленная-
После нескольких пробных попыток можно найти такое начальное

положение тележек, из которого они докатываются до барьеров
одновременно. На рис. III. 16 пути тележек от начального положе-

положения покоя обозначены через хг и х2. Эти пути проходятся тележками

за один и тот же промежуток времени, так что, если тележки дви-

движутся равномерно, можно написать:

v1 = x1lty v2 = xjt, или v1/v2 = x1/x2.

Таким образом, скорости тележек пропорциональны расстоя-
расстояниям, пройденным ими в одинаковое время.

Пользуясь описанным методом подбора начального положения

тележек с расчетом получить одинаковое время их движения,

определим отношение количеств движения тележек после «взрыва».

Каково приращение количества движения каждой тележки в ре-
результате «взрыва»? Исследуем это при различных соотношениях
масс загруженных тележек. Нельзя ли вывести какие-либо за-

заключения о соотношении между полными количествами движения

системы до и после «взрыва»?
Что произошло бы с полным количеством движения рассмотрен-

рассмотренных тележек, если бы вместо пружины между ними была помещена
динамитная палочка, которая при взрыве разбросала бы осколки

тележек и грузов во все стороны? (Не вздумайте, однако, воспро-
воспроизводить этот опыт!)
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111.8. Опыт с тележкой и кирпичом
Что произойдет, если подвешенный кирпич упадет на проезжа-

проезжающую под ним тележку? Подвесим кирпич так, чтобы тележка

проходила под ним, почти касаясь, но не задевая его (рис. III. 17).
Кирпич должен висеть неподвижно в горизонтальном положении.

Отведем тележку назад, толкнем ее и отпустим нить, поддерживаю-

поддерживающую кирпич, в момент прохождения под ним тележки. Что про-
произойдет? Будем повторять опыт

с различным числом нагружен-
нагруженных на тележку кирпичей. Как
будет влиять на движение уве-
увеличение массы груженой те-

тележки?

Для производства измерений
сделаем запись движения нена-

груженной и нагруженной тележ-

тележки на тянущейся за ней ленте.

Для обеспечения как можно боль-

большей равномерности движения
тележки до и после падения на

нее кирпича следует толкать те-

тележку с наибольшей скоростью, Рис. In.i7.

допускаемой условиями опыта.

Используя отметки времени на лентах и зная массы тележки

и кирпичей, вычислим изменение количества движения тележки

и горизонтальной составляющей количества движения подвешен-

подвешенного кирпича. Можно выражать количества движения в единицах:

кг-м/(время между двумя ударами отметчика времени).
Каковы соотношения между вычисленными изменениями коли-

количеств движения тележки и кирпича? Чему равна сумма горизон-
горизонтальных составляющих количеств движения тележки и кирпича

до и после их соприкосновения?
Сохраняется ли количество движения?
Какова горизонтальная составляющая импульса силы, подей-

подействовавшей на падающий кирпич? Путем анализа отметок времени
на ленте попытаемся оценить длительность взаимодействия кирпича
и тележки до начала их совместного равномерного движения.

Нельзя ли приближенно определить среднюю горизонтальную
составляющую силы, с которой тележка подействовала на кирпич

при его падении? Каково соотношение между этой величиной и

горизонтальной составляющей силы действия кирпича на тележку?
Что произошло с вертикальной составляющей количества дви-

движения кирпича? Имеет ли значение высота падения кирпича, если

она не настолько велика, чтобы тележка или стол могли сломаться?

Что произошло бы, если вместо падения кирпича на проезжаю-

проезжающую тележку сыпался бы песок из неподвижной воронки? Что

происходило бы со скоростью тележки, если бы песок не насыпался

на тележку, а высыпался из нее?
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Ш.9. Столкновение при движении в двух измерениях

Нами были исследованы изменения количеств движения со-

соударяющихся тел при их движении по одной прямой. Теперь вы-

выясним, что происходит, если после столкновения тела расходятся
по разным направлениям. Для этого заставим стальной шарик ска-

скатываться по желобу и косым ударом сбивать другой стальной

шарик того же диаметра с опоры, укрепленной у края стола (рис*
III. 18). При этом будем определять количества движения обоих

шаров по их массам и скоростям.

При определении скоростей шариков учтем то, что было выяс-

выяснено при изучении движения брошенного тела (см. раздел 20.3)*
Известно, что для тела, покояще-

гося на краю стола и получающего

бумага

Рис. I II.18. Рис. III.19.

различные начальные скорости в горизонтальном направлении,

требуется одинаковое время для падения до горизонтального

пола. Если пренебречь влиянием сопротивления воздуха, можно

утверждать, что горизонтальная составляющая скорости сброшен-
сброшенного тела во время полета не изменяется, так что его полный путь
по горизонтали пропорционален начальной горизонтальной состав-

составляющей скорости. Это обстоятельство можно использовать для

измерения скоростей шаров, испытавших удар.
Для сообщения скорости одному из шариков пустим его катиться

вниз по желобу (рис. III. 19). Шарик, служащий мишенью, должен
покоиться на слегка вогнутом торце вертикального установочного
винта. Расположим установочный винт на траектории ударяющего
шарика на расстоянии радиуса шарика от конца желоба. Винт

должен быть подвинчен до такой высоты, чтобы шарик, пущенный
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по желобу (лучше всего с отметки около 25 см), пролетал непосред-
непосредственно над винтом, но не задевал его.

Далее с помощью отвеса найдем точку на полу, расположен-
расположенную на одной вертикали с положением ударяющего шарика в

момент удара.
Склеим вместе четыре листа кальки или восковки так, чтобы

получился один большой лист. Важно, чтобы листы не наползали

друг на друга, для чего они должны быть склеены с помощью бу-
бумажных лент. Изготовим такой же большой лист из четырех листов

копировальной бумаги. Уложим копировальную бумагу на полу,
красящим слоем вверх, и на-

накроем ее калькой; при этом

отвес должен свисать над се-

серединой короткой стороны со-

составного листа бумаги (см.
рис. III. 18). Отметим соответ-

соответствующую точку на бумаге
под отвесом и прижмем бумагу
к полу грузами, чтобы она не

смещалась. Пустим стальной
^ ос Траектория

Шарик ВНИЗ ПО желобу С 25-налетающего
сантиметровой отметки. Пов- wawa

торим это 10—15 раз и очер-
очертим площадку на бумаге, на

которой отпечатались места /fжелобу \

падения шарика. В какой сте- *

пени начальная скорость от- рис. ш.го.

клоняется от постоянства?

Исследуем несколько последовательных ударов о стальной

шарик, покоящийся в равновесии на торце винта, отпуская уда-
ударяющий шарик каждый раз из одного и того же положения на

линейке. Чтобы изменять точку удара, будем поворачивать вбок
на небольшие углы площадку с винтом, поддерживающим шарик-
мишень. Чтобы разобраться в метках на бумаге, нужно пронуме-
пронумеровать последовательные кружки, очерчиваемые вокруг каждой
точки удара о бумагу.

Проведем на бумаге векторы, изображающие скорости шариков
после соударений. Положение ударяющего шарика в момент со-

соударения может быть определено по схеме, приведенной на рис*
III.20. Поскольку массы шариков равны, векторы скорости выра-
выражают также и их количества движения. Сложим графически век-

векторы количеств движения двух шариков, перенеся вектор коли-

количества движения шарика-мишени параллельно самому себе так,
чтобы его начало совпало с концом вектора количества движения

ударяющего шарика.
Каково соотношение между векторной суммой конечных мо-

моментов количества движения обоих шариков и количеством дви-

движения ударяющего шарика? Сохраняется ли количество движения
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при рассматриваемом взаимодействии тел? Каково соотношение

между арифметической суммой абсолютных величин количеств

движения после столкновения и абсолютной величиной начального

количества движения ударяющего шарика?

Повторим опыт, пользуясь шариками одинаковых размеров, но

разной массы. Какой шар лучше использовать в качестве ударяю-

ударяющего? Каково соотношение между векторной суммой конечных

скоростей и начальной скоростью? Каким образом получить век-

векторы количеств движения из векторов скоростей теперь, когда

массы обоих шариков не равны друг другу? Каково соотношение

между векторной суммой конечных количеств движения и началь-

начальным количеством движения?
Сравним между собой проекции векторов конечных количеств

движения обоих шариков на направление, перпендикулярное к

вектору начального количества движения. Каков результат этого

сравнения?
Для каждого столкновения шариков одинаковой массы вычислим

квадраты скоростей до и после столкновения. Каков результат
их сравнения? Не указывает ли он на сохранение чего-то еще, кроме
количества движения? Произведем такое же вычисление для столк-

столкновения шариков неравной массы. Сохраняется ли теперь сумма

квадратов скоростей? Умножим квадраты скоростей шариков после

столкновения на их соответственные массы и сравним сумму полу-
полученных произведений с таким же произведением для ударяющего
шарика до столкновения. Как вы думаете, что еще сохраняется
помимо количества движения?

ШЛО. Моделирование процесса столкновения ядер

Процесс столкновения ядер изучается обычно с помощью тол-

толстослойных фотопластинок и камер Вильсона. В этих установках
заряженные частицы, двигаясь с большой скоростью, ионизуют
атомы, встречающиеся на их пути, и оставляют за собой видимый
след. Работа ионизации атомов совершается за счет кинетической

энергии заряженных частиц, которые в результате этого замедляют

свое движение. Расстояние, пройденное частицей в камере до полной
остановки, называется длиной пробега. Длина пробега зависит от

кинетической энергии частицы при ее входе в камеру. Направляя
в камеру частицы, обладающие известной энергией, можно уста-
установить соотношение между длиной пробега и энергией. Это соот-

соотношение можно также в дальнейшем использовать для определения

энергии частиц по их длинам пробега. Таким способом мы можем

найти энергии частиц, испускаемых ядрами в результате их столк-

столкновений. Если массы частиц известны, легко определить и их коли-

количества движения.

Существуют строгие доказательства закона сохранения коли-

количества движения при столкновении ядер. Поэтому, наблюдая столк-
столкновение ядер, в -процессе которого часть количества движения
кажется потерянной, можно на основании этого закона заключить,
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Мезонит

Лист миллиметровой
бумаги

что в процессе столкновения выделяется по крайней мере одна

незаряженная частица, не оставляющая следа, которая и уносит
с собой недостающее количество движения.

В этом опыте изучается явление, аналогичное столкновению

ядер; вместо частиц будем использовать монеты, а вместо камеры
Вильсона — лист гладкой бумаги, по которому скользят монеты

до их остановки под действи-
действием сил трения. Расстояние,

пройденное монетой на бумаге
(длина пробега), зависит от

кинетической энергии монеты,

Для определения соотноше-

ния между энергией и длиной
пробега монеты будем спу-
спускать ее по наклонной пло-

плоскости из гладкого картона с

различных высот, сообщая ей
таким образом различную
энергию (рис. III.21). Для
каждой величины энергии
можно затем измерить рас-
расстояние, пройденное монетой

до остановки. Зная массу и

соотношение между длиной

пробега и энергией монеты,

нетрудно определить ее скорость и количество движения после

столкновения.

Прежде чем приступить к моделированию ядерного столкно-

столкновения, необходимо найти соотношение между длиной пробега и

энергией монет. Выберем три монеты, которые легко скользят по

наклонной плоскости и имеют примерно одинаковую длину пробега
при спуске их с одной и той же высоты. Найдем расстояния, про-
проходимые этими монетами на бумаге после спуска с разных высот.

Сделаем несколько спусков с каждой высоты и усредним результат.
В каком соотношении находится кинетическая знергия монеты

в конце ската с высотой точки ее пуска? (Трением монеты во время
движения по наклонной поверхности можно пренебречь.) График
зависимости длины пробега от кинетической энергии и есть искомое

соотношение.

Теперь приступим к моделированию столкновения ядер. Поме-
Поместим одну монету (имитирующую ударяемое ядро) на бумаге, а

вторую заставим скользить по наклонному скату, сообщив ей

определенную кинетическую энергию (наклонная плоскость соот-

соответствует ускорителю, который сообщает кинетическую энергию
атомной частице). Ударяемая монета должна находиться на рас-
расстоянии около 10 см от нижнего конца наклонной плоскости,
для того чтобы ударяющая монета не могла перескочить че-

через нее.

Рис. 111.21.
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налетающеймонеты

Рис. Ш.22.

Остальную часть опыта проводит один из экспериментаторов,
а другие не должны при этом присутствовать. Заставим монету

скользить по наклонной плоскости и сталкиваться с другой монетой.

Измерим высоту спуска и отметим конечное положение ударяющей
монеты и начальное положение ударяемой. Экспериментатор должен

затем отметить координаты уда-

ударяемой монеты в ее конечном

положении, не сообщая их парт-

партнерам. Остальные участники
опыта определяют количество

движения и конечное положение

ударяемой монеты, которая со-

соответствует в данном случае не-

незаряженной атомной частице, не

оставляющей следа. Для опре-
определения положения ударяющей
монеты в момент столкновения

можно пользоваться рис. Ш.22.

Какой основной закон необхо-

необходимо применять для определения
неизвестного количества движения? Какая часть кинетической

энергии ударяющей монеты потеряна в столкновении?

Повторим опыт, используя в качестве мишени две монеты, раз-
размещенные одна за другой. Найдем «неизвестное» количество дви-

движения и конечное положение одной из этих монет,

III. 11. Изменение потенциальной энергии
Подвесьте пружину на штативе и зацепите за нее груз с массой

около 1 кг. Приподнимите груз на несколько сантиметров вверх
от положения покоя и отпустите его. Совершая колебательное

движение, груз приостанавливается в верхней и нижней точках.

Когда груз находится в нижней точке, его энергия запасена рас-
растянутой пружиной. В верхней точке движения энергия груза
накоплена полем тяготения. Сравним изменения энергии тяготения

и потенциальной энергии пружины.
Изменение потенциальной энергии пружины можно определить,

растянув пружину от положения хг до х2 на Ах и подсчитав работу
этого растяжения (рис. II 1.23). Изменение потенциальной энергии
тяготения во время падения массы с высоты Ах определяется ра-
работой, которую необходимо затратить для того, чтобы поднять эту
массу на ту же высоту Ах. Затем вы можете сравнить энергию тя-

тяготения, потерянную при падении груза от высшей до низшей

точки, с энергией, накопленной пружиной в процессе ее растя-
растяжения.

Для определения потенциальной энергии пружины необходимо

прежде всего связать растяжение пружины с усилием, требуемым
для этого растяжения. Для этого будем подвешивать к пружине

грузы с различными массами (но не более 1,5 кг) и найдем зави-
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симость растяжения х пружины в метрах от действующей силы F>

выраженной в ньютонах. Построим эту зависимость в виде графика.
Пропорциональна ли сила F растяжению пружины xi

Если на графике получилась прямая, можно найти постоянную

пружины k = Fix по наклону этой прямой и написать выражение
для потенциальной энергии пру-
пружины, т. е. уравнение зависи-

зависимости потенциальной энергии,
накопленной пружиной, от ее

растяжения. Как можно опреде-
определить потенциальную энергию для
данного растяжения пружины,
если график зависимости F от х

не прямолинеен?
Подвесим теперь к пружине

килограммовую гирю и, поддер-
поддерживая гирю рукой, дадим пру-
пружине растянуться примерно на

20 см от ее длины в ненагружен-
ном состоянии, не позволяя гире

далее растягивать пружину. С

помощью зажимов, прикреплен-
прикрепленных к стойке штатива, отметим

положение конца пружины, ког-

когда она находится в ненагружен-
ном состоянии, и положение при

растяжении на 20 см. Отпустим
гирю и отметим с помощью зажи-

зажима низшую точку ее движения. Повторим это несколько раз, убе-
убедившись в правильности положения отметки низшей точки колеба-
колебательного движения гири.

Рассчитаем уменьшение потенциальной энергии тяготения и

накопление потенциальной энергии пружиной в процессе падения

гири. Каково их соотношение? Повторим опыт, бросая гирю с

высоты около 25 см от положения нижнего конца пружины в нена-

груженном состоянии.

Повторим опыт с гирей 0,5 кг и рассчитаем изменение потен-

потенциальной энергии тяготения и потенциальной энергии пружины
при падении этой гири с высоты 10 см от нижнего конца ненагру-
женной пружины.

Сохраняется ли энергия в процессе взаимодействия гири и пру-
пружины? Является ли это взаимодействие упругим?

Какова сумма потенциальных энергий, когда килограммовая

гиря проходит отметку, соответствующую половине ее высоты

падения?
В каком соотношении эта сумма находится с начальной энергией

гири?
Как вы объясните это соотношение?

Рис. III.23.
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Как можно проверить ваше объяснение?
Если есть время, постройте график зависимости суммы двух

потенциальных энергий от растяжения пружины. О чем говорит
этот график?

III. 12. Энергия математического маятника
Во время качания маятника кинетическая энергия переходит

в потенциальную и обратно. Можно исследовать этот переход
энергии, используя для отметок времени бумажную ленту, прикреп-
прикрепленную к грузу маятника и предназначенную для измерения ско-
скорости маятника в его различных положениях во время качания
При сравнении кинетической и потенциальной энергии необхо-
необходимо пользоваться одинаковыми единицами измерения.

Подвесим тяжелый груз, такой, как кирпич, с помощью длинной
нити к жестко закрепленному штативу. Маятник должен иметь
длину не менее 2 м. Измерим длину маятника от точки подвеса до
центра тяжести груза. Поместим отметчик времени примерно на
уровне положения груза маятника в его низшей точке, как это

Расчалки

7
Отметчи/с
времени

Рис. III.24.

показано на рис. II 1.24. (На штырь неподвижной тележки наклеи-
наклеивается миллиметровая лента; врезка показывает форму бумажного
рейтера, предназначенного для фиксации максимального сжатия
пружины.) Отклоним груз не более чем на 15° от вертикального
положения и будем удерживать его в этом положении нитью, при-
прикрепленной к грузу так, чтобы линия действия силы вдоль нити

проходила через его центр тяжести.

Включим отметчик времени и отпустим нить. Двигаясь по дуге,
груз маятника будет тянуть за собой ленту, на которой регистри-
регистрируются его положения через последовательные промежутки вре-времени. (Если опыт проводится вдвоем, то груз лучше остановить
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после того, как он, достигнув крайнего положения первого ка-

качания, начнет обратное движение.)
По отметкам времени на ленте, зная тарировку отметчика вре-

времени в секундах, строим график зависимости расстояния, пройден-
пройденного грузом маятника, от времени, измеряя расстояние от точки

отпускания маятника. Используя график, найдем скорость дви-

движения груза маятника по крайней мере для восьми различных
его положений. Зная скорость и массу груза маятника, можно

легко определить его кинетическую энергию в любом из этих по-

положений. (Что выбрать за единицу энергии, если кирпич исполь-

используется в качестве единицы массы? Какие будут единицы энергии,

если масса кирпича измеряется в килограммах?)
Строим график зависимости кинетической энергии маятника от

его положения. В каких точках кинетическая энергия достигает
минимального и максимального значений?

Как изменяется потенциальная энергия в различных положе-

положениях груза маятника? Для этого необходимо знать высоту, на

которую был поднят груз маятника. Существует простое соотно-

соотношение между горизонтальным перемещением груза маятника и

высотой его подъема. Пусть L — длина маятника, х — горизон-
горизонтальное смещение груза от точки покоя и ft. — высота подъема

груза над точкой покоя. Можно показать, что ft =x2/2L для х,
небольших по сравнению с L. Какова потенциальная энергия ма-

маятника в положениях, для которых рассчитана его кинетическая

энергия? Постройте на графике для кинетической энергии график
для потенциальной энергии.

Как изменяется потенциальная энергия по сравнению с кине-

кинетической? На том же графике постройте график зависимости для

суммы потенциальной и кинетической энергии. Уверены ли вы, что

используете одни и те же единицы для обоих видов энергий? К ка-

какому заключению приводит график зависимости для суммарной
энергии маятника?

Почему угол отклонения маятника от вертикали ограничен 15°?
Можно ли выполнить опыт с большим размахом колебаний маят-

маятника? Как определить потенциальную энергию в этом случае?
Можно ли сказать, что сумма двух видов энергии в этом случае
останется постоянной?

Почему необходимо измерить массу груза для сравнения ки-

кинетической и потенциальной энергии?

III. 13. Лобовое столкновение

Вся ли кинетическая энергия движущейся тележки переходит
в потенциальную энергию пружинного буфера, о который она

ударяется?
Чтобы выяснить этот вопрос, соберем установку, изображен-

изображенную на рис. III.25.

До производства измерений следует попрактиковаться в на-

накатывании тележки на буфер. Необходимо не слишком поздно
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отдергивать руку от тележки, чтобы можно было успеть измерить

скорость тележки перед ударом о буфер. По скорости и массе те-

тележки можно определить ее кинетическую энергию. Будем нака-

накатывать тележку с различной начальной скоростью и построим гра-

график зависимости между кинетической энергией тележки и наиболь-

наибольшим сжатием пружины, Для сравнения кинетической энергии

Рис. II 1.25. Рис II 1.26.

с потенциальной энергией упруго деформированной пружины
целесообразно выражать обе в джоулях.

Чтобы вычислить максимальную энергию деформированной
пружины для каждого отсчета, надо знать силу действия пружины
на тележку как функцию сжатия пружины. Для этого повернем
зажатую струбцинками тележку в вертикальное положение, как

показано на рис. II 1.26, и будем сжимать пружину до различных
значений деформации путем накладывания сверху различных
гирь. Построим график зависимости силы от величины сжатия

пружины. Пользуясь этим графиком, определим потенциальную
энергию пружины для каждой величины сжатия.

Построим на первом графике (кинетической энергии) кривую
потенциальной энергии пружины в функции ее сжатия. Сравним
обе кривые, К какому заключению приводит это сравнение?



МЕТОДИЧЕСКОЕ
РУКОВОДСТВО





Введение

Часть III этого курса посвящена динамике. Она начинается с общего вопроса:

«Почему тела движутся так, как мы это наблюдаем?». Рассмотрение этого вопроса

естественно приводит к изучению силы и массы и к выявлению важных парамет-

параметров
— импульса и энергии.

В общем случае возможны два подхода к проблемам динамики. Один из них

состоит в детальном, от точки к точке, рассмотрении движения тела, что мы можем

назвать дифференциальным подходом. При этом исходят из некоторого начального

положения тела и его скорости, а также силового поля. Силовое поле исполь-

используется для определения результирующего ускорения, а знание ускорения делает

возможным последовательное, шаг за шагом, построение траектории. Второй

подход может быть назван интегральным подходом. При этом игнорируются

детали взаимодействия, а некоторые характеристики конечного состояния дина-

динамической системы выводятся с помощью законов сохранения, которые связывают

параметры конечного состояния с параметрами начального состояния.

Громадное количество динамических проблем, представляющих интерес в

повседневной работе физика, может быть решено наиболее просто с помощью

интегрального подхода. По этой причине в части III курса на законы сохранения

обращено особое внимание. Этим законам отведена гораздо большая роль, чем

в обычных курсах средней школы. Законы сохранения лежат в основе многих

разделов современной физики. Очень важно, чтобы учащиеся прочувствовали
их происхождение, их полезность и область их применимости.

С другой стороны, какие бы то ни было интуитивные ощущения учащегося
в отношении динамики должны быть безусловно связаны с его хорошим знанием

сил и движений. Поэтому логично начинать изучение динамики с дифференци-
дифференциального подхода, подводя учащихся в конце концов к пониманию полезности

интегральных методов.

В соответствии с такой структурой часть III начинается с рассмотрения (в
гл. 19) закона Ньютона />"= та. Подход здесь является отчасти историческим,

поскольку методы, развитые Галилеем и Ньютоном при решении этой основной

проблемы, представляют, как мы это считаем, истоки физики. В гл. 19 имеется

широкая возможность выяснения как ценности самих этих методов, так и тех

физических следствий, которые получаются при их применении.
В гл. 20 рассматривается класс динамических проблем, в которых силовое

поле является особенно простым и хорошо известным. В случае силы тяжести
мы ограничиваемся в основном движениями вблизи земной поверхности, когда
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эту силу можно считать постоянной. В конце этой главы приводятся свидетель-

свидетельства того, что сила тяжести падает с увеличением расстояния от Земли. Это при-

приводит к гл. 21, где решение проблемы движения планет проводится в историче-

историческом плане.

Остальные четыре главы части III посвящены выводу важнейших законов

механики — законов сохранения импульса и сохранения энергии. В гл. 22 сохра-

сохранение импульса устанавливается с помощью эксперимента, так что оно имеет

смысл нового физического закона, а не выводится из второго и третьего законов

Ньютона, как это иногда делается. Действительно, на той стадии, когда рас-

рассматривается сохранение импульса, третий закон Ньютона еще не введен. Важно,
чтобы ваше изложение учащимся этого материала было согласовано с указанной
точкой зрения. Смешение этих двух возможных подходов почти наверняка вы-

вызовет путаницу у учащихся. Справедливость закона сохранения импульса, как

и других физических законов, введенных ранее, устанавливается на базе обоб-

обобщения результатов большого числа экспериментальных наблюдений.

Последние три главы части III содержат широкое рассмотрение понятия

энергии. Эти главы довольно сильно отклоняются от стандартного пути, по ко-

которому идет трактовка этих вопросов в большинстве вводных курсов. По этой

причине, возможно, стоит вкратце обсудить основные черты того способа рас-

рассмотрения энергии, который применяется в этих главах.

Применение закона сохранения энергии является мощным методом для

решения широкого круга проблем, ввиду чего энергия является одним из фунда-
фундаментальных понятий физики. Поэтому для учащихся очень важно усвоить как

само понятие энергии, так и закон ее сохранения.

В Учебнике не содержится попытки дать специфическое, краткое определение
энергии. Такого определения попросту не существует! Вместо того чтобы начинать

с определения, гораздо лучшего понимания и оценки значения идеи энергии можно

достичь путем построения представлений о том, как понятие энергии может быть

применено к большому количеству проблем. Для осуществления этого подхода

в Учебнике развиваются следующие мысли.

Термин «энергия» применяется для обозначения широкого класса различных

характеристик движения и относительного расположения материи. Единый термин
полезен потому, что все эти широко различные характеристики связаны единым

законом сохранения. Чтобы подчеркнуть широту понятия энергии и обратить
особое внимание на сохранение энергии, в Учебнике умышленно избегаются

такие слишком упрощенные определения, как «мера произведенной работы».
Вместо этого сразу вводятся различные формы энергии и обсуждается превраща-
превращаемость энергии из одной формы в другую. Понятие работы занимает принад-

принадлежащее ему по праву место просто как один из способов передачи энергии. Ра-

Работа определяется количественно; тогда появляется возможность дать количест-

количественную формулировку некоторых форм энергии, исходя из величины работы,
затраченной на ее образование.

Стратегия изложения материала Учебника основана на введении трех форм
энергии, именно: кинетической, потенциальной и тепловой. С помощью этих трех

форм оказывается возможным обсудить переход энергии из одной формы в другую,
показывая при этом, что общее количество ее сохраняется.

Можно привести примеры, иллюстрирующие некоторые трудности, которые
возникают, если энергия определяется просто как «мера произведенной работы»,
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Рассмотрим бейсбольный мяч. движущийся горизонтально со скоростью v.

Относительно земли он имеет кинетическую энергию тФ12. Но относительно

наблюдателя, находящегося на движущемся поезде, он имеет иную кинетическую

энергию. Поэтому количество работы, которую может произвести этот бейсболь-

бейсбольный мяч, зависит от того, производит ли он работу над телом, находящимся на

земле или в поезде.

Если бы этот мяч был брошен горизонтально с края обрыва, человек, нахо-

находящийся на дне обрыва, сказал бы, что мяч обладает одновременно и кинетической

и потенциальной энергией. Следовательно, способность мяча производить работу
зависит не только от его горизонтальной скорости, но и от высоты (или глубины)
системы, над которой он производит работу. (Если бы человек на дне обрыва
выкопал яму в земле, он мог бы получить от мяча еще больше работы.)

Чтобы еще больше усложнить ситуацию, можно поместить мяч в огонь после

его приземления. Тогда можно получить дополнительную работу, приведя в дей-

действие тепловую машину с помощью теплоты, выделившейся при высвобождения

химической энергии от сгорания мяча. Измерение энергии мяча его способностью

совершать работу требует теперь знания не только его горизонтальной скорости
и высоты, но также и его теплосодержания. Однако и в этом случае (если только

температура отработанных газов не равна абсолютному нулю) не вся тепловая

энергия может быть превращена в работу; большая ее часть будет выброшена

в окружающее пространство вместе с отработанными газами.

Наконец, вещество мяча может аннигилировать с антиматерией, высвобож-

высвобождая при этом энергию в виде излучения.

Даже из этого краткого обзора многочисленных форм, в которых проявляется

энергия, ясно, что никакое краткое определение не в состоянии дать сколько-

нибудь адекватного представления об истинной широте этого понятия. Важно

выработать у учащихся ощущение особой важности именно закона сохранения,

когда мы имеем дело с многообразными проявлениями того, что мы зовем энергией.

ТАБЛИЦА 1

Главы

19

20

21

22

23

24

25

9-недельный план изучения

части III

В классе,

часы

4

8

3

8

6

4

4

В лабо-
лаборатории,
часы

2

1

0

2

1

1

0

Опыты

III. 1, III. 2

III. 5

III. 7, III. 8

III. 10

III. И

15-недельный план изучения
части III

В классе,
часы

4

14

5

9

9

7

8

В лабо-
лаборатории,
часы

3

2

1

3

1

2

1

Опыты

III. 1, III. 2.
III.3

III. 4, III.5

III. 6

III. 7, III. 8.
III.9

III. 10

III. 11, III. 12

III. 13
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Если вы сумеете создать у своих учащихся некоторые представления в этом духе,

они получат нечто гораздо более мощное, чем изящно сформулированное, но

неполное определение, состоящее из пяти слов.

План части III

В табл. 1 представлены два возможных варианта плана изучения части III.

Распределение материала, рассчитанное на 9 недель, предназначено в качестве

примерного плана в том случае, когда на весь курс отводится 36 недель. 15-не-

дельный план распределения материала показывает, как можно использовать

дополнительное время в случае 54-недельного курса.



ГЛАВА

19 ЗАКОН ДВИЖЕНИЯ НЬЮТОНА

В этой главе вводится закон движения Ньютона, который составляет основу

изучения механики. Ввиду разнообразия и сложности явлений, которые могут
быть истолкованы с помощью этого закона, его элегантная простота почти уди-
удивительна. Чтобы прочувствовать область применимости и возможности закона

Ньютона, учащиеся должны освоить его приложения. Соответствующие примеры
даны в разделе ДКЛ Учебника. Однако слишком раннее или слишком преувели-

преувеличенное внимание к формальной стороне применений закона Ньютона, особенно
в случае некоторых наиболее сложных задач, может нанести ущерб основным

представлениям учащихся о соотношениях между силой, временем, скоростью
и массой. По этой причине формальное установление закона Ньютона отклады-

откладывается в Учебнике до тех пор, пока с помощью анализа простых экспериментов
в которых фиксируются две изменяющиеся константы, не будет установлено
соотношение между двумя другими. Такой подход преследует цель избежать

простого запоминания формулы F=ma без действительного усвоения фундамен-
фундаментального соотношения между силой, временем, скоростью и массой. Лабораторные
работы III. 1—II 1.3 также способствуют этой цели.

Закон движения Ньютона основывается на широком круге экспериментов

и наблюдений, которые описываются в этой и последующих главах. В разделах

19.8—19.10 для полноты представлений приводятся свойства этого закона, ко-

которые не проверяются путем непосредственного сравнения с экспериментом вплоть

до гл. 20. Тем не менее, задачи ДКЛ Учебника, относящиеся к этим разделам,

весьма полезны. Они служат в качестве ценного обзора простейших действий
с векторами и являются введением в механику. Те понятия, для усвоения которых

число соответствующих задач ДКЛ может оказаться недостаточным (инертная
и гравитационная массы, переменные силы), встретятся нам снова в следующих

главах, где они изучаются более детально.

Краткое содержание главы 19

Разделы 19.1, 19.2. Закон инерции Галилея вводится после того, как у

учащихся выработано представление о свободном от сил движении. Специально

указаны причины, побудившие Галилея сделать заключение на основе идеализи-

идеализированной, а не реальной физической ситуации.

Разделы 19.3, 19.4. Количественное соотношение между силой и движением

формулируется прямо на основе простых экспериментов. При постоянной массе

и постоянной силе Аи—А/. При постоянной массе и постоянном времени Аи—F.

Эти два факта объединяются уравнением Аа~Fkty или Ду/А/~F.

Сила вводится интуитивно в связи с понятиями «толкать» или «тянуть».

Постоянство действующей силы основывается на естественном предположении
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о том, что при постоянном растяжении пружины или резинки получается постоян-

постоянная сила натяжения. Относительная шкала сил основана на предположении ад-

аддитивности (согласно которому две идентичные пружины, одинаково растянутые

параллельно друг другу в одну и ту же сторону действуют с силой, в два раза

большей, чем действовала бы любая из них, если бы тянула в одиночку).
Разделы 19.5, 19.6. Вводится понятие инертной массы и исследуются свой-

свойства этой величины. Эксперимент показывает пропорциональность между инерт-
инертной и гравитационной массами. Вводится килограмм в качестве эталона массы.

Раздел 19.7. Существующие между различными динамическими и кинема-

кинематическими переменными соотношения пропорциональности, которые были уста-
установлены в предыдущих разделах, объединяются в едином уравнении F At= m До

(или F=ma). Поскольку единицы массы и ускорения уже определены, это урав-

уравнение определяет единицу силы, которая в системе СИ называется ньютоном.

Разделы 19.8—19.11. Закон Ньютона обобщается, далее, путем ссылки на

экспериментальное подтверждение его применимости в случае переменной силы.

Векторный характер силы и ускорения, как и уравнения F~mat также уста-

устанавливается экспериментально.

Закон Ньютона может быть распространен как на случай сил, изменяющихся

во времени, так и на случай, когда несколько сил действуют одновременно. В по-

последнем случае результирующее ускорение оказывается точно таким же, как

если бы эти несколько сил были заменены их векторной суммой. Это служит
экспериментальным доказательством того, что силы складываются как векторы,

и наводит на мысль, что закон Ньютона в действительности имеет векторную

форму: F— та. Чтобы определить ускорение а, важно знать результирующую

силу, включая и силы сопротивления, такие, как трение. Закон Ньютона основан

на знании сил и особенно полезен для предсказания движения в том случае,

когда все силы известны. Менее очевидным, но не менее важным приложением

(особенно при изучении физики) является нахождение неизвестной силы по на-

наблюдаемой величине ускорения, производимого этой силой. Из такого исследо-

исследования мы узнаем очень многое относительно сил, существующих в природе. Мы

можем включить их в наши уравнения, и, таким образом, появляется возмож-

возможность предсказывать движения, которые могут происходить при их действии.
В обескураживающе простом на вид уравнении F— та заключено такое оби-

обилие важнейших физических идей, что, для того чтобы учащиеся получили неко-

некоторое представление о его возможностях, они должны прийти к нему постепенно,

со все возрастающим представлением о значении этого основного соотношения.

В противном случае они быстро запомнят это уравнение, научатся применять

его к простым задачам, но не получат представления о его действительной силе.

При изучении материала Учебника, выполнении лабораторных работ, во время
классной работы три основных понятия — закон инерции, закон Ньютона и

инертная масса — должны быть усвоены полностью, прежде чем будет введено

уравнение F=ma.

Рискуя повторить кое-что из обзора содержания главы, мы все же считаем,

что стоит рассмотреть логическое развитие этой главы с точки зрения последовав

тельности тех идей, которые должны быть преподаны.

1. Закон инерции не требует ни количественного представления о массе, ни

количественного измерения силы. Инерция может быть введена на уроке с по-

помощью демонстрации еще до того, как учащиеся прочтут несколько первых раз-*
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делов Учебника. Некоторые учащиеся лучше оценят заслугу Галилея, если сами

попробуют сделать заключение о природе движения до того, как познакомятся

с его простыми, но элегантными доводами.

2. Постоянная сила производит постоянное изменение скорости независимо

от того, какой скоростью обладало тело до ее действия. (Для наглядного пред-

представления о постоянной силе используется постоянное растяжение пружины или

резинки;
на этом этапе нет необходимости вводить ни относительную, ни абсо-

абсолютную шкалу сил.) Используя рис. 19.5, 19.6 и рис. 19.7, класс может сделать

заключение о том, что Av~At.

3. Изменение скорости любого объекта пропорционально результирующей

силе, действующей на него. (Необходимая для установления этого относительная

шкала сил основывается на разумном предположении о том, что две одинаковые

пружины, тянущие в одну сторону, действуют с силой, вдвое превышающей силу

каждой из них.) Таким образом, &v~ F. Учитывая, что Av одновременно пропор-

пропорционально At и F, получаем До— FAt> или F— Av/At.

4. Инертная масса объекта определяется изменением движения объекта в

результате действия данной силы. Таким образом, отношение масс определяется

через отношение ускорений, получающихся при действии данной силы.

5. После того как эти понятия усвоены, учащиеся уже в состоянии понять

эталон массы, определение единиц и уравнение F= та. Хотя пропорциональность

между F и Av/At устанавливается довольно рано и учащиеся уже знают из гл. 5,

что Av/At есть не что иное, как ускорение, понятие ускорения как такового не

используется в Учебнике до тех пор, пока не будет рассмотрено влияние массы.

На этом этапе формулируется соотношение F At=m Av и отмечается, что его

можно переписать в эквивалентной форме F=ma. Если материал первых раз-
разделов пройден слишком быстро, учащимся может показаться, что в рассуждениях

имеется порочный круг, поскольку запомнив, что ньютон определяется равен-

равенством F = ma, они путаются в отношении того, является ли F — ma законом или

определением.

6. Результирующую силу можно ввести, наблюдая за ускорением тела под

действием нескольких сил. Этот факт используется для того, чтобы показать, что

две силы складываются как векторы.
7. F^ma является векторным соотношением; оно не зависит от скорости

объекта v.

План изучения главы 19

ТАБЛИЦА 2

Глава 19

Разделы

19.1, 19.2

19.3, 19.4

19.5, 19.6

19.7—19.11

9-недельный план изучения

части III

В классе,
часы

1

1

1

1

В лабо-
лаборатории,
часы

0

2

0

0

Опыты

III.l, III. 2

15-недельный план изучения

части III

В классе,
часы

1

1

1

1

В лабо-
лаборатории,

часы

0

2

1

0

Опыты

III. 1, III.2

III. 3
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Дополнительные материалы к главе 19

Лаборатория. Раздел ЛР Учебника содержит описание трех опытов,

относящихся к гл. 19. Если у вас нет времени проделать все три, следует отдать

предпочтение работам III.1 и III.2. Выполнение опытов III.2 и III.3 должно

предшествовать изучению соответствующего материала в классе. Подробные
рекомендации по планированию и проведению лабораторных работ см. на стр. 385.

В опыте III. 1 (Изменение скорости под действием постоянной силы) для

регистрации изменений скорости тележки, на которую действует постоянная

сила, служит отметчик времени на ленте. Для получения постоянной силы ис-

используется постоянное растяжение резинки.
В опыте II 1.2 (Зависимость ускорения от силы и массы) используются те же

приспособления, что и в опыте III. 1.

В опыте II 1.3 (Инертная и гравитационная массы) используются инерцион-
инерционные и обычные весы для того, чтобы показать пропорциональность инертной и

гравитационной масс. Показывается, что операция инерционного уравновеши-

уравновешивания не зависит от силы тяжести.

Домашние классные и лабораторные задания. Ответы, реше-

решения и таблица классификации задач в соответствии с их примерным уровнем

трудности приведены на стр. 236.

19.1 Понятие о силе и движении

19.2 Движение в отсутствие силы

Цель. Установить различие между кинематикой и динамикой. Поставить

вопрос: «В чем причина движения?» Обсудить догалилеевские попытки понять

динамику и ввести закон инерции Галилея.

Содержание, а) Кинематика есть систематическое описание движения,

б) Динамика есть анализ причин движения.

в) Понятие силы является обобщением представлений «тянуть» и «толкать».

г) Когда на объект не действует никакая результирующая сила, его движение

остается неизменным.

Методические указания. Если разделы 19.1 и 19.2 будут заданы на

дом, то потребуется лишь весьма краткое их рассмотрение в классе. Однако вы

можете вначале обсудить несколько первых разделов этой главы, а затем уже

дать домашнее задание.

Если вы решили начать изучение этого материала в классе, вы можете по-

попросить привести и выписать на доске примеры движений тел, которые никто не

тянет и не толкает. Затем для каждого примера следует коротко охарактеризо-
охарактеризовать движение, как это сделано в табл. 3.

После того как вы выбрали несколько примеров каждого типа, обратите
внимание учащихся на три категории движений: 1) замедленное, 2) ускоренное
и 3) с постоянной скоростью.

Чтобы получить представление о степени осведомленности учащихся, можно

попросить их указать причины или дать объяснение наблюдаемых движений.

Возможно, среди ваших учащихся найдутся такие, которые уже подумали о

тяготении или о трении как о внешних агентах. В этом случае нет причин избегать

короткого упоминания об этих механизмах.
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Т АБЛИЦА 3

Объект Движение Тип

Автомобиль (с выключенным мотором

и без тормозов)
Книга, которую толкнули так, что
она скользит по дсске

Мел (или какой-нибудь иной пред-
предмет), который падает

Шар, катящийся по склону

Луна, вращающаяся вокруг Земли

Земля, вращающаяся вокруг своей

оси

Замедляется и останавливается

Замедляется и останавливается

Ускоряется, пока не упадет на

пол

Ускоряется, пока не кончится

склон

Идет по кругу с постоянной

скоростью

Вращается с постоянной ско-

скоростью

После того как учащиеся поняли эти три категории движений, сконцентри-

сконцентрируйте обсуждение на том, каким образом можно было бы заставить тело, движу-

движущееся замедленно, двигаться подольше. Класс заинтересуется этим и приведет

хорошие примеры уменьшения силы трения с помощью смазки. Может быть,

кто-нибудь из учащихся даже знает о воздушной подушке из научно-популярной
литературы или познакомился с ней в предметах домашнего обихода, таких,
как пылесос, передвигающийся на струе выходящего воздуха.

Наконец, спросите, что случилось бы с движением, если бы трение можно

было уменьшить до нуля. Спросите учащихся, как бы они убедили в правильнос-
правильности своего ответа. Следует подвести класс к убеждению, что подобный эксперимент
никоим образом нельзя осуществить реально; для этого необходимо рассуждение,
подобное тому, которое приведено в Учебнике в связи с рис. 19.3 и 19.4.

Желательно удостовериться в том, что учащиеся поняли, как интерпрети-
интерпретируются количественно стробоскопические фотографии, приведенные на рис. 19.5, а,
19.7 и 19.9. Экспериментальную технику можно объяснить, используя либо
аналогичную демонстрационную установку, либо объяснительные рисунки (см.
рис. 19.5,6, 19.6, 19.8, 19.11 и 19.13).

Можно предложить учащимся определить скорость ползуна на рис. 19.5, а.

С помощью циркуля они легко найдут, что эта скорость равна приблизительно
14,1 см за вспышку или 33,7 см в секунду. Они должны произвести это измерение
с точностью 1% или 2%. Можно спросить у учащихся, во сколько раз рисунок
уменьшен по сравнению с натурой (9,2 см), или попросить их определить диаметр
ползуна (около 15,5 см).

Учащиеся не смогут измерить скорость на рис. 19.5, а с точностью, доста-

достаточной для того, чтобы обнаружить замедление. Это замедление (как указано
в конце раздела 19.2) равно всего лишь 1,2 см/с2. Поэтому в течение интервала
в 10/24 с скорость изменяется всего лишь на величину 0,3 см/с, которую нельзя
заметить, поскольку она составляет менее одного процента от измеренной ско-

скорости.
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(Если бы некоторое тело двигалось строго в одном направлении по идеально

плоскому столу, такое замедление можно было бы получить, если бы один край

метрового стола был на 1,3 мм @,13 см) выше другого. Чтобы экспериментально

исследовать столь малую силу трения, нужно было бы использовать совершенно

плоский стол, тщательно установленный по уровню горизонтально. Больше того,

стол и пол, на котором он установлен, должны быть очень твердыми. И, наконец,

поверхность стола должна быть чистой. Например, кристаллики инея, оседаю-

оседающие из воздуха, мешали бы этому движению.)
С вашей помощью в ходе предварительной беседы учащиеся смогут привести

вам примеры трех явно различных типов движения, несмотря на то что они еще

не прочитали материал в Учебнике. Вводное классное занятие такого типа может

внести свежую струю и способствовать появлению у учащихся интереса к изу-

изучаемому предмету. Однако не затягивайте эту беседу. Основная идея — проил-

проиллюстрировать тот путь, по которому пытались идти в решении проблемы движения

предшественники Галилея, и показать трудности, возникающие на этом пути.
После этого остроумные мысли Галилея будут скорее оценены.

Многие учащиеся знакомы с законом инерции Галилея; большинство из них

легко его усваивают и оказываются вполне убежденными после экспериментов

с ползунами или спутниками. Однако прежде чем вы начнете убеждать их с по-

помощью современной экспериментальной техники, удостоверьтесь в том, что они

понимают, как подходил к этой проблеме Галилей. Задачи 3 и 5 представляют
собой полезную отправную точку.

Попробуйте подчеркнуть огромное интеллектуальное достижение Галилея,

которое состоит не только в том, что он первый открыл закон инерции, а еще

более в том, что он открыл новый метод исследования, в котором эксперименталь-

экспериментальное наблюдение сочетается с абстракцией, позволяющей упростить и, таким

образом, объяснить явление.

Демонстрация, предложенная Галилеем, прекрасно иллюстрирует его ут-

утверждение о том, что тело стремится подняться до своей первоначальной высоты

независимо от угла наклона его траектории по отношению к горизонту (она пред-
представляет собой вариант рис. 19.4). Эту демонстрацию лучше всего показать перед

изучением раздела 19.2, после того как поставлен вопрос, может ли тело двигать-

двигаться, если его никто не толкает.

Галилей пришел к заключению, что шар, пущенный вниз по склону, подни-

поднимается на ту же высоту по противоположному склону, а шар, пущенный по го-

горизонтальной поверхности, катился бы вечно, если бы не было трения. Цель
нижеследующей демонстрации и состоит в том, чтобы помочь учащимся прийти

к тому же заключению.

1. Подвесим маятник длиной примерно 3 м к потолку или к другой подхо-

подходящей опоре. Зажмем нить маятника в штативе на расстоянии 40 или 50 см от

грузика так, чтобы он колебался относительно этой точки, а не относительно

точки подвеса (рис. 1, а). Отклоним грузик так, чтобы он поднялся на некоторую

измеренную высоту над своим положением равновесия, и отпустим его. Сравним
высоты, которых достигает грузик при колебаниях по обе стороны от наинизшей

точки. Затем, вместо того чтобы позволить маятнику качаться по нормальной
дуге, поместим на его пути барьер таким образом, чтобы в момент освобождения
маятник начал качаться по дуге с центром на этом барьере (рис. 1,6). Пусть класс

попытается предсказать результат до того, как вы проведете демонстрацию.
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Далее, оставив барьер в прежнем положении, переместим точку, в которой
зажата нить, от первоначального положения до точки подвеса, каждый раз за-

заставляя маятник начинать колебания с одной и той же высоты относительно

положения равновесия. Определим, какой высоты он достигает в конце каждого

колебания, и грубо измерим эту высоту и расстояние от центра. Проверяйте,
чтобы маятник начинал свое движение каждый раз из одного и того же положения.

Г

Рис. I.

На основании полученных значений предложите учащимся предсказать,

какой высоты и горизонтального отклонения достиг бы маятник, если бы его

можно было сделать длиной в 10, 50 или 1000 метров. Каких результатов следо-
следовало бы ожидать для шарика, движущегося по абсолютно гладкой горизонтальной

поверхности?

Дуга, которую описывает маятник при его движении от начального поло-

положения до наинизшего, аналогична наклонной плоскости Галилея, по которой
пускают шар. Дуга, по которой он движется из нижней точки, после того как его

нить перестает касаться барьера, соответствует наклонной плоскости противопо-
противоположного склона (см. рис. 19.4). Перемещение вверх точки, в которой зажата

нить, эквивалентно уменьшению крутизны склона, по которому вкатывается шар

в опыте Галилея.

Чтобы точнее определять высоту подъема грузика, можно натянуть горизон-

горизонтальную нить на уровне, соответствующем его начальной высоте. Это способ-

8* 227



ствует и более точному воспроизведению начальной высоты в момент отпускания

грузика в различных опытах.

2. Ползун с твердой углекислотой является очень полезным устройством
для демонстрации равномерного движения в отсутствие сил. Конструкция такого

ползуна показана на рис. 2, а. Поскольку слой газа между ползуном и столом

/Жестянка

Твердая
углекислота

Проболочная
Пробил сетка'*
с отверстием,
'приклеенная
к диску
Керамический
^или деревянный
полированный

. диск

Баллон

Резиновая пробка
с маленьким

отверстием

Ровная
полированная сранера

Рис. 2.

очень тонок, необходимо, чтобы поверхность стола была весьма гладкой, например
покрыта стеклом или металлом. Очень важно, чтобы поверхность стола, так же

как и поверхность ползуна, обращенная к столу, была очень чистой и сухой.

Протирайте стол и ползун сухой тряпочкой, чтобы удалять следы влаги, конден-

конденсирующейся на них во время опыта.

Если поверхность стола горизонтальна, ползун будет скользить вдоль него

с очень малыми скоростями без замедления. Если стол имеет наклон, ползун будет
скользить с ускорением. Эксперименты с таким усгройством делают закон Га-

Галилея более доходчивым.

Если трудно достать твердую углекислоту (сухой лед), можно использовать

ползун на воздушной подушке, показанный на рис. 2, б. Он уступает по своим
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качествам ползуну с твердой углекислотой, но тем не менее очень полезен. Его

можно с успехом использовать даже на столе с керамическим или пластиковым

покрытием.
3. Следует иметь в виду, что стандартные демонстрации, связанные с законом

инерции (такие, как выдергивание бумаги из-под стакана), просто показывают,

что тело, находящееся в состоянии покоя, стремится оставаться в покое. Все

учащиеся (включая и тех, кто учился у Аристотеля) и так понимают, что те-

тело, пребывающее в покое, само не начнет двигаться. Если вы — достаточно

искусный демонстратор, воспроизведение таких демонстраций о

может в некоторой степени напоминать учащимся о законе инер-

инерции, но гораздо полезнее показать им, что тело, находящееся в

состоянии движения, имеет тенденцию оставаться в движении. Вы-

Выдергивание бумаги из-под стакана показывает только то, что сила

трения была недостаточно велика, чтобы сообщить стакану значи-

значительное ускорение; только немногие из учащихся понимают истин-

истинный смысл этих стандартных демонстраций.

Если вы все же захотите показать такую демонстрацию, мы

предлагаем сделать это следующим образом (это будет достаточно

занятно и более полезно).
Груз подвешивается на нити. (Этот груз должен быть доволь-

довольно тяжелым, вроде гаечного ключа (рис. 3).) Другая нить привязы-

привязывается снизу к тому же грузу. Теперь тянем, постепенно увеличи-

увеличивая усилие, за нижнюю нить. Предложите учащимся угадать, ка-

какая из нитей порвется. В конце концов порвется нить над гаечным

ключом. (Берегите руки, проводя этот опыт!) Верхняя нить рвется

потому, что действующая на нее сила равна сумме приложенной си-

силы и веса ключа. Затем снова подвешиваем гаечный ключ, как и пре-

прежде, но на этот раз не тянем за нижнюю нить, а резко дергаем ее

вниз. Если вы это сделаете достаточно проворно, нижняя нить порвется, а верхняя

останется невредимой. Объяснение этого опыта состоит в том, что, для того чтобы

передать усилие к верхней нити (поскольку нить довольно упругая), гаечный ключ

должен сместиться, увеличивая натяжение этой нити. Стремление гаечного ключа

оставаться в покое препятствует передаче силы рывка, производимого почти

мгновенно, к верхней нити. Прежде чем ключ продвинется достаточно низко,

чтобы передать эту силу, нижняя нить обрывается.

«

Рис. 3.

19.3. Изменение скорости под действием постоянной силы

19.4. Зависимость изменения скорости от величины силы

Цель. Показать соотношение между силой и изменением скорости.

Содержание, а) Данному телу постоянная сила сообщает изменение ско-

скорости, прямо пропорциональное интервалу времени, в течение которого действует
эта сила.

б) Изменение скорости данного тела в течение данного интервала времени

(т. е. ускорение) прямо пропорционально приложенной силе.

Методические указания. Излагаемые в разделах 19.3 и 19.4 понятия

очень важны, но на них не придется тратить много классного времени, если они
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вводятся, как это рекомендовано, путем выполнения лабораторных работ III. 1
и II 1.2 до изучения материала на уроке.

Если после выполнения учащимися лабораторных работ вы почувствуете,

что им следует еще поупражняться в обработке данных такого рода, попросите

их произвести самостоятельные измерения по рис. 19.7 и (или) по рис. 19.9 и

составить таблицы, подобные табл. 19.1 и (или) 19.2, приведенным в Учебнике.

Поскольку ошибка в 0,5 см при определении смещения на рис. 19.7 приводит
к ошибке в 1,2 см/с в скорости, значения для ускорения, которые учащиеся по-

получат, могут существенно отличаться от приведенных в табл. 19.1.

Удостоверьтесь в том, что учащиеся понимают, что, хотя получаемые при

обработке этих рисунков данные измерены с точностью, не превышающей 5%,
закон Ньютона может быгь установлен с гораздо большей точностью на осно-

основании других экспериментов. Некоторые из них будут рассмотрены в главах

20 и 21.

В разделах 19.3 и 19.4 оперируют с приращениями Av и А/, вместо того чтобы

явно использовать ускорение а. Это сделано для того, чтобы: 1) подчеркнуть
соотношение между F', Av и At> 2) выяснить, как это соотношение может быть

получено из наблюдений и измерений, и 3) избежать маскировки этого соотно-

соотношения, возможной при неполном понимании концепции ускорения. Благоразум-
Благоразумнее не подставлять символ «а» вместо Av/At до тех пор, пока ваши учащиеся

полностью не освоят эти понятия.

В разделе 19.4 подразумевается простая аддитивность двух параллельных

сил. Этот факт можно объяснять различными способами. Вероятно, наиболее

простым методом его введения является включение его в определение силы в ка-

качестве составной части этого определения, именно, надо положить, что F+ F=2F.

Может оказаться поучительным разобрать вопрос о разнице между двумя

случаями, когда две силы приложены к одному и тому же телу параллельно и

J
D

в в

а)
и

6)
Рис. 4.

последовательно. На рис. 4 представлены оба эти случая. В случае а) два человека

тащат груженые сани, причем каждый из них действует с силой F на свою пру-

пружину, прикрепленную к саням. Обе пружины изготовлены совершенно одинаково

и потому растянуты на одну и ту же величину, и каждая из них действует с силой

jF на сани. В итоге сани движутся под действием двух сил, каждая из которых

равна F, так что F-\- F=2F. В случае б) те же самые две пружины соединены

последовательно и прикреплены к саням в точке В. Теперь один человек тянет

переднюю пружину с силой F. Эта пружина растягивается до тех пор, пока она

не достигнет такого же растяжения, как в случае а). При этом она действует н.а

вторую пружину с силой F в точке их соединения D. В свою очередь F растяги-
растягивает вторую пружину на такую же величину, как в случае а), а уж эта пружина
тянет сани в точке В с силой F. Таким образом, в случае б), хотя обе пружины

растянуты так же, как в случае а), одна из них просто служит для передачи
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усилия F другой пружине, которая, в свою очередь, тянет сани. При этом тянет

только один человек. Сила, действующая на сани, равна всего 1 F.

Некоторые учащиеся интуитивно чувствуют, что пружина будет действовать

с вдвое большей силой, если ее удлинение увеличить в два раза. Хотя это спра-

справедливо для большого числа пружин (что известно как закон Гука), это свойство

выполняется в лучшем случае приблизительно, а во многих случаях такой закон

и вообще оказывается несправедливым. По этой причине пользоваться этим

законом было бы методически неправильно и ему не следует придавать особенно

большого значения на уроке.

Чтобы избежать путаницы, необходимо заострить внимание учащихся на

важности ясного понимания того, на какое тело действует сила и со стороны

какого тела она действует. В любой физической проблеме бессмысленно рассуж-
рассуждать о силах, пока не найдены объект, на который действует сила, и агент, со

стороны которого она действует. Конечно, в большинстве случаев как объект,
так и агент настолько очевид- Стена

ны, что нет никакой нужды

особо их оговаривать. Но

время от времени вы можете

просить учащихся давать бо-

более полное объяснение (т. е.

какая сила? Со стороны ка-

какого тела действует? На ка-

какое тело действует?).
Никогда не вредно убе-

убедиться в том, что последова-

последовательно действующие силы по-

поЛошадь Лошади чуть-чуть
ив хдатает сил,

а

Д7\
незлата

Та же двредна ^-\

<г

УТЛ ЛА
Пара лошадей

Рис. 5.

Пордегсяш

няты хорошо. Можно попро-

бовать сделать это с помощью

следующего вопроса. Может

ли пара лошадей порвать веревку, которую каждая из лошадей, действуя в оди-

одиночку, порвать не в силах (рис. 5)? Некоторые учащиеся ответят положительно.

Это значит, что они не понимают, что вторая лошадь просто заменяет стену.

Другой вопрос, обычно вызывающий затруднения, состоит в следующем.

Лошадь привязана к телеге на веревке и натягивает веревку с силой F. Телега

в ответ тянет лошадь назад с той же силой F. Почему же в таком случае телега

приходит в движение?

Суть дела здесь состоит в том, что, рассматривая ускорение какого-нибудь
объекта, надо рассматривать только те силы, которые действуют на этот объект.

Телега приходит в движение от того, что сила тяги веревки, действующая на

телегу, больше, чем сила трения, направленная назад. Лошадь движется потому,
что сила, действующая со стороны земли на ее ноги и направленная вперед, больше,
чем направленная назад сила, действующая на нее со стороны веревки — и т. д.

19.5. Инертная масса

19.6. Инертная и гравитационная массы

Цель, Определить опытным путем понятие инертной массы; подчеркнуть,
что следует ожидать независимости инертной и гравитационной масс, поскольку
опыты, используемые для их определения, совершенно различны; привести
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экспериментальное подтверждение прямой пропорциональности между инертной

и гравитационной массами.

Содержание, а) Инертная масса есть отношение результирующей силы,

действующей на объект, к ускорению, которое она производит:

т = F/a,

или

Это отношение F/a остается в точности тем же самым для тела с данной массой

при любых скоростях, малых по сравнению со скоростью света.

б) Инертные массы складываются аддитивно.

в) Очевидно, логически нет никаких оснований ожидать какого-либо соот-

соотношения между гравитационными и инерционными эффектами, но эксперимен-

экспериментально гравитационное притяжение различных тел оказывается прямо пропор-

пропорциональным их инертным массам.

Методические указания. Вводимые в разделах 19.5 и 19.6 понятия

являются центральными по их важности. Возможно, вам придется потратить

целый урок на то, чтобы ввести и растолковать понятия гравитационной массы,

инертной массы и веса. И все равно вам придется время от времени возвращаться
к ним, чтобы с помощью объяснений помочь закреплению правильных представ-

представлений.

После изучения в классе разделов 19.5 и 19.6 желательно проделать лабора-
лабораторную работу II 1.3, но ее можно опустить, если ваше время ограничено.

Учащиеся гораздо лучше освоятся с понятием инертной массы, если фор-
формальное определение ее, основанное на отношении силы к ускорению, вы под-

подкрепи ге интуитивным представлением. Когда учащиеся думают о чем-либо мас-

массивном, они невольно думают о весе, и если их попросить оценить массу какого-

нибудь тела, они попробуют прикинуть на руке его вес. Однако они получат

более правильное понятие об инертной массе, если вы сможете заставить их

подумать о движении объекта из стороны в сторону (пусть, например, попробуют
оценить массу тела по усилию, которое необходимо затратить, чтобы потрясти

или помахать этим телом).
Эксперименты, в которых измерение массы производится посредством из-

измерения ускорения и силы, иллюстрируют смысл инертной массы. Однако такого

рода эксперименты не могут быть осуществлены с достаточно высокой точностью.

Следовательно, по мере возможности их надо заменять более точными измере-
измерениями. Для тел обычных размеров сравнение весов (гравитационных масс), про-
производимое на равноплечих рычажных весах, предпочтительнее экспериментов

с ускорением. Однако законность такой процедуры основана на уверенности

в существовании пропорциональности инертной и гравитационной масс.

Некоторые учащиеся испытывают затруднения, пытаясь уяснить различие

между двумя видами массы, связанной с одним и тем же объектом. Им гораздо

легче понять независимость гравитационной силы и инертной массы. Гравита-
Гравитационную силу взаимодействия между каким-либо телом и Землей мы называем

весом этого тела. Если тело А весит вдвое больше, чем тело В> это означает, что

Земля притягивает А вдвое сильнее, чем Б. Если бы теперь была произведена

другая, совершенно независимая серия экспериментов, в которых мы измеряли
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бы ускорения А и В под действием различных сил, мы бы обнаружили, чго любая

данная сила сообщает Л ускорение, в точности равное половине того ускорения,

которое эта сила сообщает В. Из этих экспериментов с ускорениями мы можем

сделать вывод, что инертная масса А вдвое больше инертной массы В. Этот ре-

результат невозможно предсказать на основе наблюдений над гравитационными
силами. В классической физике не существует закона, который связывал бы эти

две серии экспериментов, но отношение гравитационных сил, действующих на

два различных тела, помещенных в одном и том же месте, определяется отноше-

отношением их гравитационных масс. Следовательно, не существует также физического
закона, связывающего гравитационные и инертные массы этих двух тел. Тот

факт, что эти два отношения масс совпадают, является экспериментально уста-

установленным фактом *).
В действительности оба вида эксперимента, описанные выше, не могут быть

выполнены с особенно высокой степенью точности. Более аккуратный метод,

чувствительный непосредственно к отношению т//т^., состоит в измерении по-

постоянства ускорения различных масс при свободном падении. Такой метод будет

детально обсуждаться в разделе 20.2.

Более точные эксперименты, основанные на том же принципе, связаны с

исследованием частоты колебаний маятника. Сила тяготения стремится возвра-

возвратить маятник к его наинизшему положению; инертная масса сопротивляется

ускорению, создаваемому этой силой. Частота колебаний маятника пропорцио-

пропорциональна корню квадратному из отношения mglmf, она пропорциональна также

y~gfl, где g
— ускорение свободного падения, а / — длина маятника. С помощью

маятников одной и той же длины, но сделанных из различных материалов, были

проведены очень точные эксперименты.

В настоящее время проводятся еще более точные измерения, основанные на

наблюдениях над скоростью вращения Луны (или искусственных спутников)
вокруг Земли с использованием очень точного «атомного стандарта времени»

(т. е. часов, стабилизированных собственной частотой колебаний специально

выбранных атомов). Лучшие эксперименты этого типа показывают, что отношение

nig к mi изменяется менее чем на 3» Ю-10.

Это на первый взгляд случайное соотношение (пропорциональность trig и т/)
в общей теории относительности Эйнштейна считается универсальным законом,

неотъемлемым свойством, присущим материи вообще. Этот «принцип эквивалент-

эквивалентности» инертной и гравитационной масс является одной из предпосылок, на

которых строится теория Эйнштейна.

*) Вам могут помочь следующие соображения, хотя их не следует обсуждать
в классе в этом месте курса. Сила, действующая на электрически заряженное
тело в электрическом и гравитационном полях, определяется следующим вы-

выражением:

где <lg=?ng- Априори, нет никаких оснований для того, чтобы считать, что «гра-
«гравитационный заряд» qg (или гравитационная масса) в большей степени тождествен

инертной массе, нежели обычный заряд qe. Эксперимент показывает, однако, что

именно заряд qg пропорционален массе т/ и может быть сделан равным ей под-

подходящим выбором единиц измерения.
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19.7. Закон Ньютона. Динамическое измерение величины силы. Единицы

измерения

Цель. Установить закон Ньютона и выбрать единицу силы, которая, в

свою очередь, может быть использована для измерения массы.

Содержание. Соотношение FAt=mAv, или F=mat устанавливается

как ньютоновский закон движения. Эют закон составляет основу для определения

единицы силы.

Ускорение измеряется в единицах расстояния и времени (метрах и секун-

секундах), а величину массы мы можем определить путем сравнения ее с выбранным в

качестве эталона килограммом, так что единица силы «ньютон» может быть опре-

определена как сила, сообщающая массе в 1 кг ускорение в 1 м/с2. Определив таким

образом силу, мы можем затем измерять массу в единицах F/a.

Методические указания. Понять мысль о том, что закон Ньютона

составляет разумную, лишенную произвола основу для определения единицы

силы, весьма важно. На данной стадии не следует останавливаться на практиче-

практическом использовании новой единицы, поскольку это можно сделать более естест-

естественно на материале остального содержания этой и двух последующих глав.

В разделе 19.7 описан следующий шаг на пути выведения физических след-

следствий из первичных принципов. Закон Ньютона представляет собой один из таких

первичных принципов. Таким образом, наше представление о величине силы

основано на использовании этого первичного принципа. Мы могли бы определить

единицу силы по некоторому определенному растяжению, вызываемому этой силой

у эталонной пружины, хранящейся в государственной палате мер и весов. Однако
такое определение было бы полносгью произвольным. Единица массы представ-

представляется довольно произвольной, но в настоящее время она может быть выражена

через массу атома водорода: 5,98» 1026 их составляют один килограмм. В качестве

эталона вполне могла бы служить масса отдельного единичного атома водорода

или кислорода, если бы такая единица массы не была слишком мала для практи-

практического применения.

Как указано в сноске на стр. 22, в Учебнике идет речь об одном законе

Ньютона. Часто говорят, однако, о трех законах Ньютона. Закон инерции, часто

называемый «первым законом» Ньютона, был установлен Галилеем и является

частным случаем «второго закона» — он относится к случаю, когда F— та=0.

Этот второй закон как раз и выражает соотношение F=ma и называется здесь

просто законом движения Ньютона. «Третий закон» гласит о равенстве сил дей-
действия и противодействия и рассматривается в разделе 23.8; строго говоря, он

вообще не является настоящим законом движения.

19.8. Переменные силы и закон Ньютона

Цель. Показать, как можно применять закон Ньютона, если сила не ос-

остается постоянной.

Содержание, а) Если сила изменяется, ее действие можно рассчитать,

рассматривая, что происходит в течение каждого из большого числа очень малых

последовательных промежутков времени, на которые можно разбить весь интервал

движения. (Эти промежутки времени можно выбрать настолько малыми, что

в течение каждого из них сила будет оставаться практически постоянной.) Для
каждого такого промежутка времени А/ изменение движения описывается урав-

уравнением F At= mAv.
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б) Соотношение F At=mAv справедливо независимо от того, какую началь-

начальную скорость имело рассматриваемое тело. (Это соотношение не выполняется

только при скоростях, близких к скорости света.)
Методические указания. Важно довести до сознания учащихся, что

мы можем применять уравнение FAt=mkv для анализа изменений движения

в течение определенного промежутка времени, совершенно не рассматривая ис-

источников или природы того движения, которое совершало тело до начала этого

интервала времени. Тогда станет понятным и наш подход к переменным силам.

Формулировка закона Ньютона ограничивает его, так сказать, изменением ско-

скорости данной массы, на которую действуе! постоянная сила, за данный интервал

времени. Если мы хотим проанализировать движение, происходящее под дейст-

действием переменных сил, мы просто выбираем наши интервалы времени таким об-

образом, чтобы внутри них сила оставалась (практически) постоянной.
Из того, что было установлено первоначально на основе экспериментальных

наблюдений (т. е. что F = та, если F постоянна), невозможно вывести логически,

с помощью одних лишь теоретических аргументов, что произойдет, если F не

будет оставаться постоянной. Тот факт, что мы экспериментируем с силами, ко-

которые прикладываются и потом удаляются, означает, что мы уже встречались

с ситуацией, когда сила изменяется с течением времени, и при этом не заметили

каких-либо значительных отклонений от закона F~ma. Чтобы еще более убе-

убедиться в том, что ускорение зависит только от отношения F/m, а, скажем, не от

выражения вида (F+ dF/dt)/m, мы должны поставить соответствующие экспери-

эксперименты.

Столкновения, рассмотренные в гл. 20, и движения планет представляют
собой прекрасные примеры, на которых можно проверить, что мгновенное ус-

ускорение равно мгновенному значению силы, деленному на массу, без каких бы

то ни было дополнительных членов, зависящих от скорости изменения силы.

Все подобные эксперименты подтверждают закон Ньютона, исключая случай
движений со скоростями, близкими к скорости света, когда этот закон изме-

изменяется благодаря зависимости эффективной массы от скорости.

19.9. Как складываются силы? Результирующая сила

19.10. Векторная природа закона Ньютона

Цель. Рассмотреть эффект одновременного действия нескольких сил и обоб-

обобщить закон Ньютона на этот случай.
Содержание, а) Силы складываются как векторы.

б) Закон Ньютона относится к векторной сумме всех сил, действующих
на тело.

в) Закон Ньютона может быть записан как соотношение между двумя век-

векторами: результирующей силой и ускорением.

Методические указания. Излагаемые здесь результаты требуют экс-

экспериментального обоснования, которое дано в гл. 20. Как только учащиеся ус-

усвоят, что закон Ньютона сохраняет свою крайне простую форму даже в самых

сложных ситуациях, не следует больше тратить времени на подробное рассмот-

рассмотрение.

Закон Ньютона был установлен как соотношение между ускорением тела
и единственной силой, действующей на это тело. Когда на тело действует не-
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сколько сил, в любой момент по-прежнему наблюдается только одно ускорение.

Тогда можно найти единственную эффективную силу, удовлетворяющую закону

Ньютона: та= FB$. Зта F3^ должна быть связана с несколькими независимыми

силами, действующими на тело. Экспериментально установлено, что F3$
есть просто векторная сумма всех этих сил, и называется она «результирующей
силой».

Следует иметь в виду одну деталь: соотношение F=ma в том виде, как оно

было предложено в предыдущих разделах, имеет более богатое содержание, чем

это было показано до сих пор.

PImchho, F—ma означает, что ускорение всегда пропорционально прило-
приложенной силе, независимо от угла между силой и скоростью, поскольку сама

скорость не входит в это уравнение. Например, закон Ньютона остается спра-

справедливым, если мы сталкиваем какое-нибудь тело в сторону с его пути. Это

будет доказано экспериментально в гл. 20.

19.11. Силы в природе

Цель. Показать, что, хотя силы, встречающиеся в природе, часто бывают

сложны, получающиеся движения всегда можно анализировать с помощью закона

Ньютона.

Содержание. Чтобы узнать силы, встречающиеся в природе, мы можем,

изучая движения, найти ускорения, а затем, применяя закон Ньютона, вычислить

эти силы. Определив же эти силы, мы можем, далее, предсказывать любые другие

движения, вызываемые этими силами.

Методические указания. Материал этого раздела изучается подробнее
в гл. 21, в которой дан выдающийся пример применения закона Ньютона,

Хотя это и не вызвано необходимостью, стоит обратить внимание учащихся

уже теперь на то, что сопротивление воздуха увеличивается с увеличением ско-

скорости. Это уменьшит число понятий, которые придется усвоить учащимся, когда

они, анализируя опыт Миллекена (в части IV), должны будут понимать, что посто-

постоянная скорость частицы, движущейся в воздухе, означает отсутствие результирую-

результирующей силы, а, поскольку сопротивление воздуха пропорционально скорости, раз-
различные постоянные скорости говорят о различии приложенных сил. При тех

скоростях, которые используются в опыте Миллекена, скорость пропорциональна
приложенной силе, хотя это вовсе не так для любых других скоростей.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

Способность учащихся анализировать и решать задачи является хорошим

критерием понимания ими материала гл. 19. Этому весьма способствует анализ
типичных задач в классе.

В табл. 4 задачи расклассифицированы по их примерному уровню трудности
и распределены по разделам, к которым они относятся. При этом указаны те из

них, которые наиболее подходят для разбора в классе. Особо рекомендуемые
задачи отмечены значком $ *).

*) Напомним, что звездочкой отмечены задачи, которые предназначены для
проверки усвоения текста Учебника соответств\ющего раздела (указанного
в условии задачи). (Прим. ред.)
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ТАБЛИЦА 4

разделы

19.1, 19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9, 19.10

19.11

Общие

Со звездочкой

1, 2, 4, 6

7, 8

12

13

16, 17

18, 19

25—27, 31

Легкие

3, 5

9

14

28

Средние

15

29, 21

29, 30

33

Трудные

22, 23

24

32

34

Классные

п#

15

24

34

Краткие ответы
1*. Кинематика изучает движение тел, не касаясь причин этого движения;

динамика изучает влияние сил на движение.
2*. Нет. Время не входило в его рассуждения.

4*. Шарик двигался бы по орбите вечно.

6*. v =20 см/с.
7*. у=20,9 см за вспышку.

8*. Сила постоянна.
12*. Направо.
13*. а= 1,5 м/с2.
16*. а) 3,0; б) 3,0.

а=4 м/с2.
F=2 H.
F= 15 Н.
В направлении

8 /2

17*.
18*.
19*.
25*. результирующей силы.р р

26*. а=8 м/с2 направо.
27*. F—ZJ Н направо вдоль пунктирной линии.

31". F=200 H в направлении, противоположном тому, в котором вы пере-
передвигаете.

Ответы с указаниями и решениями
3. а) Шарик достигнет той же самой высоты, т. е. 10 см.

б) Поскольку имеется подъем 1 см на 10 см горизонтального пути, шарик,
достигнув высоты 10 см, пройдет по горизонтали расстояние в 100 см.

в) Наклон уменьшен вдвое. Достигаемая высота по вертикали по-прежнему
равна 10 см, следовательно горизонтальное расстояние равно теперь 200 см.

Мы приближаемся к идеальному случаю нулевого наклона, рассмотренному
Галилеем, когда шар пройдет бесконечно большое расстояние.

5. Чтобы создать ускорение, необходимое для поворота, торможения и раз-
разгона автомобиля, требуется некоторая сила. Эта сила действует между автомо-
автомобилем и землей благодаря трению шин о дорожное покрытие. Сила трения шин
о лед может составлять менее одной десятой силы трения шин о сухую дорогу.
Относительно малая сила трения, действующая на обледенелом шоссе, затрудняет
изменение как величины, так и направления скорости автомобиля. Таким образом,
на обледеневшей дороге автомобиль часто упорно сохраняет свою скорость и

направление движения, несмотря на тормоза, руль или газ. В таких случаях

237



случайный контакт с телефонным столбом, придорожным кюветом или другим

автомобилем может обеспечить необходимую замедляющую силу.
9. Обе пружины тянут тело с равными силами, так как пружины растянуты

на одну и ту же величину. Поэтому /''общ— ^i+^2 = 2/7i. Поскольку сила удвои-

удвоилась, результирующее ускорение также должно удвоиться: если F1/m = lS см/с2,
то 2/ут=2-15 см/с2 =30 см/с2.

10. а) Поскольку в обоих опытах массы и интервалы времени
— одни и те же,

отношение сил равно отношению изменений скорости (которые в случае прямоли-

прямолинейного движения в одном направлении равны изменениям абсолютной величины

скорости):

F2__Ay2__0,8 м/с —0,5 м/с

F\~"Av[ ~и,4 м/с —0,2 м/с
= 1,5.

б) Когда данная масса ускоряется данной силой, изменение ее скорости про-

пропорционально тому интервалу времени, в течение которого действует эта сила

Поскольку интервал времени теперь втрое больше, изменение скорости также

должно быть втрое больше:

At2/At1 = Av2!Avlt Av2 = Av1-At2/At1 = 0,3 м/с-0,9 с/0,3 с = 0,9 м/с.
11. Цель этой задачи показать, что закон движения Ньютона можно приме-

применять, не уменьшая силу трения до незначительной величины, если только сила

трения не зависит от скорости. Это действительно имеет место только в очень

ограниченной области.
а) Увеличение ускорения пропорционально увеличению силы, действующей

со стороны резинок.

б) Точка пересечения графика с горизонтальной осью соответствует наимень-

наименьшей силе, с которой должны действовать резинки, чтобы поддерживать брус
в состоянии движения с постоянной скоростью. Эта сила равна по величине силе

трения, действующей противоположно силам натяжения резинок при движении

бруса.
в) Мы, конечно, не можем ожидать, что брус будет ускоряться в направле-

направлении, противоположном тому, в котором мы его тянем. Очевидно, сила трения

может равняться любой силе, действующей со стороны резинок, вплоть до той,
которая определяется точкой пересечения графика с горизонтальной осью. Эк-

Экстраполяция же графика ниже горизонтальной оси бесполезна.

г) Различные поверхности наверняка означают различные силы трения;

следовательно, пересечение графиков с горизонтальной осью будет происходить
в различных точках. Однако следует ожидать, что наклон графика будет тем же,

что и прежде, поскольку увеличение ускорения пропорционально увеличению
приложенной силы.

14. Колба закрыта для того, чтобы ни один из продуктов химической реакции
не мог покинуть эту систему. (Именно, ни один из газов, образующихся при этой

реакции ) Таким образом, масса колбы вместе с ее содержимым остается по-
постоянной.

Замечание. Строго говоря, если при реакции выделяется энергия в виде

теплоты, света или звука, то должно происходить соответствующее уменьшение
массы согласно принципу эквивалентности массы и энергии. Однако это изме-
изменение пренебрежимо мало и его, по-видимому, лучше всего не рассматривать, если

только ни у кого из учащихся не возникнет вопроса об этом. Изменение массы
Am соответствует изменению энергии

08 м/сJ = Am (9-1016 м2/с2) = Am (9-1016 Дж/кг).

Самый хороший уголь дает около 3« 107 джоулей тепловой энергии на кг. Это

соответствует изменению массы всего на C-107)/(9* 1016) = 3-10~10 кг на каждый
кг сожженного угля, что составляет всего 3* 10—8 %.

15. Эти два определения массы различаются, потому что они основаны на

разных физических явлениях: одно
— на притяжении тел к Земле, а другое

— на

ускорении тел силами. Их эквивалентность должна быть доказана эксперимен-
экспериментально.
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20. Эту задачу можно решать несколькими способами. Решая ее шаг за шагом,

имеем mi
= F/a1 = 5/8 кг, m2 = F/a2 = 5/24: кг; следовательно,

F
= 5/8+ 5/24 = 5/6 кг, а=

mi + пйг6м/с2'
откуда легко видеть, что F сокращается. Эгого следовало ожидать, если вспом-

вспомнить, что сила пропорциональна одновременно как массе, так и ускорению. Мы
можем поэтому написать:

F F F F
=

Т/6
= 6

F/aL + F/a2
=

F/S + F/24
21. См. рис. 6.

•F,H
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Рис. 6.

22. Нам дано расстояние, которое проходит тело известной массы, пока дан-

данная постоянная сила не уменьшит наполовину его начальную скорость. Поскольку
vn= v0 и vK= Vq/2, мы можем записать конечную скорость в виде

-^=nJ t, или vo= tt A)Л. 171 til

где t — время, в течение которого действует сила, и положительное направление

выбрано в направлении начальной скорости. Поскольку ускорение постоянно,

перемещение равно

d=i (vn+vK)t=i- (vo+V-At=^-vot. B)

C)

D)

Подставляя v0 из уравнения A) в B), получим

т

/ 2_md\U __ -,/ -3кг-9м_
~

V 3F ;
~

V -3(-18Н)

(Заметим, что F =—18 Н, так как сила имеет отрицательное направление, т. е.

направлена противоположно начальной скорости.)
Затем из уравнения A) получим

—2(—18Н) 1О
.

/кч

vo=
з кг

М/С* E)

23. Пусть тх< т2. Тогда сила F будет ускорять т1 сильнее, чем т2. Если F

параллельна v0, to наступит такой момент времени, когда скорость v1 массы т1
станет равна скорости v2 массы т2.

Пусть т±> т2, тогда т2 ускоряется сильнее, чем тх. Если F параллельна vo>
то т2 будет всегда двигаться быстрее, чем тх. Но если мы приложим F в направ-
направлении, противоположном г»0, то т2 будет замедляться и через некоторое время
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изменит направление своего движения, после чего в конце концов догонит на

обратном пути более тяжелую массу тх. (Продемонстрируйте это движение на

уроке.)
Пусть тг = т2> тогда обе массы имеют одно и то же ускорение и v2—V1='VO

во все'моменты времени.

Зти результаты можно получить также с помощью следующих уравнений:

Vi=Vo требует

Ft ( 1=^0, или Ft —~ -^^п- B)
\т± т2)

и

mlm2
° ч '

При тх< т2, или т2—тг> О, F направлена так же, как v0. По мере того

как mt приближается к т2, разность т2—т± становится все меньше и меньше,

а для выполнения равенства B) необходимо, чтобы t увеличивалось. Когда т1= т2,
решения не существует. При т2—т1 < 0 F противоположно vQ.

24. а) Если тело движется с постоянной скоростью, то из уравнения d~vt
мы знаем, что d~t. Если тело движется с постоянным ускорением, то из урав-

уравнения d= at2/2 мы знаем, что d~t2. Следовательно, рассматриваемое тело не

может иметь нулевое или постоянное ускорение. Далее, когда d~t3, d увеличи-
увеличивается с течением времени t быстрее, чем в случае d~t2. Поэтому ускорение
должно возрастать с течением времени t.

Какая зависимость а от t должна иметь место, чтобы d было пропорционально

t3? Сравним рассматриваемый случай со случаем постоянного ускорения. Если
мы перепишем d—t3 в виде d~t't2, это поможет усмотреть искомое соотношение:

d ~ t-t2 (рассматриваемый случай),
d ~ a-t2 (случай постоянного ускорения).

Из самой формы записи d—t-t2 теперь видно, что если ускорение не остается

постоянным, а изменяется пропорционально t, то d будет пропорционально /3.

Следовательно, если d~ t3, то a~t. Таким образом, ускорение равномерно воз-

возрастает со временем.

б) Из уравнения F — та мы знаем, что F — а. Если а ~ /, то F ~ /, т. е. уско-

ускоряющая сила также должна равномерно возрастать с течением времени.

Замечание. Некоторым учащимся может потребоваться более конкретный
подход к проблеме. Тогда можно, положив х~Ыъ, построить таблицу, показы-

показывающую положение, скорость, изменение скорости и ускорение в зависимости от

времени. Чтобы это сделать, мы должны придать константе к некоторое произ-

произвольное конкретное значение и выбрать произвольный промежуток времени. Для
простоты мы положили в табл. 5 &= 1 м/с3 и А/= 1 с. Из таблицы видно (в этом
можно убедиться непосредственной проверкой), что ускорение линейно возрас-
возрастает со временем.

28. а) Блок начинает двигаться из состояния покоя и на него действует по-

постоянная сила. Считая, что результирующая сила, действующая на блок, также

постоянна, мы должны и ускорение его считать постоянным. Тогда расстояние,
которое проходит это тело, определяется выражением d= at112, откуда а= 2djt2==
= 2-3 м/36 с2= 1/6 м/с3.

б) Поскольку F=2 Н и т= 8 кг, f/m=2/8= 1/4 м/с3.

в) Наблюдаемое ускорение равно 1/6 м/с2 и оказывается меньше, чем уско-

ускорение 1/4 м/с2, вычисленное из отношения F/a. Поэтому на тело должна действо-
действовать какая-то еще сила, мешающая движению. Можно предположить, что это
сила трения. Чтобы оценить эту силу, мы должны считать ее постоянной. Тогда
мы можем подсчитать эффективную результирующую силу, которая должна

действовать, для того чтобы получилось наблюдаемое ускорение: F—FTV= та,

откуда FTp= F—та— 2—(8-1/6) = 2/3 Н (сила трения направлена противопо-
противоположно движению блока).
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ТАБЛИЦА 5

/, с

0

1

2

3

4

5

6

7

х, м

0

i

8

27

64

125

216

343

Ах, м

1

7

19

37

61

91

127

с = Дж/Д/, м/с

1

7

19

37

61

91

127

IV, М/С

6

12

18

24

30

36

Av/At, м/с2

6

12

18

24

30

36

29. Поскольку длина каждого каната 10 м и два человека находятся на рас-
расстоянии 10 м друг от друга, эти три линии образуют равносторонний треугольник,
а угол между канатами в силу этого равен 60° (рис. 7). Силы натяжения канатов

равны между собой, поэтому их результирующая должна быть направлена по

биссектрисе угла между ними, равного 60°. Чтобы найти компоненту каждой
силы в этом направлении, заметим, что перед нами треугольник с углами 30°,

60° и 90°. Отношение сторон в нем рав-
равно а:Ь:с= 1:2: }^3. Поэтому

Ь 300

300 с

Fг
рез

300.
= 260 Н.

Каждый человек тянет дерево с силой»

компонента которой в направлении ре-

''Силамальчика
186И

Рис. 7.

Результирующая Канал

Рис. 8.

зультирующей равна 260 Н. Следовательно, сила, действующая со стороны кана-
канатов на дерево, равна 520 Н.

30. Чтобы лодка двигалась по каналу, результирующая сила должна быть

направлена вдоль него. Из векторной диаграммы на рис. 8 видно, что мальчик
должен тянуть лодку с силой 186 Н перпендикулярно каналу с той стороны,
где приложена сила 7^ = 320 Н.
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рез
32. a) e ==_2_=_

для случая силы 1,8 H (рис. 9, а)

1,8 —0,2i>a

что дает:

ю-2

= A80 —20и2) м/с2;

для случая силы 7,2 Н (рис. 9, б)

7,2 —0,2иа
ю-2

= G20 —20о2) м/с2.

б) Максимальная скорость соответствует а—0. В первом случае шар дости-
достигает конечной скорости, равной 3 м/с. Во втором случае он достигает скорости 6 м/с.

в) Изменение массы воздушного шара не влияет на величину его максималь-

максимальной скорости. Сила сопротивления воздуха зависит только от скорости, но не от

0,5 W 15 2}Q 2,5 3,0

a)
»•""

Рис. 9.

массы. Таким образом, сила сопротивления станет равна приложенной силе при

том же самом значении скорости (независимо от массы). Это можно показать ана-

аналитически следующим образом:

Чтобы удовлетворить условию максимальности скорости, мы должны положить

а=0. Таким образом,
и = ^ "»^umax» ^тах~^г

(независимо от т), где v измеряется в м/с и F — в Н.

г) Если размеры воздушного шара увеличатся, то площадь его лобового
сечения также станет больше и сила сопротивления воздуха при любой данной

скорости тоже возрастет. (Это означает, что коэффициент перед у2 в формуле,
определяющей эту силу, увеличится.) В результате сила сопротивления воздуха
станет равна приложенной силе при скорости меньшей, чем прежде, и при этом

утах уменьшится.
33. а) Примеры -юго, как постоянная сила может вызывать движения с по-

постоянной скоростью: 1) лошадь, действуя с постоянной силой, тянет телегу с
постоянной скоростью; 2) автомобиль развивает постоянную скорость при любом
положении педали регулировки газа (постоянная сила); 3) самолет летит с по-
постоянной относительно воздуха скоростью, когда его мотор и пропеллер работают
равномерно; 4) воздушный шар (в задаче 32) двигался бы с постоянной скоростью,
если бы к нему была приложена постоянная сила.

б) Тщательное исследование показывает, что в каждом примере такого родя,

кроме очевидной приложенной силы, действуют добавочные силы, противополож-
противоположные ей по направлению. Во всех случаях движения с постоянной скоростью

приложенная сила уравновешивается этими противоположно направленными
силами. (Обычно эти противодействующие силы не постоянны, а пропорциональны
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(но не прямо) v.) Когда приложенная сила превышает при любой данной скорости

противодействующие силы, имеет место положительное ускорение. Если прило-
приложенная сила меньше, чем силы противодействия, то получается отрицательное

ускорение.
В примерах, приведенных в п. а), где объекты имеют постоянную скорость,

противодействующие силы, уравновешивающие приложенную, имеют следующее

происхождение: 1) для лошади и телеги — трение колес об оси и о поверхность
дороги; 2) для автомобиля — трение в осях и о дорогу и (главным образом при
больших скоростях) сопротивление воздуха; 3) для самолета — сопротивление
воздуха; 4) для воздушного шара — сопротивление воздуха.

34. Поскольку эта глава посвящена динамике, наша первая мысль должна

быть о динамическом методе определения единицы массы.
Чтобы установить единицу массы непосредственно, надо было бы произве-

произвести эксперимент с ускорением. В качестве единичной следовало бы выбрать массу
такого тела, которое ускорялось бы определенным образом при действии на него

эталонной силы (при отсутствии других сил). Поскольку очень трудно удовле-
удовлетворить требованию, чтобы никакие другие силы, кроме эталонной, не дейст-
действовали на тело, для этой цели можно использовать ползун, описанный в Учеб-

Учебнике, так как в этом случае результирующая сила определяется пружиной, и
ничем иным.

Экспериментатор-практик, зная об эквивалентности гравитационной и инерт-

инертной масс, мог бы просто подвесить массу к пружине. При этом он обнаружил бы,
что результат опыта оказывается чувствительным к его положению относительно

окружающих массивных тел. Следовательно, его положение на Земле должно
быть фиксировано и включено в определение эталона. Строго говоря, положение

экспериментатора относительно Солнца и Луны также должно быть выбрано
в качестве эталона. Далее он обнаружил бы, что значительные изменения конфи-
конфигурации Земли тоже портят его эталон. И все же это был бы более практичный
эталон, чем определяемый с помощью ускорения.

Более тонкий способ состоит в определении эталона массы с помощью ча-

частоты колебаний, которые этот эталон совершает в вакууме, будучи подвешен к

эталонной пружине. Частота колебаний изменяется обратно пропорционально
квадратному корню из массы. Этот метод, по сравнению с предыдущими, был бы

самым практичным. Более того, именно в этом состоит прямое измерение инертной
(а не гравитационной) массы.

Пока большинство учащихся еще не освоилось с простым гармоническим дви-
движением, на ответ этого типа их можег натолкнуть опыг с инерционными весами

(лабораторная работа II 1.3). Краткое обсуждение идеи такого измерения массы

может сделать его вполне понятным без углубления в анализ простого гармони-
гармонического движения.



ГЛАВА

20 ДВИЖЕНИЕ У ПОВЕРХНОСТИ ЗЕМЛИ

В этой главе изучение динамики распространяется на случай движений,

происходящих более чем в одном измерении, исследуются силы, встречающиеся

в природе, и приводятся свидетельства векторного характера закона Ньютона.

Показывается применение закона Ньютона в некоторых простых случаях,

которые, однако, являются более сложными по сравнению с действием постоянной

силы на тело, вынужденное двигаться вдоль одной прямой. Рассматриваются

следующие случаи: 1) постоянная сила, действующая не в направлении движения

(разделы 20.3 и 20.4); 2) сила, постоянная по величине, но изменяющая направ-

направление таким образом, что она все время остается перпендикулярной скорости
(разделы 20.5—20.7); 3) сила, действующая в одном направлении, но изменяю-

изменяющаяся по величине и меняющая знак (раздел 20.8).
Эта глава служит основой для динамического рассмотрения движения планет

в гл. 21.

Краткое содержание главы 20

Раздел 20.1. Рассматривается вес и масса. На Земле вес любой массы равен

примерно 10 Н/кг.

Раздел 20.2. Изучается свободное падение в отсутствие горизонтальной
компоненты скорости. Это движение обусловлено постоянной силой, действующей
в направлении движения, и является'поэтому развитием материала гл. 19. Ему
придается особое значение ввиду того, что свободное падение является одной из

компонент движения тела, брошенного горизонтально, которое рассматривается
в качестве первого векторного примера.

Разделы 20.3, 20.4. Здесь мы имеем дело с движением тела, брошенного

горизонтально. Ключом к пониманию этого движения является идея о возмож-

возможности рассматрирать его компоненты по отдельности:

x = voxt, y = v0yt—gt2/2.
Разделы 20.5—20.7. Рассматривается движение по окружности. Его ско-

скорость равна v=2nR/T. Центростремительное ускорение равно а=2яо/7\ что

может быть записано в виде а=—Bn!TJR, или a—v2/R. Применяя закон Нью-

Ньютона к полученному выражению для ускорения, мы приходим к заключению, что

для того, чтобы получилось равномерное движение по окружности, на тело долж-

должна действовать центростремительная сила.

Раздел 20.8. Простое гармоническое движение рассматривается как про-

проекция равномерного вращения по окружности. Сделано ударение на силе, вызы-

вызывающей простое гармоническое движение.

Разделы 20.9—20.11. Подчеркивается важность использования неуско-

неускоренной системы координат при применении уравнения F—ma.
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В гл. 20 содержатся два важных положения. Одно из них состоит в том, что

закон Ньютона — векторный закон. Это проверяется в случае движения тела,

брошенного горизонтально, и для движения по окружности.

Второе положение состоит в том, что закон Ньютона можно применять для

того, чтобы: 1) предсказать движение, если известны силы; 2) найти силы, если

известно движение.

По мере прохождения этой главы, следует поочередно подчеркивать эти

положения. Проверка векторной природы закона Ньюгона должна быть в центре

внимания при изучении материала Учебника. Использование закона Ньютона

для определения движений или сил является темой задач. Учащиеся должны

почувствовать, что оба эти аспекта расширяют их возможности при рассмотрении

различных физических ситуаций. Это возбудит их интерес к изучению этого

материала.

Переходя от изучения свободного падения к движению тела, брошенного

горизонтально и далее к вращательному и гармоническому движению, следует

постоянно напоминать учащимся о широком разнообразии проблем, к которым

применим закон Ньютона. Когда вы закончите изучение главы, по-видимому,

стоит для повторения составить список, характеризующий изученные силы и

движения (табл. 6).
Рассматривая движение тела, брошенного горизонтально, следует подчерк-

подчеркнуть независимость действия отдельных компонент силы. Это является ключом

к пониманию векторной природы силы. Одна из причин, по которой мы рекомен-

рекомендуем сделать ударение на рассмотрении свободного падения и прорешать ряд

практических задач на эту тему, состоит в необходимости дать почувствовать

учащимся, каких существенных упрощений можно достигнуть, если эти компо-

компоненты рассматривать порознь. Разложение на компоненты необходимо также и

для того, чтобы связать гармоническое движение с вращательным.

Рассматривая движение по окружности, будет разумно уделить некоторое
время кинематическому выводу выражения для центростремительного ускорения;

учащиеся должны самостоятельно определить это ускорение графически, прежде
чем они начнут применять закон Ньютона к вращательному движению.

ТАБЛИЦА 6

Тип движения

Свободное па-

падение

Полет снаряда

Движение по

окружности

Гармоническое
движение

Величина силы

Постоянна

Постоянна

Постоянна

Пропорцио-
Пропорциональна сме-

смещению

Направление силы

Постоянное в направле-
направлении движения

Постоянное, но не вдоль

линии движения

Изменяется так, чтобы
оставаться перпендику-
перпендикулярной скорости

Возвращающее, т. е.

противоположное сме-

смещению

Движение

Равномерно-уско-
Равномерно-ускоренное

Равномерно-уско-
Равномерно-ускоренное по пара-
параболе

Равномерное по

окружности

Колебательное
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План изучения главы 20

ТАБЛИЦА 7

Глава 20

Разделы

20.1

20.2

20.3, 20.4

20.5—20.7

20.8

20.9—20.11

9-недельный план изучения
части III

В классе,
часы

0,5
1
2
3
1

0,5

В лаборато-

лаборатории, часы

0

0

0

1

0

0

Опыты

III.5

15-недельный план изучения
части III

В классе,
часы

0,5
2

2,5
5
3
1

В лаборато-
лаборатории, часы

0

0

1

1

0

0

Опыты

III. 4

III.5

Дополнительные материалы к главе 20

Лаборатория. Опыт II 1.4 (Силы, действующие на брошенный шарик)
посвящен анализу изменений скорости по импульсным фотоснимкам. Эту работу
можно проделать после раздела 20.4.

Опыт II 1.5 (Центростремительная сила) позволяет учащимся найти зави-

зависимость центростремительной силы от частоты вращения, массы и радиуса для

тела, двигающегося по окружности. Этот эксперимент лучше проделать перед

тем, как будет выведено соответствующее соотношение в разделе 20.5.

Предложения по порядку проведения этих экспериментов содержатся на

стр. 385.

Домашние, классные и лабораторные задания. Анализ и ре-

решение задач в классе особенно полезно в связи с гл. 20. Надо заставлять учащихся

делать наброски и рисунки от руки соотношений между силами и рассматрива-
рассматриваемых движений.

Ответы, решения и таблица, в которой задачи расклассифицированы по их

примерному уровню трудности, даны на стр. 259.

20.1. Вес и поле тяготения Земли

Цель. Подчеркнуть разницу между массой и весом.

Содержание, а) Вес тела есть величина силы притяжения, действующей
на это тело.

б) В то время как масса не зависит от положения тела, вес единицы массы

изменяется от точки к точке, но при этом в любом данном месте веса тел пропор-

пропорциональны их массам.

в) Вес тела, находящегося на поверхности Земли, всегда очень близок к

9,8 Н/кг, но точная величина этого коэффициента пропорциональности слегка

изменяется в зависимости от положения тела на Земле.

г) Сила тяготения, действующая на килограмм массы в данной точке земного

шара, определяет величину гравитационного поля g в этой точке. Полное грави-

гравитационное поле определяется совокупностью этих значений g во всем окружа-

окружающем пространстве.
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Методические указания. Излагаемые в этом разделе представления

важны, но не требуют много классного времени.

Задачу 2 можно решить на уроке. Вычисления можно упростить, считая

g= 10 Н/кг, после того как учащиеся поняли, что g слегка изменяется в раз-

различных месгах. Чтобы дать почувствовать учащимся величину ньютона, можно

предложить им оценить их собственный вес в ньютонах; предложите им сделать

это, исходя из массы их тела, выраженной в килограммах.

Обсуждение вопроса о том, почему g изменяется от одного места к другому,
отложите до следующей главы, где рассматривается закон всемирного тяготения.

Вероятно, ни в одном вопросе физики учащиеся не путаются так часто, как

в вопросе о различии веса и массы Важно, чтобы учащиеся ясно понимали разницу

между этими совершенно различными физическими свойствами (см. гл. 7 и 19).
Поскольку вес тела есть сила F, действующая со стороны гравитационного

поля на массу тела т, говоря об этих величинах, наиболее удобно выражать g
в виде 9,8 Н/кг. С другой стороны, рассматривая ускорение при свободном па-

падении, g наиболее просто рассматривать в эквивалентных единицах как 9,8 м/с2.

В этом месте настоящей главы следует пользоваться формой 9,8 Н/кг.
В этом разделе вводится понятие силового поля. Хотя кратко коснуться

того, что мы обозначаем словом «поле», по-видимому, вполне возможно, не сле-

следует особенно подчеркивать или выделять это понятие в этом месте курса. Это

будет предметом исследования в последующих главах этой части и в части IV.

20.2. Свободное падение

Цель. Изучить вертикальное движение у поверхности Земли как простой
пример применения закона Ньютона.

Содержание, а) В присутствии одной только силы тяжести любое тело

испытывает постоянное ускорение а =—9,8 м/с2, направленное вниз.

б) Для тел, движущихся в атмосфере, сопротивлением воздуха часто можно

пренебречь; однако с увеличением скорости растет и сила сопротивления воздуха.

В конце концов при некоторой предельной скорости, направленной вниз (конеч-
(конечной скорости), сила сопротивления воздуха становится равной силе тяжести,

и ускорение исчезает.

Методические указания. Материал раздела 20.2 очень важен. Здесь

показывается, как можно определить движение, когда постоянная сила действует
вдоль той же линии, вдоль которой происходит движение. Время, которое вам

потребуется на прохождение этого раздела, зависит от того, сколько подобных

проблем вы уже рассмотрели в гл. 19, и от того, в какой степени ваш класс нуж-

нуждается в повторении кинематики. Учащиеся должны научиться рассматривать
задачи на свободное падение, прежде чем они встретятся с дополнительными ус-
усложнениями при рассмотрении движения тела, брошенного горизонтально.

Как при изучении материала Учебника, так и при решении задач, необхо-

необходимо напоминать учащимся, что определение движения, происходящего под

действием одной или нескольких известных сил, состоит из трех раздельных

последовательных шагов: 1) определяем результирующую силу — векторную

сумму всех действующих на тело сил; 2) используя закон Ньютона, находим ус-

ускорение; 3) зная ускорение а, определяем остальные характеристики движения

с помощью соотношений кинематики. Такое разделение в особенности имеет

смысл потому, что оно подчеркивает необъятную широту применимости закона
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Ньютона Иной раз силы могут быть сложными; в действительности эти шаги

часто обращаются, так что сила определяется из характеристик движения.

Итлюстрируя изложенный способ рассмотрения движений в этом разделе,

мы упрощали силу с помощью предположения, что сопротивление воздуха /7ВОЗД
пренебрежимо мало. Далее, g считалось постоянным в той области, в которой

осуществлялся эксперимент. (Более детальное рассмотрение гравитационного

поля будет проведено в гл. 21.)
Согласно наблюдениям все компактные плотные тела испытывают одно и то же

ускорение при падении в атмосфере и все тела падают с одинаковым ускорением

в вакууме. Закон Ньютона связывает ускорение с силой: F= пг^а, где /п/ — инерт-

инертная масса тела. Но если F — сила тяжести, действующая на это тело, то по оп-

определению F=kmg, где mg
— гравитационная масса тела. Тогда a=knig/mjt

а поскольку согласно наблюдениям а постоянно для всех тел и равно g, mglmi
также должно быть постоянно для всех тел. Таким образом, наблюдаемое ра-
равенство ускорений всех тел при действии на них одной только силы тяжести

является проверкой эквивалентности инертной и гравитационной масс. На прак-

практике мы полагаем постоянною к равной g, и тогда пропорциональность mg и /и/

превращается в численное равенство.

При нахождении движения по известному ускорению следует избегать «ку-

«кулинарного» подхода, заключающегося в механической подстановке данных в

готовые формулы. Каждый новый пример нужно рассматривать индивидуально,
делая схематический рисунок, выбирая определенное направление в качестве

положительного и изображая графики зависимости от времени как а, так и d.

Рис. 20.2 и табл. 20.2 являются хорошим напоминанием связи между движением

и ускорением.

Особенно рекомендуем решить задачи 8 и 10. Качественное рассмотрение
задачи 9 дает хороший пример полезности графиков для понимания физики яв-

явления.

Сле;ует заметить, что когда тело движется вниз со скоростью, превышающей
его конечную скорость, оно замедляется, потому что тормозящая сила сопротив-

сопротивления воздуха преобладает при этом над ускоряющей силой тяжести.

Постоянство ускорения можно продемонстрировать следующим образом.
Сначала берем книгу и лист бумаги (по площади немного меньше книги);

помещаем их рядом друг с другом и одновременно отпускаем их. Для легкой

бумаги сила сопротивления воздуха сравнима с силой тяготения, а для книги она

гораздо меньше, чем более значительный ее вес. Следовательно, результирующая
сила, действующая на бумагу, меньше и она падает медленнее. (Бумага быстрее
достигает своей конечной скорости, в то время как книга еще продолжает уско-

ускоряться.)
Попросите учащихся объяснить, почему не равны ускорения этих тел. Спро-

Спросите у них, что надо сделать, чтобы бумага падала быстрее. Обычно они пред-

предлагают либо взять бумагу за край и отпускать ее в вертикальном положении, либо

скомкать ее. Попробуйте проделать то и другое.
Если никто из учащихся не предложит этого сам, спросите, что будет, если

поместить бумагу на книгу или под нее. В обоих случаях они будут падать вместе.

Если поместить бумагу под книгой, то книга будет, очевидно, толкать бумагу

вниз, и для бумаги это не будет свободным падением. Когда же 6yi\iara помещена

на книге (так, чтобы она не выступала за ее края), книга престо защищает бумагу
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.от действия силы сопротивления воздуха. Оба тела будут при этом опускаться

вместе, так что в течение всего падения бумага будет оставаться лежащей на книге.

При изучении движения тела, брошенного горизонтально, и его траектории

очень полезно моделирование графика y~—gt2j2.
В качестве оси времени t используется длинный жесткий стержень (рис. 10),

который надо расположить горизонтально (например, можно укрепить его в

штативе). Значения у будут показывать длины проволок или нитей, укрепленных
на равных расстояниях друг от друга. Точки закрепления каждой нити должны

быть фиксированы с помощью пропилов или отверстий в стержне. (В дальнейшем

0 12 3 4 5 6 7 8 9 Ю 1! 12 13 № 15 16 17 18 19 20

Рис. 10.

нам придется наклонять стержень, и если нити закреплены непрочно, они будут

сдвигаться со своих мест вдоль стержня.) Каждый отвес должен быть обрезан до

такой длины, которая соответствует значению у, относящемуся к значению /

в месте закрепления нити. На концах нитей надо развесить небольшие грузы

(вроде шайб или гаек), чтобы нити были вертикальны и чтобы их концы были

более заметны.

Необходимо укрепить по крайней мере десять таких нитей (использовать их

более двадцати не имеет смысла). Если у измеряется в метрах, каждая единица /

равна 1/22,2 секунды (табл. 8).

таблица 8

t

—у

t

—у

0

0 0

1

1

,01

11

,21

2

0,04

12

1,44

0

1

о

,09

13

,69

0

1

4

,16

14

,96

0

2

5

,25

15

,25

0

2

6

,36

16

,56

0

2

7

,49

17

,89

8

0,64

18

3,24

0

3

9

,81

19

,61

10

1,00

20

4,00

Подробное рассмотрение этой демонстрации в связи с применением ее при
анализе движения тела, брошенного горизонтально, см. в разделах 20.3 и 20.4

Руководства.
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20.3. Движение тела, брошенного горизонтально. Векторный характер за-*

кона движения Ньютона

20.4. Движение тела, брошенного горизонтально. Определение траектории

Цель. Исследовать векторную природу закона Ньютона путем рассмотре-

рассмотрения общего движения частицы под действием силы тяжести. (Распространить

результаты раздела 20.2 на случай движения, имеющего как вертикальную, так

и горизонтальную компоненты скорости.)

Содержание, а) При свободном падении вертикальное движение оказы-

оказывается не зависящим от горизонтального движения.

б) Это согласуется с представлением закона Ньютона в виде векторного

соотношения F= та.

а) Если проекция начальной скорости тела на горизонтальное направление

равна vQt то x=vQt, у=—gt2j2.
Методические указания. Материал, изложенный в разделах 20.3

и 20.4, очень важен, его надо проходить подробно и обстоятельно. Большинство

учащихся проявляют к нему интерес и, если им дана возможность достаточно

попрактиковаться, овладевают умением решать задачи.

После того как изучение этих разделов будет завершено, можно проделать

лабораторную работу III.4.

Следует подчеркнуть независимость вертикальной и горизонтальной компо-

компонент движения. В этом заключается суть векторной природы закона Ньютона;
каждая компонента удовлетворяет этому закону. Сперва удостоверьтесь в том,

что учащиеся заметили эту независимость. Затем проверьте, используют ли они

эту независимость при решении задач, как это предлагается ниже.

После того как вы продемонстрировали, что время падения не зависит от

горизонтальной скорости, надо вывести •* классе уравнения, описывающие каж-

Пл дую компоненту движения (подобные
приведенным в разделе 20.4 Учебника).
Рассмотрение может быть основано на

\СтеНй движениях, показанных на рис. 20.4 и

20.5. (Описание траектории или вывод

уравнения, связывающего у с х, надо

-¦¦п
-

временно отложить.)
Лол г

_

'

^
I Спросите у учащихся, каким уравне-

уравнением описывается координата у свободно
Рис- И- падающего в вертикальном направлении

тела. Записав надоске ответ у
=—gt2/2=

= —4,9 t2, спросите, как изменится это уравнение, если vQX= 10 м/с. Большинство

учащихся быстро сообразит, что это уравнение по-прежнему будет иметь вид

у=—4,9 t2, независимо от vx\ однако на этом непременно следует остановить

внимание на уроке, чтобы это дошло до всех учащихся. Спросите, каким уравне-
уравнением описывается горизонтальное движение, и запишите на доске ответ (х = vOxt).
(Может быть, вам захочется дать какое-нибудь конкретное простое значение

vox, скажем, 2 м/с, 10 м/с и т. д.)
Предложите учащимся несколько простых задач из практики, составленных

таким образом, чтобы они легко решались, если разделить компоненты движения.

Ряд таких типовых задач предлагается ниже. В каждом случае тело падает со
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стола (рис. 11) с горизонтальной скоростью vOx в момент t~ 0. В первых задачах

вертикальную начальную скорость надо считать равной нулю.

Используя простые числовые данные, чтобы упростить арифметические под-

подсчеты, вы поможете учащимся сконцентрировать внимание на природе движения.

(Для такого упрощения очень полезно брать у =—5 t2.)

Упражнения
A. Наиболее простые задачи в одно действие, содержащие время t:
а) Задайте две величины в формуле х= vOxt и попросите найти третью.

б) Задайте одну из неизвестных в формуле у =—4,9 t2 и попросите определить

другую.
Б. Задайте две из трех величин vox> х, у и попросите определить третью.
а) Сначала попросите определить t, а затем другую неизвестную. Например,

если х — 20 м и иод;= 2 м/с, чему равно t? Чему равен у? Если у =—4,9 м и vox~
= 3 м/с, чему равно п Чему равен х? Если у==—4,9 м и х= 10 м, чему равно О

Чему равна vox?
б) Затем вы можете, задав две из трех величин vox, x и у, попросить опреде-

определить третью, не спрашивая явно, чему равно время движения t. Однако учащиеся
привыкнут в качестве первого шага при решении искать /. Если дан у, можно

сразу же найти t. Чтобы найти t> зная #, надо еще задать vox.

B. Вы можете по своему усмотрению расширить эти задачи, включив в них

вертикальную начальную скорость.

Выбирая задачи для решения, необходимо помнить, что наиболее важной

стороной движения тела, брошенного горизонтально, является независимость

компонент этого движения. Лучший путь изучения этой независимости состоит

в частом ее применении при решении задач. Эта независимость заслуживает го-

гораздо больше внимания, чем траектория движения.

После того как будут проделаны эти упражнения вводного характера, можно

сделать несколько задач типа задачи 14.

Очень полезно продемонстрировать на одном или нескольких примерах,
что два одинаковых тела падают вместе независимо от их горизонтальной ско-

скорости. Начинаем с того, что спрашиваем у учащихся, что они думают по этому

поводу. Многие из них интуитивно склонны ожидать, что тело с горизонтальной
скоростью будет падать дольше, так как «оно проходит больший путь». Равенство

времен падения может быть продемонстрировано легко и эффективно; такие

демонстрации можно использовать как введение в обстоятельное рассмотрение
аналитических следствий векторной природы закона движения Ньютона. Вначале

лучше использовать обычные предметы, а не детали демонстрационного обору-
оборудования. При решении задачи 14 показано, как можно использовать для этой

цели монеты. Более сложные установки для демонстрации независимости времени

падения можно использовать только после того, как вы показали это на простых

примерах.

Как уже указывалось выше, ударение надо сделать на независимости ком-

компонент движения, а не на траекториях. По этой причине полезнее графически
продемонстрировать траекторию, чем выводить ее аналитически. Зта своеобразная
демонстрация еще больше подчеркивает независимость компонент движения.

Устройство для нее очень просто.

Начальная скорость горизонтальна. Берем стержень, подобный тому, на

котором развешаны нити, и просим одного из учащихся показать, где будет
находиться в разное время тело, движущееся с постоянной горизонтальной



скоростью (в отсутствие вертикального перемещения). Отмечаем равные простран-

пространственные интервалы, соответствующие равным промежуткам времени.

Для нескольких из этих расстояний просим учащихся указать, какое поло-

положение на оси у занимало бы тело в эти моменты времени, если бы оно падало

свободно.

Обращаем внимание учащихся на стержень с подвешанными к нему нитями.

Замечаем, что если бы тяжесть отсутствовала, все эти нити должны были бы иметь

нулевую длину. Подвешивание нитей, таким образом, имеет смысл обращения
к влиянию силы тяжести на движение.

Начальная скорость направлена под углом к горизонту. Какова была бы тра-

траектория частицы, брошенной под некоторым углом к горизонту (в отсутствие

силы тяжести) с той же самой скоростью, что и выше? Это можно показать, просто

располагая стержень (без нитей) в соответствующем направлении.

Какова будет траектория при действии силы тяжести? Учащиеся поймут,
что нити показывают свободное падение (для случая начальной скорости, направ-
направленной вдоль стержня). Это справедливо независимо от того, горизонтален стер-

стержень, направлен он под углом к горизонту или даже вертикален.

Как только учащиеся поймут, что линия, соединяющая грузы на концах

нитей, представляет траекторию, вы можете использовать стержень с укреплен-
укрепленными на нем нитями при решении задач. Число нитей измеряет время. Наклон

траектории (как в задаче 15) дает отношение скоростей. Этот стержень с разве-
развешанными на нем нитями окажется особенно полезным при качественном иссле-

дэвании изменений траектории при изменениях начальной скорости. В частности,
с его помощью нетрудно убедиться, что максимальная дальность полета дости-

достигается при угле 45°.

Вы, возможно, не станете выводить в классе уравнения, соответствующие

различным значениям начального угла 6, хотя они и не очень сложны. Однако

вам, вероятно, потребуются некоторые формулы для того, чтобы можно было

быстро ответить на возникающие вопросы. По этому поводу см. Приложение 1

на стр. 412.

20.5. Отклоняющие силы и движение по окружности

20.6. Спутники Земли

20.7. Движение Луны

Цель. Применить закон Ньютона к случаю, когда сила постоянна по вели-

величине, но действует в направлении, которое все время перпендикулярно к мгно-

мгновенной скорости, и, таким образом, обеспечивает равномерное движение по ок-

окружности.

Содержание, а) Сила, перпендикулярная к скорости, создает перпендику-

перпендикулярное ускорение, которое изменяет направление скорости, не меняя ее величины.

б) Постоянная по величине сила, действующая в направлении, перпендику-

перпендикулярном к направлению движения, приводит к равномерному движению по ок-

окружности.

в) Кинематические соотношения для равномерного движения по окружности

таковы:

v = 2nR/T, а == 2nv/T = 4k2R/T* == v2jR.



г) Центростремительная сила F равна

F = ma = mAn2R/T2 = mv%/R.

д) Применение написанных выше соотношений для вычисления периода

и скорости искусственного спутника Земли и центростремительного ускорения

Луны.

Методические указания. Излагаемый здесь материал традиционно
является очень трудным для усвоения. Приготовьтесь к тому, что вам придется

потратить около грех уроков на развитие понятий, которые здесь встречаются.

Лабораторную работу II 1.5 следует проделать перед тем, как выводить фор-

формулы центростремительного ускорения и силы.

Изучение материала этих разделов включает три стадии; их надо развивать

независимо, хотя первые две из них тесно связаны между собой.

1. Первая стадия требует выработки качественного понятия о том, что ус-

ускорение, направленное перпендикулярно мгновенной скорости, не изменяет

величины этой скорости. Это понятие часто оказывается трудным для учащихся,

и весьма полезно провести здесь подробное рассмотрение или повторение. Мето-

Методика преподавания основана здесь на представлении о том, чго вектор ускорения

определяется как скорость изменения вектора скорости. Величина вектора ско-

скорости может при этом оставаться неизменной.

2. Вторая стадия содержит подробное рассмотрение (или повторение) кине-

кинематики движения по окружности. Для того чтобы дать учащимся основу для

понимания направления и величины центростремительного ускорения, понадо-

понадобится графическое рассмотрение скорости и ускорения. Окончательные формулы,

которые будут выведены, весьма важны, но одних только формул недостаточно;

нужно, чтобы учащиеся понимали их происхождение.

3. Только на третьей стадии изучения мы переходим от кинематики к дина-

динамике. Исследуя ускорение и зная закон Ньютона, мы подготовили условия для

понимания сил, определяющих движение по окружности.

Изучение кинематики движения по окружности требует о г учащихся выпол-

выполнения графических построений. Некоторые из них можно сделать в классе, но

определенную часть этой работы надо задать на дом для самостоятельного выпол-

выполнения. Предложения по методике преподавания кинематики можно найти в При-
Приложении 1 к части I. Дальнейшие указания вы найдете в Приложении 2 на стр. 413.

Следует подчеркнуть сходство двух уравнений, описывающих движение по

окружности:
v = 2nR/T и a = 2av/T.

Это сходство будет напоминать учащимся вывод выражения для а. Сначала,
может быть, разумно пользоваться при решении задач выражением a~2nvlT,
а выражения а= Bn/TJR и а= v2/R выводить по мере надобности. Со временем

учащиеся запомнят формулу a=v2/R и будут непосредственно пользоваться ею.

Выражение а= Bn/TJR особенно полезно для перехода к гармоническому дви-

движению. Заметим, что векторы а и JR противоположны по направлению. Поэтому,
если мы записываем последнее соотношение в векторной форме, мы должны по-

поставить знак минус:
а=—Bл/ГJ#.

Закон Ньютона подразумевает, что в том случае, когда какое-нибудь тело

движется по искривленной траектории, непременно должна существовать ком-
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понента силы, перпендикулярная к движению. Чтобы сделать на этом ударение,

попросите учащихся указать центростремительную силу в различных примерах.

Например, какая сила заставляет поворачивать автомобиль? Учащиеся

должны понимать, что это может быть только сила, действующая на автомобиль

извне. Следовательно, это должна быть сила, действующая со стороны дороги

на шины; на плоском шоссе это сила трения (а на шоссе с насыпью для виража

это нормальная сила реакции).
Какая сила обеспечивает пассажирам, сидящим в автомобиле, движение по

той же кривой, по которой движется автомобиль? Эти силы являются внешними

по отношению к пассажиру (но, конечно, они действуют со стороны внутренних

частей автомашины). Они включают силы, действующие на ноги со стороны пола,

на тело со стороны сиденья, и часто силы, действующие на тело со стороны дверцы

или стенок, а также со стороны соседних пассажиров.

Многим учащимся следует напоминать о том, что если центростремительная

сила исчезает, как, например, на рис. 20.11, то дальнейшее движение происходит

по касательной к окружности. Интуиция иногда обманывает в этом вопросе,

поскольку можно предположить, что если сила, действующая к центру, исчезает,

тело будет двигаться наружу по радиусу. Спрашивайте об этом учащихся, пред-

предпочтительно в связи с демонстрацией.

20.8. Простое гармоническое движение

Цель. Применить закон Ньютона для нахождения движения, когда на тело

действует несколько более сложная сила: сила, которая все время направлена

вдоль одной и той же прямой, но изменяется по величине и по знаку.

Содержание, а) Когда тело немного смещается из своего положения рав-

равновесия, часто возникает возвращающая сила, пропорциональная этому сме-

смещению: /7=—kx.

б) Проекция центростремительной силы на произвольный диаметр удовле-

удовлетворяет такому же уравнению: Fx~ тах =—тBл/ТJх, где х есть расстояние от

центра, измеренное вдоль этого диаметра.

в) В силу векторного характера закона Ньютона, движение, создаваемое

силой, удовлетворяющей уравнению F=—kx, должно быть точно таким же, как

движение проекции вращательного движения на диаметр.

г) Из вышеприведенных равенств
k = m Bя/ГJ, или Т = 2я V"m]T.

д) Если математический маятник отклонить на малый угол и отпустить,

он будет колебаться по закону простого гармонического движения, причем

Методические указания. Если вы собираетесь потратить на прохож-

прохождение части III не более девяти недель, вам не удастся изучить простое гармони-

гармоническое движение во всех деталях. За ограниченное время вы можете только по-

показать демонстрации (не останавливаясь подробно на приведенных в Учебнике

аргументах), чтобы проиллюстрировать соотношение между вращательным и

простым гармоническим движениями. Проверить предсказываемую формулами
независимость периода Т от амплитуды вы можете также с помощью демонст-

демонстраций. Такого рода демонстрациями, да решением одной-двух шаблонных задач

можно ограничиться при наличии минимального времени для прохождения

этой темы.
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Стоит упомянуть при этом, что закон Ньютона выполняется для всех сил,

а что этот частный вид силы выбран потому, что он является наиболее общим

случаем, применимьш ко всем малым колебаниям вообще.
Если вы очень стеснены во времени, вы можете опустить этот раздел целиком,

без ущерба для дальнейшей работы над курсом.

Подробное последовательное численное рассмотрение проблемы простого
гармонического движения содержится в Приложении 3 на стр. 418.

В Приложении 4 на стр. 419 дано точное рассмотрение этой проблемы с по-

помощью решения дифференциального уравнения движения.

Вы можете показать, что проекция равномерного движения по окружности

совпадает с простым гармоническим движением. Использование столика, вращаю-

вращающегося не в горизонтальной, а в вертикальной плоскости, позволяет сравнить

проекцию движения по окружности с колебаниями массы, подвешенной на пру-

пружинке. Если у вас есть устройство с относительно малым трением, вам, может

быть, удастся использовать горизонтально колеблющуюся массу.
Если у вас нет стандартной демонстрации такого типа, можно использовать

установку, описанную ниже.

Простое гармоническое движение можно продемонстрировать с помощью

тени, отбрасываемой телом, которое движется по окружности с постоянной ско-

скоростью. Его тень будет совершать на экране простое гармоническое движение

взад и вперед.

Сравнение движения маятника с движением тени от объекта, движущегося

равномерно по окружности, показывает, что при малых амплитудах маятник

также совершает простое гармоническое движение. Для демонстрации этого

можно использовать установку, показанную на рис. 12. К одному концу тон-

тонкой палочки приклеен шарик от пинг-понга, а другой ее конец привязан к

магниту, который притянут к диску проигрывателя (рис. 12, б). К высокой устой-

устойчивой опоре (рис. 12, а) подвешивается математический маятник, длина которого

подобрана таким образом, что частота его колебаний совпадает с частотой вра-

вращения диска проигрывателя. (Длина маятника должна быть равна приблизи-

приблизительно 80 см для скорости проигрывания 33,3 об/мин.) Эта частота вращения

диска наиболее подходит потому, что при более высокой частоте нам пришлось

бы взять слишком короткий маятник, который при колебаниях отклонялся бы

на слишком большие углы. Грузик маятника надо подвесить над проигрывателем

таким образом, чтобы он был чуть выше шарика о г пинг-понга (как показано на

рис. 12, б).
Подвес маятника осуществляется с помощью поперечного стержня (или

прутка), зажатого в штативе.

Устройство этого подвеса показано на рис. 12,в, стержень можно повора-

поворачивать, сматывая или наматывая на него нить так, чтобы можно было подбирать
длину маятника до тех пор, пока его период не станет таким же, как у диска

проигрывателя.
Источник света должен быть расположен как можно дальше от маятника и от

проигрывателя, чтобы уменьшить эффекты параллакса, связанные с изменением

расстояния между источником света и вращающимся шариком.

Сначала амплитуда колебаний маятника должна быть несколько больше

р-адиуса диска, с тем чтобы эти амплитуды сравнялись после того, как движения

грузика и шарика будут синхронизированы.
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Момент отпускания грузика маятника надо выбрать таким образом, чтобы

его тень при движении немного отставала от тени шарика. Тогда эти два движения

ь-ожно синхронизировать, если притормаживать пальцем обод диска проигры-

проигрывателя до тех пор, пока обе тени не совпадут.

Рис. 12.

20.9. Выбор простейшей системы координат на основании динамического по-

поведения тел

20.10. Фиктивные силы в системах координат, движущихся с ускорением

20.11. Закон Ньютона и вращение Земли

Цель. Указать значение системы координат (или системы отсчета), относи-

относительно которой производится наблюдение динамических закономерностей.

Содержание, а) Поскольку ускорение а зависит от системы координат,

соотношение F=ma справедливо только в тех координатных системах, которые

сами не обладают ускорением.

б) Закон инерции Галилея выполняется только в неускоренной системе от-

отсчета (называемой инерциальной системой). Закон Ньютона также выполняется

только в инерциальных системах.

в) Наблюдатели, находящиеся в ускоренной системе отсчета (и не знающие

об этом), стали бы приписывать ускорение тем телам, которые в действительности

не обладают ускорением относительно инерциальной системы. Чтобы объяснить
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появление эюго кажущегося ускорения, такие наблюдатели сделают вывод, что

на все тела действует некоторая сила. Такого рода силы носят название фиктив-
фиктивных сил.

г) Земля вращается. Наблюдатель, находящийся на Земле, может обнаружить
это вращение с помощью маятника Фуко. Тела и наблюдатели на поверхности

Земли должны поэтому иметь (очень малое) центростремительное ускорение. Во
всех экспериментах, кроме самых точных, можно смело пренебрегать этим ус-

ускорением.

Методические указания. Если вам приходится торопиться, то при

прохождении разделов 20.9—20.11 можно ограничиться изучением Учебника.

Позаботьтесь о том, чтобы у учащихся не осталось впечатления, будто закон

Ньютона ограничен в применении; он применим всегда, если а измерено в инер-

циальной системе.

Прежде чем упоминать об очень малом влиянии вращения Земли, будет весьма

поучительно разобрать случай быстро вращающейся карусели. Напомните уча-
учащимся, как им приходится наклоняться к центру (или держаться за что-нибудь),

чтобы сохранять равновесие. Человек, живущий на гигантской карусели, чув-

чувствовал бы, что в его мире существует мощное силовое поле, увлекающее пред-

предметы в направлении от центра. Он мог бы назвать эту силу (как мы иногда делаем

это) центробежной силой. Человек, входящий в такой «дом на карусели» из внеш-

внешнего мира, мог бы подвесить маятник Фуко над центром карусели. Тогда пло-

плоскость качаний этого маятника вращалась бы относительно карусели. (Она ос-

оставалась бы фиксированной относительно инерциальной системы отсчета.) Отсюда
можно было бы заключить, что карусель является вращающейся системой. Сточки

зрения кнерциальной системы, человек, находящийся на карусели, постоянно

испытывает центростремительное ускорение. Если его ноги находятся в контакте

с каруселью, то необходимая центростремительная сила передается его ногам

с помощью силы трения. Чтобы устоять на ногах, этот человек должен обеспечить

действие такой же центростремительной силы и на свое тело. Он может это сделать

либо держась за что-нибудь, либо наклонившись внутрь. Как видно из этого

рассуждения, с точки зрения инерциальной системы не существует никакой силы,

действующей наружу. С этой точки зрения кажущаяся центробежная сила,

которую ощущает человек на карусели, является фиктивной силой.

Представление о «фиктивных» силах, которое мы иногда привлекаем для

объяснения привычных явлений, может привести к тому, что у некоторых уча-

учащихся возникнут проницательные вопросы о фундаментальной природе силы.

8 конце концов мы ведь не можем реально «видеть» тяготение или электрические
и магнитные силы, а наблюдаем только результаты их действия. Не могут ли эти

силы, или некоторые из них, также быть фиктивными в некоторой системе отсчета,

которую мы пока не можем себе представить? До сих пор мы еще недостаточно

знаем о происхождении гравитационной или электрической сил, чтобы решить,
являются эти «дальнодействующие» силы реальными или «фиктивными». Эйнщ*

тейн в своей общей теории относительности (см. Приложение 5 на стр. 420) фор-
мально предложил считать силу тяжести проявлением общих свойств простран-

пространства и времени, но до настоящего времени еще не создано «единой теории поля,>,

которая объясняла бы подобным же образом электрические и магнитные эффекты.
Таким образом, по крайней мере на современном этапе развития физики, мы

считаем эти дальнодействующие силы реальными. Мы просто не можем указать

9
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1якую систему отсчета, в которую мы могли бы перейти (как мы это можем сде-

сделать с «центробежной» силой), чтобы добиться исчезновения электрической и

магнитной сил *).
Хотя для большинства эксперимент ов и расчетов удобно и приемлемо счи-

считать Землю инерциальной системой отс чета, мы можем показать экспериментально,

что на самом деле это не так. Неподвижные звезды, в свою очередь, хотя мы и

берем их в качестве «хорошей» системы отсчета, в действительности не являются

неподвижными друг относительно друга, а движутся с огромными скоростями.

Линии, мысленно проведенные между ни-

,Шарик ми> могут вращаться в истинно ньюто-

ньютоновой системе отсчета. Однако их расстоя-

расстояния от Земли столь невообразимо велики,

что за отрезки времени, сравнимые с че-

человеческой жизнью, их можно считать

«неподвижными».

Различие траекторий относительно

неподвижной и вращающейся систем от-

отсчета можно продемонстрировать с по-

помощью горизонтального вращающегося

столика или диска (такого, как в установке для демонстрации углового мо-

момента), который может свободно вращаться вокруг вертикальной оси, и сталь-

стального шарика диаметром около дюйма (рис. 13).

Диск должен быть гладким и строго горизонтальным. На этот диск надо

положить лист бумаги, как показано на рис. 13, и покрыть его листом копиро-
копировальной бумаги (графитовой стороной вниз). Прикрепляем бумагу, покрытую

копировкой, к диску. Линейка, показанная на рисунке, используется для того,

чтобы заставить шарик двигаться по прямой линии в нашей системе отсчета.

Приведя диск во вращение с частотой приблизительно 2 оборота в секунду,

бросаем шарик с высоты примерно 5 мм в точку, показанную на рисунке. Шарик
покатится вдоль линейки в направлении вращения диска. После того как шарик

докатится до края диска, останавливаем диск и возвращаем его в то положение,

которое он занимал в тот момент, когда на него упал шарик. Проводим прямую
вдоль линейки через ту точку, в которую упал шарик. Это и будет траектория
шарика в фиксированной системе отсчета.

На рис. 14, а показан центральный участок этой траектории. Кривая на

рис. 14, а близка по форме к спирали. Однако чтобы описывать спираль, шарик

должен был бы двигаться из той точки, в которой он коснулся диска, по прямой
линии с постоянной скоростью, а диск должен был бы вращаться с постоянной

угловой скоростью. В нашем же случае диск приводит в движение шарик и потому

замедляется. В то же время, поскольку при бросании шарику не была сообщена

скорость в горизонтальном направлении, то чтобы скатиться с диска, он должен

двигаться вдоль линейки ускоренно, по крайней мере в первый момент.

*) Лучше сказать, что нельзя добиться одновременного исчезновения элект-

электрического и магнитного полей, т. е. электромагнитного поля. Если же, например,

магнитное поле создано движущимся зарядом, который эквивалентен току, то

это поле можно «уничтожить», если перейти в систему отсчета, относительно

которой этот заряд покоится. (Прим. перге.)
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Повторяем демонстрацию, убрав линейку. Наблюдаем движение шарика

относительно фиксированной системы отсчета. Возвратив диск в то положение,

которое он занимал в момент падения на него шарика, приблизительно проводим

Траекгпория_д_
"щ

леподдижной системе

а)
6)

Рис. 14.

траекторию, которую мы наблюдали относительно нашей неподвижной системы.

Центральные участки этой и полученной с помощью копировки траекторий по-

показаны на рис. 14, б.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

Анализ и решение задач в классе всегда полезны. И особенно полезно это
делать при изучении материала гл. 20. Многим учащимся надо помочь понять

и проанализировать условия задачи и записать их в таком виде, который приведет
их к решению. Надо добиться того, чтобы учащиеся делали зарисовки и графики
действующих сил и рассматриваемых движений, даже если это и не требуется
явно в формулировке задачи.

Задачи 8 и 9 представляют собой непосредственно задачи по динамике, но

если вы не повторяли кинематику в классе при изучении гл. 19 и 20, то, может

быть, вы найдете нужным задать (или повторить) несколько более простых задач

на свободное падение, прежде чем решать задачу 8 или 9. Прямое решение задачи 8

требует выбора определенного направления в качестве положительного, чтобы

различать движение вверх и движение вниз. Задача 9 требует использования

общих формул и графиков.
В табл. 9 задачи расклассифицированы по их примерному уровню трудности

и распределены по разделам. Выделены задачи, наиболее подходящие для решения
в классе. Особо рекомендуемые задачи отмечены значком #,

Краткие ответы

1*. т=5 кг.

2*. а) Вес на Луне 110 Н, на Земле 690 Н; б) масса на Земле 70 кг, на Луне
70 кг.

4* g=9,81 Н/кг.
6*. 4,9 м.

13*. За равные промежутки времени в горизонтальном направлении прохо^
дятся равные отрезки пути; в вертикальном направлении это не так.
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Разделы

20.1

20.2

20.3, 20

20.5—20

20 8

20.9—20

.4

7

.1!

Со звез-

звездочкой

1, 2

4, 6

13

17—20

26—29

39

Легкие

3

7

14»
21»
31

Средние

5,8#, 10#, 12

15

16,22—24,25#
30,32

34, 35

Трудные

9,11

33

36—38

ТАБЛИЦА

Классные

5,8#, 9,10#,П,
14$

16,21^,22—24,5
30

35

9

12

17*. F=2A Н.
18*. Величина скорости не меняется, но направление движения изменяется

в направлении силы.
19*. # = 0,52 м/с и направлена влево, если ползун движется по часовой

стрелке, как на рис. 20.11.
20*. а=0,62 м/с2 и направлено к центру окружности.
23*. F——kx, где k — некоторая положительная константа.
27*. В точке, где окружность пересекает ось у.
23**. т=0,2 кг.
23*. /==0,25 м.
39*. Немного западнее направления на север.

Ответы с указаниями и решениями
3. Для этой цели надо взять такие два пункта, которые находятся на одной

широте, чтобы быть уверенным в том, что разность напряженностей гравитацион-
гравитационного поля в этих пунктах вызвана разностью высот. Хорошей парой являются

Брюссель и Банф или Нью-Йорк и Денвер.
Легко видеть, что широта местности также влияет на величину g, если срав-

сравнить значения g для Явы и Новой Зеландии, которые находятся приблизительно
на одной высоте.

5. Эта задача обращает внимание на простейшее проявление соотношения

между инертной и гравитационной массами. Самый прямой ответ на вопрос можно

дать, используя уравнения, приведенные на стр. 32 Учебника. Ввиду того, что

а= (mg/mj)g~ изменение отношения rtig/nti привело бы к изменению ускорения.
Так, например, если бы тела, сделанные из разных материалов, имели различ-
различное отношение масс mJmi, они ускорялись бы по-разному в поле тяготения

Земли.
g

Заметим, что постоянство mg/m{ не может быть выведено теоретически; оно

основано на экспериментах, показывающих универсальность ускорения под

действием силы тяжести. Если бы mg/mi не было постоянным, единственные из-

изменения, которых следовало бы ожидать, относились бы к явлениям, непосред-

непосредственно связанным с проявлениями силы тяжести. Другие стороны динамики это

совершенно не затронуло бы.

Поскольку постоянство trtglmi является прямым следствием эксперимента,

физик-экспериментатор должен стремиться поставить эксперименты, позволяю-

позволяющие проверить постоянство этого соотношения более тщательно. Прямые срав-
сравнения ускорений не могут быть проведены с достаточно высокой степенью точ-

точности или в широком интервале значений масс, но каждый такой эксперимент,
будучи осуществлен, показывает, что с достигнутой на опыте степенью точности

отношение nig/mi остается постоянным. Самые точные эксперименты, проведенные
до сих пор, основаны на сравнении периодов колебаний маятников, сделанных
из различных материалов. Эти эксперименты показывают с точностью 10~8, что
отношение mg/mi остается одним и тем же, независимо от того, сделан ли маятник
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из вещества с малой плотностью (например из алюминия) или из вещества с вы-

высокой плотностью (например из свинца). Планируемые в настоящее время экс-

эксперименты с искусственными спутниками Земли должны довести точность соот-

соответствующих экспериментов до 10 -11.
7. Пусть -Рвозд обозначает силу сопротивления воздуха. В качестве положи»

тельного выберем направление вниз. Тогда

= 7,3

Это ускорение направлено вниз (поскольку оно положительно).
8. Эту задачу можно решить с помощью двух уравнений:

и d= ucp-r.

а) Направление вверх возьмем за положительное. Тогда начальная скорости

равна уо=+ 15 м/с, ускорение силы тяжести а=—9,8 м/с2, а скорость через
время t равна vt=vo-\-at, т. е.

i>1>2=15 м/с+ (—9,8 м/с2). 1,2 с ==+3,2 м/с.

б) Шарик все еще движется вверх: ^=уср- f, т. е.

м/с ) 1,2 с =+10,9 м.

ч * У

в) 1>2K=15 м/с+ (—9,8 м/с2)-2,3 с==—7,5 м/с.

г) Теперь шарик уже движется вниз: dt=vz^tt т. е.

4,з = ^ср-2,3 с- A5~^7>5 м/с) 2,3 с=+8,6 м.

д) Ускорение шарика в верхней точке движения, так же как и во все прочие

моменты полета, равно —9,8 м/с2.
9. Хотя эта задача довольно трудна, она обладает двумя положительными

особенностями. Во-первых, учащиеся должны представить себе все движение в

целом, чтобы составить правильные уравнения для его описания. Во-вторых,
чтобы интерпретировать полученные результаты, они снова должны вернуться
к физике задачи.

а) Необходимым условием правильного составления уравнений, а следова-
следовательно, и решения задачи, является согласованное определение положений тел,
т. е. определение этих положений по отношению к одному и тому же началу от-
отсчета. Пусть это начало отсчета расположено у подножия скалы и в качестве
положительного выбрано направление вверх. Тогда уравнение, описывающее
изменение положения при постоянном ускорении:

имеет вид

хк—h= Q—gt2/2 (для камня),
#м
— Q— vot—gt2/2 (для мяча)

(рис. 15), поскольку в обоих случаях a=—g=—9,8 м/с2. В тот момент, когда ка-

камень и мяч встречаются, т. е. находятся на одной и той же высоте, мы имеем

хк~*м и h=vQti т.е. t=h/vQ.
Соотношение t=h/v0 не выполняется, если камень и мяч не встречаются на

некоторой высоте над землей. Если vQ слишком мала, камень и мяч не успеют

встретиться до того, как мяч упадет обратно на землю. Это легко показать, если

учесть, что t должно быть меньше времени thi которое нужно камню, чтобы до-

достигнуть земли. Это время определяется выражением

т.е. th=(lg)\
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и, следовательно,

h/vo< VWg, т. е. vo> (gh/2)lf*.
б) Когда мяч встречается с камнем, мяч может либо двигаться вверх, либо

падать обратно, либо остановиться перед тем как начать обратное падение

(в верхней точке подъема). Мы сможем сказать, какое из этих состояний будет иметь

место в действительности, если найдем скорость мяча ум в тот момент времени /,
когда он встретится с камнем. Эта скорость равна

Но мы уже знаем, что t= h/v0; следовательно,
2

Если камень и мяч встречаются в наивысшей точке подъема мяча, когда он по-

покоится, то vM
= 0 и vo = gh. Таким образом, это произойдет в том случае, если

мяч брошен с начальной скоростью, в точности равной V"gh. Если он брошен с
большей начальной скоростью, он встретит ка-

мень, поднимаясь; если же он брошен с мень-

— шей начальной скоростью, то он встретится
с камнем на обратном пути, т. е. опускаясь.

Камень

Мяч

! /77/ \Т
\ Н

I

—т П
—I

Рис. 15. Рис. 16.

10. В этой задаче рассматривается свободное падение, частный случай закона

Ньютона. Она является в то же время введением в новый круг задач, в которых

сила тяжести, действующая на часть системы, сообщает ускорение всей системе.

а) Полная сила тяжести равна приблизительно 10 Н, так как каждая из масс

в 0,5 кг испытывает действие силы около 5 Н (если для g принять значе-

значение 10 Н/кг). Действительно,
/• = 2.0,5.9,8 = 9,8 Н.

(Заметим, что, поскольку рассматриваемые тела не имеют ускорения, стол должен
действовать на каждый ползун с силой, равной по величине весу ползуна, но

направленной вверх.)
б) Если некоторое тело тянуть с результирующей силой, равной его весу,

то оно должно иметь такое же ускорение, как если бы оно свободно падало, т. е.

9,8 м/с2 (или ^10 м/с2). Математически F = (масса)-а, но F~ 2mg, так как (мас-
(масса) = 2га. Итак, F~2mg=2mat откуда а= g.

в) Некоторые учащиеся сразу заметят, что если одна из масс в 0,5 кг нахо-

находится на столе, а другая свешивается с него, то мы имеем общую массу в один

килограмм, а единственная ускоряющая (некомпенсированная) сила есть сила

тяжести, действующая на массу в 0,5 кг, висящую на бечевке. Эта сила равна
0,5 кг» 9,8 Н/кг=4,9 Н. Сила 4,9 Н, действующая на массу в 1 кг, сообщает
ей ускорение 4,9 м/с2. Несколько более формально:

F
а=—=

т
=?!5кг^ 1

w5
а 1 кг 2 ь ч '

Другим учащимся такое наглядное рассуждение может показаться недоста-

недостаточно убедительным, и в этом случае, чтобы удостовериться в правильности полу-
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ченного результата, может потребоваться более подробное рассмотрение. Это
рассмотрение можно провести несколькими различными способами. Можно по-

попросить учащихся рассмотреть каждый из ползунов как отдельную систему (с
помощью штриховых линий можно очертить границы каждой из этих систем и

выделить внешние силы, действующие на каждую из них) и напомнить им, что:

1) натяжение бечевки равно Т во всех ее точках и 2) поскольку диски связаны

между собой, величина ах равна величине а2, несмотря на то, что направления
этих ускорений различны (рис. 16). Обозначим величину этих ускорений через а.

Для т1э считая положительным направление направо, имеем уравнение движения

в виде Т = гп1а. Для mZf считая положительным направление вниз, имеем

F—Т = пг2а.

Подставляя Т из первого уравнения во второе, получим

Но F= m2g. Отсюда
F—тга

—

= m2g1 a= [ ==-^ ?= 4,9 м/с2.
\m1+m2jt

11. Эта задача на гравитационное притяжение требует разложения силы

тяжести mg на две компоненты, одна из которых направлена вдоль наклонной

плоскости. Решение ее требует использования либо тригонометрии, либо соот-

соотношений подобия треугольников.
а) Мы можем разложить силу mg на две составляющие, одну

— параллель-
параллельную наклонной плоскости, другую—перпендикулярную ей (рис. 17). Поскольку
наше тело не проникает внутрь поверхности, по которой оно скользит, резуль-
результирующая сила, действующая на тело, не может иметь компоненту, перпендику-
перпендикулярную к этой поверхности. Перпендикулярная компонента силы mg уравно-
уравновешивается силой реакции наклонной плоскости.

Поскольку трение отсутствует, сила, действующая на тело со стороны по-

поверхности наклонной плоскости, не может иметь составляющую вдоль наклонной
плоскости. Единственная сила, парал-
параллельная наклонной плоскости, есть соот-

Силареакции

Рис. 17. Рис. 18.

ветствующая компонента веса mg, которая и является результирующей силой.
Чтобы определить ее, строим отрезок DE, длина которого равна mg в некотором
выбранном масштабе. Через точку D проводим прямую DF', перпендикулярную
АВ, а через точку Е проводим прямую EF, параллельную ЛВ (рис. 18). Для
ясности, вместо того чтобы изображать эти силы на наклонной плоскости, гораздо

лучше начертить отдельно диаграмму сил (см. рис. 18), а направления АВ, ВС
и СЛ показать на ней пунктиром. Отрезки на этой новой диаграмме явно изоб-

изображают силы и вряд ли могут быть спутаны с расстояниями. С помощью гео-

геометрии учащиеся смогут показать, что треугольник EDF подобен треугольнику
ВАС и что ?EDF= ?BAC= 30°. Поэтому FE, которая представляет собой ком-

компоненту силы, параллельную наклонной плоскости, определяется из

sin30°==JF?r/m^, или TE= mg sin 30° = mg/2.

Нормальная сила DF в точности уравновешивается силой реакции поверх-
поверхности плоскости; каждая из них имеет величину mg cos 30°, а их векторная сумма
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равна нулю. Окончательно, результирующая сила равна mg/2 и направлена вниз

вдоль наклонной плоскости.

б) Ускорение по наклонной плоскости дается выражением t = ma=mg/29
т.е. a= g/2 вниз по наклонной плоскости.

12. Пусть положительным является направление вниз. Средняя скорость

камня за время, в течение которого он пролетает мимо окна, равна

аср
= 2 м/0,1 с = 20 м/с.

Поскольку скорость движения
значение скорости совпадает с

Крыша

Верх окна
t

Низ окна

t+at

Рис. 19.

потребуется, чтобы долететь до

вниз положительным, имеем

камня увеличивается равномерно, это среднее
мгновенной скоростью камня в середине проме-

промежутка времени между моментами прохождения
им верха и низа окна. Если скорость равна
20 м/с, это означает, что камень прошел рао-
стояние d, определяемое из соотношения

v* = 2ad\ d= v*/2a= B0J/B-9,8) = 20 м.

Это расстояние велико по сравнению с вы-

высотой окна. Более того, к тому моменту, как

камень приобрел скорость 20 м/с, он пройдет
менее половины всей высоты окна, поскольку он

движется медленнее в течение первой половины

того промежутка времени, за который он про-
проходит мимо окна. Следовательно, верх окна на-

находится на расстоянии примерно 19 или 20 мет-

метров от крыши.

Многие учащиеся будут решать эту задачу
более подробно (рис. 19). Пусть Xf есть расстоя-
расстояние от верха окна до крыши. Пусть /есть время,
в течение которого камень достигает верха окна,
a At — то дополнительное время, которое ему
подоконника. Тогда, снова считая направление

где Ах — высота окна. Подставляя х из второго уравнения в первое, получим

откуда
. 1 (Ах 1

'-zHt-t
Ах

(так как Ax/g^>(AtJ/2f второй член не дает вклада в результат с точностью до

двух значащих цифр, с которой ведется вычисление). Тогда получаем

(f(tl2-2)=z2Q м.

14. Эта простая и интересная баллистическая задача обычно возбуждает
живую дискуссию в классе. На первый взгляд может показаться, что для решения
задачи известно слишком мало данных. Однако решение может быть найдено,
если сделать только одно дополнительное предположение, что мяч ловят на той

же высоте, с которой он был брошен. В этом случае из симметрии траектории ясно,
что мяч поднимается в течение 1,5 с и падает также в течение 1,5 с. Тогда высота А,
которой может достигнуть мяч, равна

Л =#«/2 = 9,8 м/с»-A,5 с)*/2=П м.

Эта задача, вероятно, вызовет дополнительные вопросы у ваших энтузиастов
бейсбола; их заинтересованность можно углубить, вычислив начальную скорость

бросания. Для этого вам придется задаться некоторым расстоянием. Разумным
значением здесь является дальность полета 90 м. Это приводит к начальной ско-

скорости в горизонтальном направлении

vOx
= vx = d/t = 9O м/Зс = 30 м/с.
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Вертикальная скорость (если считать положительным направление вверх) равна

Vy
= VOy—gt.

Но Vy= О, когда /=1,5 с; следовательно,

i>Oy
= 9,8-l,5 » 15 м/с.

Начальная скорость v0 равна

К^ /" =34 м/с.

Эта скорость весьма высока для бейсбольного броска; возможно, она является

достижимой для профессионального игрока, но она слишком велика для абсо-

абсолютного большинства учащихся.

15. а) и б) Поскольку горизонтальная и вертикальная компоненты начальной

скорости равны обе 10 У2 /2 — 7,07 м/с, кинематическое уравнение d— vot-\- at2/2
дает нам х ну как функции времени /:

x = 7,07t; y = 7,07t—4,9t*.
Мы могли бы вычислить хну для различных значений /. Однако несколько проще
исключить / из написанных выше уравнений и получить одно соотношение между
х и у:

/ = */7,07; у = 7,07 (х/7,07) —4,9 (х/7,07)а = *— 0,098a:2.

Теперь мы можем построить график зависимости у от х. Соответствующая кривая

и 5 Ю\я,м
Рис. 20.

есть парабола (рис. 20), и мы можем найти ее основные характеристики. Эта кри-
кривая пересекает ось х в точках х= 0 и х= 1/0,098= 10,2 м. Максимальная вели-
величина у достигается посредине этого интервала, т. е. при х= 5,1 м; это максималь-
максимальное значение равно z/ = 2,55 м (табл. 10).

Эти результаты можно получить несколько другим способом, с помощью

первоначальных уравнений, содержащих /. Например, у=0 для /=0 и для

/=7,07/4,9. t/max соответствует/=7,07/B-4,9). Полное расстояние x=7,07t=
= 7,07 G,07/4,9) = 10,2 м.

в) Когда тело падает обратно на землю, его вертикальная скорость равна по

величине (но противоположна по направлению) его начальной вертикальной
скорости: Vy

= —7,07 м/с. Скорость в направлении оси х не изменяется: vx=
= 7,07 м/с. Поэтому величина полной скорости равна 10 м/с, как и раньше.

Это нетрудно видеть из симметрии построенной траектории движения. Однако
не следует забывать, что скорость есть вектор; хотя величина скорости не из-

изменяется, ее направление становится \ вместо /.
16. Это упражнение на анализ размерностей в связи с вращательным движе-

движением. Единицы скорости есть (длина/время), так что единицы i?/R есть

(длина/времяJ .A/длина) = длина/время2,
что совпадает с единицами ускорения.

Для более сложных случаев полезно ввести специальные обозначения для

нахождения размерностей. Мы обычно обозначаем размерность какой-нибудь
величины, заключая ее в квадратные скобки. Размерности всех величин, с кото-

которыми мы встречались до сих пор, можно выразить через длину, время и массу,

которые мы можем обозначить буквами L, Т и М. Таким образом,
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ТАБЛИЦА 10

X

У

X

У

0

0

6

2,48

0

2

1

,90

7

,20

2

1,61

8

1,73

2

1

3

,12

9

,06

4

2,43

10

0,20

5

2,55

11

—0,86

так что

[y2/^l = L2T-2.L-1 = LT-2 = [ускорение].

Анализ размерностей крайне полезен как проверка выведенных формул,
позволяющая убедиться в том, что никакие факторы не были упущены. Вы можете

показать это на других примерах. В частности, проверьте, совпадают ли раз-
размерности обеих частей уравнения

d= vot+at2/2.
21. В этой интересной задаче центростремитель-

центростремительная сила должна быть равна весу.
Поскольку летчик не может «выключить» тяго-

тяготение, мы можем утверждать, что независимо от то-

того, действуют на него другие силы или нет, на него
во всяком случае всегда действует сила тяжести,

равная mg (рис. 21). Эта сила, действуя одна, соз-

создает направленное вниз ускорение а=—9,8 м/с2,
как это имеет место при свободном падении. Если

кресло и привязные ремни не противодействуют
этому движению, они должны иметь точно такое же ускорение а=—9,8 м/с2.
Такие условия могли бы осуществиться, если бы летчик, кресло и ремни свободно
падали все вместе. Это осуществляется также и в том случае, когда все эти три

тела движутся по окружности с центростремительным ускорением 9,8 м/с2, на-

направленным вниз. Скорость, обеспечивающую такое центростремительное уско-
ускорение, можно определить из равенства a=zfi/R:

Рис. 21.

v= м/сМО3 м = 99 м/с « 355 км/ч.

При этом говорят, что летчик находится в состоянии невесомости, поскольку он

не чувствует никакой силы, поддерживающей его вес, такой, например, как сила

давления пола, которую чувствовал бы стоящий человек.

Из формулы a=vVR видно, что увеличение скорости (и (или) уменьшение
радиуса) увеличивает ускорение. Следовательно, если скорость самолета, летя-

летящего по мертвой петле радиусом 1 км, превышает 99 м/с, центростремительное
ускорение будет больше, чем 9,8 м/с2, и летчик, находясь в верхней точке петли,

будет испытывать давление кресла. Меньшая скорость приведет к меньшему
ускорению, и летчик повиснет на своих ремнях, которыми он пристегнут к си-

сиденью.
22. Эта задача подразумевает качественное обсуждение вопросов, рассмат-

рассматриваемых количественно в задаче 21 (кажущаяся невесомость) и в задаче 23 (ка-
(кажущееся увеличение веса).

а) Нет; сила тяжести, действующая на данного человека, зависит только от

напряженности гравитационного поля в том месте, где он находится. Если он

остается в области однородного поля, его вес, в соответствии с нашим определе-

определением, не изменяется.

б) Понятия «в несколько раз больше своего веса» и «невесомость» относятся
к силе реакции опоры, когда она отличается от той силы, которая необходима

просто для преодоления силы тяжести. Например, рассмотрим человека, стоящего
в закрытом лифте. Он судит о своем собственном весе по направленной вверх
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силе, действующей на него со стороны пола; она равнялась бы его весу, если бы

лифт не имел ускорения. Эту силу можно оценить по силе давления на ноги и

можно измерить с помощью весов, если человек стоит на весах, находящихся

в лифте *).
Теперь представим себе, чго лифт имеет ускорение, направленное вверх.

Тогда пол должен давить на человека с силой большей, чем прежде, чтобы сооб-

сообщить ускорение его телу. Эта сила вполне реальна, и она была бы зафиксирована
либо весами, либо человеком, ноги которого чувствуют величину давления. Таким

образом, если человек не знает об ускорении лифта, он может подумать, что стал
тяжелее. Тот же самый эффект имеет место, когда летчик выходит из пикирования
или когда тело качается на нити, как в задаче 23.

Если ускорение лифта направлено вниз, то пол действует на человека с мень-
меньшей силой, направленной вверх. (Сила тяжести, конечно, всегда одна и та же,

но она не измеряется непосредственно; мы склонны отождествлять ее с той силой,
которую чувствуют весы или ноги.) Если ускорение лифта направлено вниз и

равно 9,8 м/с2, то пол вообще не действует вверх и ноги человека не ощущают

никакого давления. Этот эффект можно получить также в верхней точке мертвой
петли, как это было показано в задаче 21.

Вообще, кажущиеся изменения веса вызваны в действительности изменением

силы реакции опоры. Истинные изменения веса можно обнаружить при помощи

реакции опоры только при отсутствии ускорения.
23. В этой задаче рассматривается результирующая сила, создающая цент-

центростремительное ускорение. П. б) связан с напряжениями в материалах, рас-

рассмотренными в разделе 4.5 части I курса.

а) Когда шар качается, натяжение нити должно не только уравновесить его

вес, но и обеспечить требуемую центростремительную силу. По-видимому, нить

обрывается оттого, что ее натяжение становится больше веса шара.

б) Натяжение нити максимально, когда шар находится в нижней точке ка-

качания, поскольку в этой точке его вес направлен полностью вдоль нити и его

скорость v — наибольшая (по мере того как он снова поднимается, сила тяжести

замедляет его движение). Максимальная величина натяжения определяется
следующим образом:

Используя данные значения v и Rt находим

Vz/R = GJ/5 = 49/5 = 9,8 м/с2 = ?.

Следовательно, искомое натяжение равно

T = 2mg.
Таким образом, натяжение нити, когда маятник качается, вдвое больше, чем

когда он висит неподвижно. Поэтому у качающегося маятника нить должна быть

вдвое крепче. Чтобы увеличить максимальную силу натяжения в два раза, надо
взять нить, у которой площадь поперечного сечения также вдвое болына

(см. гл. 4 части I):
^нов = 2^пРежн» т. е. я^ов/4 = 2.я^режн/4,

Св = 2^прежн> d*OB= УГ2"^прежн= V* '* ММ = 2,8 ММ.

24. Для электрона Fe=mev\IR. Для протона Fp = mpv%/R. Нам дано, что

Fe=^Fp. Следовательно, mev2e/R = mpVp/Rt т. е. mev2e = mpv2p и v\=mev\lmp*
Таким образом,

*) Заметим, что при обсуждении этих эффектов имеются в виду пружинные
весы. Если же человек измеряет свой вес, уравновешивая его на рычажных весах
с помощью гирь, то он производит в действительности сравнение масс и никакого

кажущегося изменения силы тяжести не обнаружит. (Прим. перев.)
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25. Эту задачу на вращательное движение приходится рассматривать качест-
качественно. Количественное рассмотрение этой проблемы доступно только студентам
вузов.

а) Мы знаем, что если бы сила была постоянна и перпендикулярна к ско-

скорости, то тело двигалось бы по окружности с ускорением F/m, направленным
перпендикулярно его траектории. Поскольку сила, а следовательно, и ускорение,

возрастает с течением времени, путь тела все круче и

круче искривляется по направлению к центру. Примерная
траектория тела для случая действия такой силы пред-

представлена на рис. 22.

Точный расчет этого движения показывает, что траек-

траектория частицы в случае силы, линейно возрастающей со

временем, есть «спираль Корню», хорошо известная в оп-
оптике. Точное решение этой задачи слишком сложно даже
для студентов, так что посоветуйте учащимся ограничить-
ограничиться описанием качественных характеристик этого движе-
движения.

б) Сила, действующая на рассматриваемое тело, все

время перпендикулярна к его скорости. Поэтому и уско-
ускорение, вызываемое этой силой, перпендикулярно к скорости
во всех точках. Отсюда следует, что величина скорости

Рис. 22. остается неизменной, хотя ее направление изменяется сте-
стечением времени.

30. а) Поскольку брусок движется вместе с платформой, его движение также

представляет собой простое гармоническое колебание, так что результирующая
сила, действующая на него, равна

где у есть смещение бруска из средней точки его траектории и направление вверх

взято в качестве положительного. Тогда в наивысшей точке движения, где у— R
(амплитуде колебаний),

та=—mg=—kR и k = mg/R.

Период этого движения равен

= 2-3,14 @,098/9,8)Vz =0,63 с.

К этому же результату можно прийти и другим способом. Период простог ">

гармонического движения совпадает с периодом соответствующего вращательного
движения по окружности радиуса # = 0,098 м. Для вращательного движения
а = 4л2R/T2 (см. раздел 20.5), так что

Г = 2я /"?75= 2.3,14@,098/9,8I/г =0,63 с.

б) В наивысшей точке движения ускорение бруска равно —g. В наинизшей
точке его ускорение должно иметь такую же величину, но противоположное

направление, т. е. оно равно там g (направлено вверх).
в) В наинизшей точке результирующая сила, действующая на брусок, равна

mg. Она складывается из веса, равного —mg, и силы реакции ^пл, действующей
со стороны платформы:

Fv^^tng= Fn^— mgJ

откуда FTm=2mg (вверх).
31. Эта задача иллюстрирует применение маятника для наиболее точного

измерения g.
а) Период колебаний математического маятника дается выражением

Т = 2п /175=2-3,14 B,4/9,8I/з ==6,28-0,495 = 3,1 с.

б) Каким должно быть g, чтобы при прежней длине, равной 2,4 м, период
маятника стал бы равен 3 с, вместо 3,1 с, полученных в п. а)? Приведенное выше

выражение дает

(T/2nJ=l/g} ?=/Bл/ГJ = 2,4F,28/3J =10,5 Н/кг.

268



Удостоверьтесь, что учащиеся поняли, как легко можно было бы обнаружить
эту разность. Если, например, считать колебания этого маятника в течение 6 с,

то мы получили бы 116 колебаний для п. а) и 120 колебаний для п. б). Математи-
Математический маятник легко использовать в качестве классной демонстрации. Точные
значения периода можно получить, измеряя время большого числа колебаний.
Вы можете проверить с помощью этой простой демонстрации, что период изме-

изменяется как YU а также получить поразительно точное значение g.
Использованная нами формула была выведена в предположении, что угол

отклонения маятника от вертикали «мал». Если амплитуда колебаний не превы»
шает 30°, ошибка будет несущественной.

32. а) Т= 1//= 1/4 с.

б) В средней точке ускорение шара равно нулю. Поэтому никакая резуль-
результирующая сила не должна действовать на шар, а направленная вверх сила на-

натяжения пружины в этой точке должна в точности равняться направленной вниз
силе тяжести:

2 кг-9,8 м/с2 = 20 Н,

в)Поскольку Т = 2я Y~m/k, k = Атс2т/Т2. Когда шар подвешивают к пружине,

имеющей равновесную длину, она должна растянуться на величину xQ—F/k =
= mg/k. Таким образом,

mg _gT*_9,8 м/сЧ0,25 сJ

33. а) Жесткость пружины определяется как сила, которую надо приложить
к этой пружине, чтобы растянуть ее на единицу длины (т. е. как сила, вызываю-

вызывающая некоторое удлинение пружины, деленная на это удлинение). Чтобы рас-
растянуть на 1 см две пружины, соединенные последовательно, требуется только

половина той силы, которую нужно приложить к одной из этих пружин, чтобы

растянуть ее тоже на 1 см. Следовательно, жесткость двух последовательно сое-

соединенных одинаковых пружин к' составляет 1/2 от жесткости к одной пружины.

б) Так как Г = 2я V7n/k9 T'/T= УЩ\ т. е. Г = 7 V~k/0jk = T УТ.

в) Поскольку в момент удаления зажимов никакая сила на них не действует,
то нет никаких причин для изменения скорости.

г) Напомним, что скорость частицы в средней точке простого гармонического

движения равна скорости частицы, движущейся по соответствующей окруж-
окружности, радиус которой равен амплитуде простого гармонического движения. Из

начальных условий v—2ndlT. После удаления зажимов v'= v= 2nd'IT'. Сле-
Следовательно,

dr/Tr = d/T, т.е. d' = dT'/T = d УТ.

34. В эгой задаче учащимся предлагается описать движение тела, наблюдаемое
из двух различных систем отсчета. В приводимом ниже решении влиянием воздуха
на движение мяча пренебрегается.

а) Если движение мяча наблюдается с платформы, то кажется, что он сначала

поднимается отвесно вверх, а затем падает вниз по той же прямой.
б) Наблюдатель, находящийся на земле, видит, что на вертикальную скорость

подъема и спуска мяча накладывается постоянная горизонтальная скорость. Это
есть как раз то движение тела, брошенного под углом к горизонту, которое мы

разбирали в разделе 20.4 и траектория которого есть парабола (имеющая две
ветви).

35. Эта задача посвящена исследованию относительного движения в движу-

движущейся или ускоренной системе отсчета.

При решении этой задачи надо понимать, что (в идеальном случае) на шарик
со стороны автобуса не действуют никакие силы. Таким образом, при перекаты-
перекатывании шарик лолжен двигаться прямолинейно относительно инерциальной си-

системы отсчета, связанной, например, с неподвижными звездами. Шарик может,
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конечно, иметь любую начальную скорость, но в дальнейшем эта скорость не

может изменяться.

Когда шарик движется по прямой относительно автобуса, человек, находя-

находящийся в автобусе, видит, что у шарика нет ускорения, откуда он делает вывод,

что на шарик не действуют силы. Мы уже отметили, что в инерциальной системе

отсчета на шарик также не действуют ни-

никакие силы, так что в этом случае автобус
должен представлять собой инерциальную
систему, т. е. он движется с постоянной

скоростью (или покоится).
рис# 23. Когда шарик движется по параболе,

направляясь к кабине водителя, наблю-
наблюдатель в автобусе видит постоянное кажущееся ускорение а (относительно авто-

автобуса), направленное к передней части машины. Он делает вывод, что шарик

тянет сила, равная F=ma и направленная к кабине водителя (рис. 23).
Однако мы знаем, что в инерциальной системе на шарик не действуют ни-

никакие силы. Поэтому мы можем прийти к заключению, что не шарик ускоря-
ускоряется вперед, а автобус ускоряется назад по отношению к инерциальной системе

отсчета.

Таким образом, имеет место замедление движения, и его величина должна

равняться тому а, которое обнаружил пассажир автобуса у шарика. Сила, дей-
действие которой на шарик наблюдал пассажир, относится поэтому к силам, которые
мы называем фиктивными. В неинерциальной системе мы должны предположить
ее существование, чтобы объяснить наблюдаемое движение, но в инерциальной
системе ее не существует.

36. а) В системе наблюдателя / ползун движется со скоростью 2я-1,2/12=
= 0.63 м/с. Он движется в этот момент параллельно прямой DB в направлении
от D к В.

Рис. 25.

б) Н' должен придать диску скорость v, равную 0,74 м/с, составляющую
угол 0=57° с прямой АС и направленную к точке D (рис. 24).

в) В системе отсчета наблюдателя / диск движется вдоль прямой АС с по-

постоянной скоростью 0,4 м/с и будет последовательно занимать положения, по-

показанные на рисунке через каждую секунду. В те же моменты времени Н' будет
находиться соответственно в точках, А[, А'2> А'ъ,... (рис. 25).

г) Наложив лист кальки на рис. 25 (неподвижная система) и поворачивая
его вокруг центра стола (вращающаяся система), можно отметить на кальке

точки 1, 2, 3, ..., помещая Н' в точки А[, А2> Аз , ... Промежуточные точки можно

получить, помещая Н' в середины дуг А0Аг , А[А2 , ... Соединив полученные
точки, мы получим траекторию диска, которую видят Н' и /' в движущейся си-

системе отсчета (рис. 26).
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37. а) Путь ползуна в системе отсчета наблюдателя / представляет собой
хорду, стягивающую четверть окружности радиусом 1,2 м, длина которой равна
A,2) Y2 =1,7 м. Его скорость равна 1,7 м/3 с=0,57 м/с (рис. 27).

Рис. 26.

б) На рис. 28, а, повторяющем рис. 27 и относящемся к неподвижной системе,
отмечены положения ползуна через каждые полсекунды, а также положения

наблюдателей И' и Г в те же моменты времени в неподвижной системе.

а)
Рис. 28.

Вращая кусочек кальки, изображающий движущуюся систему и наложенный

на рис. 28, а, и перенося на него положения диска, можно получить его движение
относительно вращающейся системы, изображенное
на рис. 28, б.

в) Н' должен придать диску скорость V, пока-

показанную на диаграмме (рис. 29). Ее величина равна
1,1 м/с, причем она составляет угол 69° с прямой СА
и направлена к D.

38. а) Как показано в решении п. а) задачи 36,
пока наблюдатель Я' держит ползун в руках, он

имеет относительно / скорость 0,63 м/с, параллель-
параллельную DВ и направленную от?> к Б. Чтобы сделать

его неподвижным в системе наблюдателя J, Н' дол-
должен придать ему скорость 0,63 м/с перпендикуляр-
перпендикулярно к прямой А'С влево от себя.

б) В системе отсчета, связанной с наблюдателя-
наблюдателями Н' и /', ползун будет двигаться равномерно по

окружности стола с линейной скоростью 0,63 м/с.
в) Поскольку для / ползун находится в покое, он утверждает, что на него

не действуют никакие силы. Поскольку Н' и /' видят, что ползун движется
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по окружности с постоянной скоростью, они утверждают, что на него действует
сила

направленная к центру стола.

Эти 0,17 Н есть та фиктивная сила, которую должны ввести Н' и /', чтобы

в их системе отсчета выполнялся закон Ньютона. Для частного случая рассмат-

рассматриваемого движения фиктивная сила постоянна по величине и направлена к цент-

центру стола.
Фиктивные силы в задачах 36 и 37 сложнее. В задаче 37 мы можем с

хорошей степенью приближения считать, что во вращающейся системе ползун

движется с постоянной скоростью по окружности, центр которой смещен вдоль

линии B'D' в направлении В'. С тем же приближением фиктивная сила постоянна

по величине и направлена к этому центру, который теперь, однако, не совпадает
с центром стола.

В задаче 36 траектория ползуна представляет собой спираль, и соответ-

соответствующая сила не может быть выражена в элементарном виде.



ГЛАВА

21 ВСЕМИРНОЕ ТЯГОТЕНИЕ И СОЛНЕЧНАЯ СИСТЕМА

Цель этой главы — подвести к закону всемирного тяготения Ньютона в его

историческом контексте и представить непрерывную цепь непрекращающихся

усилий человека проникнуть в тайну действия механизма Вселенной.

Краткое содержание главы 21

Гл. 21 представляет собой исторический обзор попыток построить кинема-

кинематическую и динамическую модели Солнечной системы, увенчавшихся открытием

закона всемирного тяготения.

Разделы 21.1—21.5. Излагается многовековая история различных умозри-

умозрительных построений модели Солнечной системы, начиная с представлений древних
греков. В этих разделах кратко рассказано о том, как на основе работ Коперника
и Браге Кеплер пришел к простому, но достаточно точному кинематическому

описанию.

Раздел 21.6. С точки зрения кинематики выбор системы отсчета вполне

произволен и определяется только удобством описания. Однако при рассмот-

рассмотрении динамической стороны проблемы одна система может оказаться в высшей

степени предпочтительной перед другими на основе логических соображений.
Разделы 21.7—21.11. Описываются некоторые из многочисленных до-

достижений Ньютона, причем основное внимание уделено происхождению и ис-

использованию закона всемирного тяготения. В заключение отмечено, что даже

этот полезный закон имеет ограниченную область применения и не может с до-

достаточной точностью объяснить все наблюдаемые факты.
Гл. 19, 20 и 21 естественным образом объединены в одно целое в том смысле,

что понятия гл. 19 и 20 в гл. 21 переносятся на динамику планет и всемирное

тяготение. Таким образом, гл. 21 не только вводит некоторый новый материал,
но и обеспечивает в значительной мере повторение пройденного. Есл-и вы стес-

стеснены во времени, гл. 21 можно использовать в основном для дополнительного

чтения, а число классных занятий и решение задач свести к минимуму без >щгрба
для целостности прехождения всего курса.

Однако чрезмерно беглое изучение этой главы приведет к тому, что вы про-

пропустите один из самых волнующих разделов физики. Изучение науки не может

быть полностью отделено от изучения истории науки, равно как оценка вклада

крупнейших ученых не может быть сделана без знания основных фактов науки.

Профессиональный энтузиазм ученого к своей работе восходит, по крайней мере
отчасти, к его высокой оценке того факта, что он является членом великой армии —

армии, которая начала свое победное шествие много веков назад и будет продол-
продолжать его бесконечно. Так же как научные деятели прошлого могли способствовать

разрешению волновавших их проблем, так и современный ученый, учитывая их

успехи и неудачи, надеется внести свой вклад в выяснение проблем, стоящих
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на повестке дня. Современная физика происходит из трудов таких гигантов, как

Галилей и Ньютон. Атмосфера научного поиска, окружавшая великих первоотк-

первооткрывателей науки, может сделать изучение механики живым и волнующим.

Хочется надеяться, что ваши учащиеся почувствуют в настоящей главе этот плени-

пленительный аромат открытия. Если у ваших учащихся найдется для этого время,

некоторое дополнительное чтение на эту тему может в огромной степени способ-

способствовать их восприятию не только научных законов, но и человеческой сути науки

и той просто головокружительной интеллектуальной высоты, которой достигли

мыслители, подобные Ньютону, Кеплеру и Галилею. Более того, физика планет

имеет не только исторический интерес. Действительное понимание проблемы
космических полетов возможно только через усвоение динамики, используемой
в этой главе. Мы еще вернемся к этим понятиям в нашем курсе при рассмотрении

резерфордовской модели атома.

План изучения главы 21

В табл. 11 предлагается возможное планирование материала этой главы,

согласующееся с общим планированием части III, рекомендованным во Введении
на стр. 219. Разделы, заключенные в квадратные скобки, можно пройти бегло
или совсем пропустить при прохождении материала в классе без потери связности

изложения.

ТАБЛИЦА 11

Глава 21

Разделы

[21.1, 21.2, 21.3]

[21.4], 21.5

21.6

21.7—21.9

21.10, [21.11]

9-недельный план изучения

части III

В классе,

часы

0,5

0,5

2

В лабо-

лаборатории,
часы

0

0

0

Опыты

:

15-недельный план изучения

части III

В классе,

часы

1

1

3

В лабо-
лаборатории,
часы

0

1

0

Опыты

III.6

Дополнительные материалы к главе 21

Лаборатория. Лабораторная работа III.6 (Закон равных площадей) по-

посвящена проверке закона площадей Кеплера на стробоскопических фотографиях
математического маятника, используемого для получения движения по эллип-

эллиптической траектории. Если имеющееся в наличии оборудование не позволяет

получить такие фотографии, можно с неменьшим успехом просто пронаблюдать
движение маятника, а для анализа использовать фотографии, приложенные к

разделу ЛР Учебника. Эту работу можно выполнить примерно в середине главы

21. Дальнейшие рекомендации содержатся на стр. 399.

Домашние, классные и лабораторные задания. Ответы, реше-*
ния и таблица, классифицирующая задачи по их примерному уровню трудности,

приведены на стр. 283,
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21.1. Первые модели Солнечной системы

21.2. Солнечная система Коперника

21.3. Возражения против теории Коперника

21.4. Тихо Браге

Цель. Дать представление об исторических предпосылках работ Кеплера
и Ньютона.

Методические указания. Этот материал почти весь можно проходить
только в виде задания на дом. Нет никакой необходимости копаться в деталях

геоцентрических моделей, однако надо сделать ударение на том, как использо-

использование разных систем отсчета ведет к различной интерпретации наблюдений.

Изучение современной науки невозможно оторвать от ее исторических корней.
Наше сегодняшнее мышление не в меньшей степени обусловлено вопросами,
поставленными древними греками, чем производительными силами нашего сто-

столетия. В то время как некоторые из ответов, предложенных древними, могут

казаться до смешного ошибочными и наивными в свете современной теории, ни

один ученый не может удержаться от восхищения перед огромной проницатель-
проницательностью вопросов, с изумлением представляя себе, чего мы могли бы достигнуть

сегодня, если бы первые усилия древних получили должное развитие вместо

почти двухтысячелетнего застоя.

Главной слабостью древних греков в их подходе к изучению астрономии было

то, что в своих поисках подходящих моделей они полагались больше на интуи-

интуицию, чем на прямое наблюдение. Примером этого может служить упорное при-

приписывание ими круговых орбит звездным движениям, просто потому, что окруж-

окружность считалась «совершенной». Никто и не подумал изучить это движение более

подробно, как это сделал Браге много времени спустя, чтобы показать, что оно

не происходит в точности по окружности. Ввиду этой преобладающей роли ин-

инстинкта древнюю науку трудно отделить от современной ей философии. Даже

в наши дни основные философские вопросы нередко не меньше волнуют ученых,

чем прямые наблюдения, для которых они не имеют готового объяснения.

Представление о Вселенной, образованной телами, движущимися по «иде-

«идеальным круговым» орбитам, не было впервые введено Платоном. Эти идеи восходят

по крайней мере к пифагоровой школе E80—500 гг. до н. э.), т. е. более чем за

столетие до него. Во всяком случае, два представителя школы Пифагора — Гисет

и Экфант предложили прекрасную модель Солнечной системы, которую мы обычно

называем моделью Коперника, с Землей, совершающей суточное вращение вокруг
своей оси, и с неподвижной сферой фиксированных звезд. Однако в этой модели

предполагалось, что Солнце и Луна движутся по круговым орбитам вокруг Земли.
Платон был твердо уверен, что Земля неподвижна, но даже в его время Гераклид

учил, что Земля поворачивается вокруг своей оси один раз в день, и даже пред-
предложил считать Венеру и Меркурий движущимися по круговым орбитам вокруг

Солнца, в то время как само оно вращается вокруг Земли. Принятая ныне модель

Коперника была, вероятно, впервые установлена Аристархом Самосским (при-
(приблизительно 310—230 гг. до н. э.), которому приписывается следующая гипотеза:

«Фиксированные звезды и Солнце остаются неподвижными, но Земля вращается

вокруг Солнца по круговой орбите, так что Солнце лежит в середине орбиты»»
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Основная идея системы Птолемея была, несомненно, почерпнута из работ круп-
крупнейшего астронома древности Гипарха (умершего около 125 г. до н. э.). Гипарх,
в противоположность большинству своих предшественников и последователей, был

великим наблюдателем и произвел очень точные измерения звездных движений.

Он установил наличие малых изменений плоскости эклиптики *), вызванные

прецессией земной оси, и получил величину этих вариаций, которая согласуется,

в пределах одного процента, с принятым в настоящее время значением. Это дви-

движение настолько мало и происходит настолько медленно, что требуется 26 000 лет

на совершение полного его цикла.

Наследие греческой науки было усвоено и развито арабами после завоевания

ими египетского города Александрии, который стал к третьему веку до н. э.

главным центром греческого просвещения. В средние века система Птолемея

Марс вернулась в Европу, переведенная с арабского язы-

языка вместе с каталогами звезд, составленными араб-
арабскими астрономами.

V Как указано в гл. 3, когда мы наблюдаем не-

^Земля которую систему из другой, движущейся относи-

относительно первой, должен быть заметен параллакс —

смещение, вызванное этим относительным движением

(см. рис. 3.5). Коперника все время беспокоило то

^-ti{fQ обстоятельство, что он не мог обнаружить звездный
"**"

параллакс, особенно ввиду того, что по его пред-
рис* 30*

ставлеииям сфера неподвижных звезд находится

довольно близко от Земли. Он не имел представления о том, с какими ог-

огромными расстояниями имеет дело в действительности, и о том, что звездный

параллакс слишком мал, чтобы его можно было измерить простыми средствами.

Так было вплоть до 1838 г., когда звездный параллакс был впервые обнаружен
немецким астрономом Ф. В. Бесселем. Вспомнив о том, что наибольший из когда-

либо наблюдавшихся угол параллакса равен 0,756 угл. с. (для ближайшей звез-

звезды — а Центавра А), легко понять, почему этот эффект так долго не был открыт.

Правильное представление о тех почти бесконечных расстояниях, которые отде-

отделяют Землю от звезд, было впервые предложено, по-видимому, Джордано Бруно
в пятнадцатом столетии.

Описанию движения планет и пониманию эквивалентности различных спо-

способов описания (геоцентрического, гелиоцентрического и т. д.) в большой степени

способствует использование векторов. На рис. 30 показаны радиус-векторы,

проведенные от Солнца к Земле и от Солнца к Марсу. Горизонтальное направ-
направление на этом рисунке фиксировано относительно неподвижных звезд.

С весьма хорошей степенью приближения можно сказать, что планеты дви-

движутся по окружностям вокруг Солнца с постоянными (но различными) скоро-»
стями. В применении к рис. 30 это означает, что изображенные на нем радиус-

векторы г3 и гм> проведенные от Солнца к Земле и к Марсу, просто вращаются

вокруг Солнца, не изменяя своей длины.

Чтобы определить положение такой планеты, как Марс, относительно Земли,
мы просто заметим, что

*) Плоскость эклиптики есть плоскость земной орбиты.
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или, поменяв местами соответствующие члены,

гз-м~гм~гз.

Вектор Гз-м изменяется, поскольку обе планеты движутся таким образом,
как если бы Земля и Марс были соединены с Солнцем вращающейся связью. Модель

такого механического шарнирного устройства легко изготовить с помощью двух

планочек и гвоздя. Заметим, что радиус-вектор, проведенный от Солнца к Земле,

совершает один оборот за каждый год относительно выбранного за неподвижное

направление, в то время как радиус-вектор от Солнца к Марсу совершает один

оборот за марсианский год F87 дней).
Оценивая работу Коперника, важно помнить, что до Браге не было никаких

действительных данных о движениях небесных тел. Браге, который не был сто-

сторонником теории Коперника, вероятно, руководствовался в своей работе стрем-

стремлением опровергнуть модель Коперника в той же степени, что и прочими сообра-
соображениями. Одним из своих великих достижений он считал то, что даже при высокой

точности наблюдений он не мог обнаружить звездный параллакс, и тем «опроверг»

модель Коперника.
В то же время Браге не хотел принимать и чрезмерно запутанную модель

Птолемея и создал вместо этого свою собственную геоцентрическую систему.

В системе Тихо Браге Меркурий и Венера считались вращающимися вокруг

Солнца, а само оно, как и другие планеты, считалось вращающимся вокруг Земли

(как в модели Гераклида).
Наиболее сильное противодействие система Коперника встретила не в период

опубликования его теории, а гораздо позднее, когда к этой гипотезе присоеди-

присоединился Галилей. До Галилея от системы Коперника, очевидно, можно было просто

отмахнуться как от еще одной гипотезы, обладающей разве что большей геомет-

геометрической простотой по сравнению с предложенной Птолемеем. Подлинный интерес
она возбудила после того, как Галилей с помощью своего телескопа представил

неопровержимые факты, разрушившие веками устоявшийся миф о «совершенстве»

на небесах.

Галилей открыл четыре луны, вращающиеся вокруг планеты Юпитер, тем

самым дав пример вращения вокруг небесного тела, отличного от Земли. Более

того, он смог обнаружить фазы Венеры и, таким образом, скомпрометировал
модель Птолемея (см. рис. 21.4), в которой Венера всегда помещалась между

Землей и Солнцем. В последнем случае Венера никогда бы не выходила из фазы
полумесяца. Он наблюдал также движение солнечных пятен, которое наводило

на мысль, что Солнце вращается вокруг своей оси, тем самым давая почву пред-

предположению, что и сама Земля может вращаться.

21.5. Кеплер

21.6. Кинематическое описание и проблемы динамики

Цель. Подвести к законам движения планет Кеплера в их историческом кон-

контексте и показать их значение в переходе к простому единообразному динамиче-

динамическому объяснению этого движения.

Методические указания. Придется потратить некоторое время, воз-

возможно полурока, на обсуждение этого материала в классе и на решение задач.

Учащиеся должны «знать» три закона Кеплера и понимать, как они способство-

способствовали окончательному решению динамической проблемы.
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При проработке этих разделов можно проделать лабораторную работу III.6

(Закон равных площадей).
Изучение этих разделов должно привести к усвоению следующих основных

моментов.

1. Тщательные наблюдения Браге обеспечили необходимые данные для ре-
решения поставленной проблемы. Можно провести аналогию между таблицами

Браге и списками углов падения и преломления, которые должен был иметь Снел-

лиус, прежде чем он смог установить среди них порядок, известный как закон

Снеллиуса (закон преломления).
2. Работа Кеплера была аналогична установлению закона Снеллиуса. Однако

в случае Солнечной системы совокупность полученных Браге данных была неиз-

неизмеримо сложнее, и установить среди них закономерность было делом гораздо

более трудным и великим. Кеплер разрешил кинематическую проблему в анали-

аналитическом виде.

3. Правильно построенная геоцентрическая система была бы нисколько не

хуже для описания движений в Солнечной системе, чем гелиоцентрическая си-

сгема. Однако когда нас интересует решение динамической проблемы, мы должны

для объяснения каждого наблюдаемого ускорения вводить соответствующую

силу. В геоцентрической системе ускорения настолько сложны, что гравитацион-

гравитационная сила могла бы легко затеряться в лабиринте других, фиктивных, сил. В ге-

гелиоцентрической системе центральная сила выступает явно. Поэтому такой

подход позволил Ньютону проанализировать проблему продуктивным образом.

Упражнения
А. Спутник Земли Sx движется по круговой орбите, радиус которой в че-

четыре раза превышает радиус Земли. Сравнить период его обращения с периодом

второго спутника S2, который движется вплотную к поверхности Земли. Чему
равно отношение их скоростей?

Ответ. RdjT2=K, поэтому

Rl!Tl= l ltll

По сравнению со спутником 52 спутник St с орбитой радиусом 4R2 совершит
один полный оборот вокруг Земли за время, в 8 раз превышающее время обра-
обращения первого. Отношение скоростей определяется следующим образом:

= BnR2/T2) • (8Г2/2л4Я2) = 2.

Следовательно, v2=2v1.
Б. Могут ли две различные системы отсчета дать одинаково пригодное опи-

описание движения какого-либо тела?

Ответ. Да, но одно из этих описаний может оказаться намного сложнее

другого.
В. Как влияет закон Ньютона на выбор системы отсчета?
Ответ. Кинематическое описание должно приводить к самому простому

и легкому анализу сил.
Г. Опишите движение артиллерийского снаряда, выпущенного из орудия в

горизонтальном направлении, с точки зрения:
а) наблюдателя, находящегося в реактивном самолете, который летит с

горизонтальной скоростью, равной горизонтальной компоненте скорости снаряда;
б) наблюдателя, находящегося в свободном падении (в отсутствие сопротив-

сопротивления воздуха).
Ответ, а) Снаряд падает отвесно с ускорением, равным g\ б) снаряд кажется

удаляющимся по горизонтальной прямой с постоянной скоростью.
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21.7. Ньютон

21.8. Всемирное тяготение

Цель. Представить упрощенный вариант анализа динамической проблемы,

проведенного Ньютоном и основанного на кинематических законах Кеплера.
Методические указания. Эти два раздела составляют самую суть

гл. 21. Полезно после проработки материала в классе задать эти разделы для

домашнего изучения.

Классная работа должна быть направлена сначала на закрепление пони-

понимания учащимися ньютоновской трактовки законов Кеплера. Когда они с этим

освоятся, обсуждение следует расширить путем решения соответствующих задач

из раздела ДКЛ.

При логическом развитии темы можно придерживаться следующего порядка:

1. Аппроксимируем орбиты планет окружностями.
2. Всякое тело, равномерно движущееся по окружности, обладает центро-

центростремительным ускорением a— 4n2R/T2.

3. Кеплер заметил, что для всех планет (спутников Солнца) R2/T2 = Кс .

Подставляя Т2 в выражение для ускорения, имеем а= 4я3/(с/#2» и применяя

закон движения Ньютона, находим F= 4n2Kcm/R2.
4. Предположим (как нам теперь уже известно), что для спутников Земли

справедливо тоже соотношение RSIT2 = К3- Тогда для любого тела в поле тяго*

тения Земли действующая сила выражается в виде F= 4n2K3tn/R2.
5. У поверхности Земли FnoB = mg, поэтому

и, зная g и #пов, мы можем определить К3 .

6. Установив значение величины К3 для Земли и зная радиус Ял лунной
орбиты в ее вращении вокруг Земли, можно вычислить ускорение Луны (или
период ее обращения Тл) и сравнить его с наблюдаемым значением. При этом

обнаруживается хорошее согласие этих величин в пределах неизбежных ошибок

наблюдения.
7. Остается установить связь между /Сс, К3 и аналогичными постоянными,

которые описывали бы прочие источники гравитационного притяжения. Сооб-

Соображения симметрии приводят к выражениям вида /Сс= Gmc, К3 = Gm3 и т. д.,

где G есть универсальная постоянная, характеризующая силу гравитационного

взаимодействия. Это дает для силы тяготения выражение F= Gm1m2/R2 — закон,

проверенный ныне огромным множеством наблюдений.

Для вас может оказаться полезным ясно осознать ту роль, которую играет
каждый из законов Кеплера. Их значение можно характеризовать следующим

образом.
1. Наблюдение, свидетельствующее о том, что за равные промежутки времени

радиальная линия, проведенная к планете из некоторой фиксированной точки

пространства, заметает равные площади, можно интерпретировать как доказа-

доказательство «центрального» характера действующей силы, т. е. доказательство того,

что эта сила происходит из фиксированной точки пространства и действие этой
силы направлено либо к этой точке, либо от нее (т. е. что эта сила действует вдоль
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прямой, проходящей через эту точку). (Заметим, что этот вывод одинаково спра-

справедлив как для движения планеты под действием силы, обратно пропорциональной

квадрату расстояния, так и для движения маятника в лабораторной работе III.6,

когда движение является простым гармоническим колебанием, а действующая
сила пропорциональна первой степени смещения.)

2. Анализ наблюдений, показывающих, что каждая из орбит представляет
по форме эллипс с силовым центром в одном из фокусов этого эллипса, приводит

к доказательству того, что сила, действующая на планету, зависит от расстояния

обратно пропорционально его квадрату. (Заметим, что в лабораторной работе
II 1.6 силовой центр лежит в центре эллипса, а не в одном из его фокусов. Это
связано с тем, что действующая там сила прямо пропорциональна первой схепени,

а не обратно пропорциональна второй степени расстояния.)
Здесь следует заметить, что для круговой орбиты центр орбиты и фокуса

вырожденного эллипса находятся в одной и той же точке. Поэтому в случае ок-

окружности нельзя сделать никакого заключения относительно закона изменения

силы с расстоянием.
В этом же можно убедиться иным путем, если учесть, что круговая орбита

определяется одним только радиальным расстоянием. Ввиду этого обстоятель-

обстоятельства трудно было бы ожидать получения какой-либо информации о зависимости

силы от расстояния в этом случае.

3. Третья серия наблюдений Кеплера, обобщенная в его третьем законе,

состояла в том, что для каждой планеты отношение R3/T2 имеет одно и то же

значение. Эго наблюдение может быть использовано различным образом, в за-

зависимости от логической схемы, используемой при построении теории.
На уровне старших классов средней школы трудно математически анализи-

анализировать эллиптические орбиты. Поэтому в Учебнике отмечено, что эллиптичность

обычно мала, а затем каждая орбита приближенно заменяется окружностью,

радиус которой равен среднему арифметическому из радиусов истинного эллипса.

В этом приближении, как отмечено выше, невозможно получить какую-либо

информацию о зависимости действующей силы от расстояния на основе анализа

орбиты какой-нибудь одной планеты. Однако если предположить, что все планеты

притягиваются к Солнцу с силами, прямо пропорциональными их массам (эк-
(эквивалентность гравитационной и инертной масс), то закон обратных квадратов
может быть выведен из постоянства R3/T2. В этом выводе для доказательства

эквивалентности инертной и гравитационной масс приходится ссылаться на другие

подтверждения. Эта эквивалентность служит в действительности для нормали-
нормализации поведения различных планет таким образом, чтобы оно соответствовало

единому силовому полю. Тогда

определяет зависимость этого силового поля от расстояния.
С другой стороны, если эллиптические орбиты аккуратно промерены и про-

проанализированы, любой одной из них достаточно, чтобы доказать закон обратных
квадратов для той области пространства, которая занята этой орбитой. Если
обобщить это доказательство путем предположения, что закон обратных квад-

квадратов выполняется во всем пространстве, а не только в области орбиты, то по-

постоянство R3/T2 = K служит свидетельством того, что отношение инертной массы

к гравитационной является одним и тем же для всех планет.

280



21.9. Некоторые более поздние работы Ньютона

21.10. Проверка закона всемирного тяготения в лаборатории

21.11. Несоответствие движения Меркурия закону тяготения

Цель. Дополнить историю закона всемирного тяготения.

Методические указания. Эти разделы потребуют очень небольшого

обсуждения. Некоторые тесно связанные с ними темы освещены в следующем

ниже дополнении.

Дополнение

Обилия теория относительности. Исследования Ньютона привели к выяв-

выявлению пропорциональности инертной и гравитационной масс. В своей общей

теории относительности Эйнштейн провозгласил это случайное с точки зрения

прежней теории совпадение как фундаментальное и неотъемлемое свойство ма-

материи. Оно связано с неразличимостью гравитационных и инерциальных эффек-
эффектов *). Общей теории относитель-

относительности посвящено Приложение у'5^^ от^мш
^

Приливы. Учащиеся, живу-
живущие в центральных областях ма-

материка, возможно, не знакомы с

явлением приливов. Хотя детали

движения приливной волны ус-

усложняются местными изменения-

изменениями береговой линии и дном Земля оттягивается
океана, основные черты этого от воды
движения обусловлены гравита- Рис 31<

ционным притяжением, дейст-
действующим на Землю со стороны

Луны. Это явление иллюстрирует рис. 31 (масштабы сильно искажены).
Поскольку теперь учащиеся уже знают, что сила, действующая между Луней

и Землей, приводит к ускорению, они могут лучше понять явление приливов.

Действительно, Луна и Земля свободно падают друг на друга (испытывают ус-
ускорение друг к Другу). Сила, отнесенная к единице массы, является параметром,
определяющим ускорение частицы. Поскольку напряженность гравитационного
поля Луны изменяется обратно пропорционально квадрату расстояния от центра
Луны, ускорение частицы, находящейся в точке А (см. рис. 31), направленное
к Луне, будет больше, чем у частицы в точке В, которое в свою очередь будет
больше, чем у частицы в точке С. Если бы Земля была твердой, никаких приливов
не возникало бы. Разность внешних сил уравновешивалась бы внутренними на-

напряжениями. Однако если в точках Л и С находится вода, то в силу ее способ-

способности свободно перетекать с места на место возникнет изменение уровня ее по-
'

верхности. Таким образом, притяжение Луны образует два горба в мировом
океане на противоположных сторонах Земли. Поскольку Земля вращается вокруг
своей оси, делая один оборот за двадцать четыре часа, в любом месте океана на-

наблюдаются две приливных волны (два повышения уровня воды) в течение суток,
хотя эти волны не обязательно имеют равную высоту (поскольку земная ось не

проходит через точку В). Хотя влияние Солнца также должно быть учтено при

вычислении точных размеров прилива, его действие значительно меньше, чем

действие Луны.

*) Принцип эквивалентности инертной и гравитационной масс, о котором
здесь идет речь, основан на локальной неразличимости силы тяжести и силы инер-
инерции, действующей в ускоренной системе отсчета и называемой здесь «фиктивной».
В конечной же области пространства эти два эффекта всегда можно различить,
так как сила тяжести обязательно имеет источник (массивное тело), а сила инер-
инерции — нет. (Прим. перев.)
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Сила, действующая со стороны Солнца на единицу массы, находящуюся
в любой точке земного шара, приблизительно в 100 раз больше, чем соответст-

соответствующая сила, действующая со стороны Луны. Тем не менее, приливное действие

Луны вдвое сильнее, чем Солнца. Это связано с тем, что разность сил, действующих
со стороны Луны на единицу массы, находящуюся в точках А и С земной по-

поверхности, более чем вдвое превышает разность сил, действующих в этих точках

со стороны Солнца (это вызвано тем, что относительное изменение обратного
квадрата расстояния от Луны до этих точек почти в 400 раз больше, чем относи-

относительное изменение обратного квадрата расстояния от Солнца до этих точек).
Самый высокий прилив наблюдается дважды в месяц, совпадая с новолунием

и полнолунием, когда Солнце, Земля и Луна расположены вдоль одной прямой.
Приливы могут значительно изменяться по величине в разных местах берега
в зависимости от топографии местности. Самые большие приливы наиболее часто

наблюдаются в частично закрытых заливах (фьордах). В заливе Фунди, например,

разница между наивысшей и наинизшей точками прилива превышает 50 футов.
Изменения силы тяжести. В первом приближении ускорение силы тяжести

постоянно вдоль поверхности Земли. Во втором приближении оно изменяется

от точки к точке вдоль этой поверхности, благодаря изменениям высоты мест-

местности и несферичности формы Земли. В третьем приближении ускорение силы

тяжести изменяется в зависимости от распределения масс в земной коре в раз-

различных местах земного шара. Именно эта зависимость имеет особое значение для

геологов, так как скрытые черты строения земной коры могут быть обнаружены
точным измерением местных вариаций величины g. Если g измерено над большой

полостью, которая может быть заполнена нефтью, оно будет иметь меньшую

величину, чем при измерениях над скальными породами, и еще меньшую вели-

величину, чем при измерении над крупными залежами свинца или золота. Величина

зависит также от вращения Земли, чему посвящена задача 23.

Строение Земли. Опыты Кавендиша позволили ему определить среднюю плот-

плотность Земли, которая оказалась согласно его измерениям примерно в 5,5 раз
больше плотности воды. Поскольку плотность скальных образований на поверх-

поверхности Земли всего в два-три раза превышает плотность воды, внутренние области
земного шара должны состоять, по-видимому, из веществ с более высокой плот-

плотностью, чем у образующих земную кору. Расплавленный базальт, или лава,

который находится непосредственно под слоем земной коры, сам является слиш-

слишком легким, чтобы объяснить большую величину плотности Земли, полученную
из измерений. Очевидно, большой вклад в массу Земли вносит относительно не-

небольшое тяжелое «ядро» в центре Земли, с плотностью, в десять раз превышающей
плотность воды. Это ядро преимущественно образовано металлами типа железа

и никеля, а не скальными породами. Ядро, согласно сейсмическим измерениям,

имеет форму шара с радиусом около 2000 миль. Само ядро, вероятно, не является

однородным по плотности, обнаруживая заметное изменение плотности, которая

увеличивается по мере приближения к центру Земли, начиная с расстояния около

1000 миль от центра. В центре Земли, плотность вещества примерно в 16 раз
превышает плотность воды.

Нерешенные вопросы. У учащихся не должно создаться впечатление, будто
гравитация относится к целиком выясненным явлениям. Остается еще большое

число нерешенных фундаментальных вопросов в области тяготения, даже спустя

много лет после создания Эйнштейном общей теории относительности:
1. Почему гравитационное поле подчиняется закону обратных квадратов?
2. Какова скорость распространения гравитационного поля?
3. Справедлива ли теория тяготения для очень малых и очень больших рас-

расстояний?
4. Выполняется ли закон тяготения во всех областях Вселенной?
5. Является ли гравитационная «постоянная» G действительно постоянной,

или она медленно изменяется со временем за биллионы лет?

6. Является ли гравитационная сила взаимодействия между двумя телами

независимой от распределения материи в остальной части Вселенной?

Мы не имеем ответов на эти «простые» вопросы, как и на многие другие,
представляющие огромный фундаментальный интерес. Если в области изучения
гравитации наблюдается некоторый относительный застой, то это происходит не
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от недостатка проблем и не по вине одних физиков. В высшей степени трудно

планировать и осуществлять эксперименты по изучению деталей гравитационной
теории в земных масштабах, а ни технология, ни экономика еще не готовы к

проведению межгалактического астрофизического года!

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

В табл. 12 задачи расклассифицированы по их примерному уровню труд-
трудности и по разделам, к которым они относятся. Среди них выделены те, которые
подходят для обсуждения в классе. Особо рекомендуемые задачи отмечены знач-
значком #.

ТАБЛИЦА 12

Разделы

21.1-

21

21

21

21

-21.4

.5

6

.7

.8

Общие

Со звездоч-
звездочкой

2

6,8-10

13

14, 15

Легкие

4

7

17, Щ

21#, 24

Средние

11, 12

16#, Щ
22$, 23,
25—27

Трудные

20

Классные

и

i6#,

3#. 5

, 12

Щ,

#

20
23

Краткие ответы

2*. а) 1,05; б) около 6.

6* 4,75-1023 м2.
8*. а) Когда удаление от Солнца — наименьшее; б) когда удаление от Солн-

Солнца — наибольшее.
9*. 3,35-10^8 м3/с2.
10*. В 1^83=23 раза.
13*. В 3,6-103 раз.
14*. а) #з = 9>9'101а м3/с2- б) Ю3/тс

= 3.10~6.

15*. На высоте, равной (}/~2—l) = 0,41 земного радиуса.

Ответы с указаниями и решениями

1. Эту умеренно трудную задачу лучше всего разобрать в классе. Ее можно
использовать для иллюстрации применения различных систем отсчета — пример
проблемы, возникающей в связи с гелиоцентрическим и геоцентрическим описа-
описаниями Вселенной.

Основная трудность, встречающаяся при решении этой задачи, может быть

проиллюстрирована на примере. Предположим, мы задаем вопрос: «Как движется
человек, сидящий на скамейке, с точки зрения человека, выглядывающего из
окна движущегося автомобиля?» Может быть дано два ответа. Вполне благоразум-
благоразумный ответ состоит в том, что человек вообще не двигается. Даже если автомобиль

и движется, мы можем наблюдать из автомобиля, что человек спокойно сидит

на скамейке, а следовательно, он «неподвижен». Второй ответ состоит в том, что

в системе отсчета, связанной с автомобилем, человек на скамейке движется в

обратную сторону со скоростью автомобиля. Конечно, первый ответ более ес-

естествен с точки зрения нашего повседневного опыта. Движение автомобиля не

«обманывает» нас. Мы интуитивно выбираем для описания положения человека

систему, связанную с Землей. Однако второй ответ вполне удовлетворителен,
если наша система отсчета неподвижна относительно автомобиля.

283



Вывод прост: чтобы описать движение тела, мы выбираем систему отсчета

и описываем движение относительно этой выбранной системы отсчета. В приве-

приведенном выше примере возможны два выбора: 1) система, неподвижная относительно

Земли, и 2) система, неподвижная относительно автомобиля. Давая ответ на

поставленный вопрос, мы должны явно оговорить, какую систему отсчета мы

выбрали.
Человек, находящийся в автомобиле, может сообщить нам, как движется

сидящий на скамейке человек относительно любой из этих систем. То же самое

может сделать и человек, сидящий на скамейке!

В рассматриваемой задаче нам предлагается четыре системы отсчета. Наиболее

легко определять их заданием начала и ориентации их координатных осей. Если
мы будем считать, что точки Z, X и окружность, которую описывает Y, лежат

в одной плоскости, то для характеристики их положения нам достаточно двух

координат.

а) Из точки Z на раме велосипеда за пределами колеса видно, что X не дви-

движется, а вращается в некоторой фиксированной точке пространства. Y описывает

окружность вокруг X, но поскольку Z находится в плоскости этой окружности,

Окружность

V
г)

Рис. 32.

наблюдателю в точке Z кажется, что Y совершает простое гармоническое коле-
колебание (рис. 32, а).

б) С точки зрения наблюдателя в X, вращающегося вместе с осью, видно, что

точка У, находящаяся на ободе колеса, неподвижна. В этой системе отсчета точка

Z находится все время на неизменном расстоянии от X. Следовательно, для
наблюдателя в X, вращающегося вместе с осью, Z кажется вращающейся вокруг
X в противоположном направлении (рис. 32, б).

в) С точки зрения наблюдателя в F, находящегося на ободе колеса, X кажется

неподвижной, a Z кажется движущейся по окружности с центром в точке X

(рис. 32, в).
г) Для наблюдателя на земле точка Z, находящаяся на раме велосипеда,

движется с постоянной скоростью по горизонтальной прямой; X, находящаяся
на оси, также движется с постоянной скоростью по горизонтальной прямой, но

при этом вращается; F, расположенная на ободе колеса, описывает циклоиду.
При вращении колеса (при качении) горизонтальная скорость Y обращается
в нуль в тот момент, когда эта точка Y находится в контакте с землей. Учитывая
это, мы получаем рис. 32, г.
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Движение Y можно описать наиболее простым образом, если сказать, что Y

движется по окружности относительно осей, неподвижных относительно рамы
велосипеда (см. п. а)), и что эти оси движутся горизонтально с постоянной ско-

скоростью, не поворачиваясь относительно земли.
3. На вопросы этой задачи можно ответить с различной степенью строгости.

На данной стадии следует ожидать краткого качественного ответа.
Ответ 1

а) Мы знаем, что благодаря вращению Земли вокруг своей оси звезды ка-

кажутся вращающимися вокруг Земли с периодом в одни сутки. Но что мы увидим,
если будем смотреть на звезды с Луны? Вращается ли Луна вокруг своей оси

с периодом в одни сутки, как Земля?
Ключом к решению этого вопроса является правильная интерпретация того

факта, чго мы видим с Земли всегда одну и ту же «лицевую» сторону Луны. При
повороте на угол В в своем вращении вокруг Земли Луна должна также повер-
повернуться на тот же угол вокруг своей оси, для того чтобы к Земле была по-прежнему
обращена все та же самая «лицевая» сторона. Следовательно, период обращения
Луны вокруг своей оси совпадает с периодом ее обращения вокруг Земли. Из

полученных ранее уроков некоторые учащиеся, вероятно, уже знают, что этот

период равен 28 дням (более точно — 27,3 дня).
б) Поскольку Луна все время обращена к Земле своей одной и той же «лице-

«лицевой» .стороной, наблюдатель на Луне всегда видел бы Землю в одном и том же

положении на небе Луны. При наблюдении с Луны Земля не казалась бы враща-

вращающейся вокруг Луны.
в) Поскольку мы нашли в п. а), что Луна совершает один оборот вокруг

своей оси примерно за четыре недели, то и Солнцу потребуется приблизительно
столько же времени, чтобы из одного «полдневного» положения перейти в сле-

следующее при наблюдении из некоторого определенного пункта на лунной поверх-
поверхности. Если бы Луна только вращалась вокруг своей оси и не двигалась бы вокруг

Солнца, то лунному жителю казалось бы, что Солнце движется вместе с непод-

неподвижными звездами. Однако поскольку Луна не только вращается вокруг своей

собственной оси, но и идет при этом вокруг Солнца, Луна должна сделать немного

больше одного оборота вокруг своей оси, чтобы Солнце снова оказалось в поло-

положении «полдня». Следовательно, Солнце будет казаться вращающимся вокруг

Луны более медленно, чем неподвижные звезды. (Период этого кажущегося вра-

вращения Солнца вокруг Луны равен 29,5 дней — см. ответ, приведенный ниже.)
В приведенном выше ответе данная задача рассмотрена с той степенью под-

подробности, с какой ее, вероятно, и имеет смысл рассматривать в вашем классе

на этой стадии обучения. Если же учащиеся настаивают на выяснении дополни-

дополнительных деталей, приводимый ниже подход может помочь вам провести соответ-

соответствующее внеклассное обсуждение.
Ответ 2
Вращение Земли вокруг своей оси, Земли вокруг Солнца вдоль ее орбиты,

Луны по ее орбите вокруг Земли и Луны вокруг ее собственной оси происходит
в одном и том же направлении. Более того, скорость вращения Луны по ее ор-

орбите совпадает со скоростью ее вращения вокруг своей оси. Период этих двух

движений равен 27,3 дня.
а) Представим себе стрелку, начало которой расположено в некоторой точке

на лунной поверхности, а конец указывает на Землю. Конец этой стрелки все

время остается обращенным к Земле. Так как Луна вращается вокруг своей оси,
угол между этой стрелкой и воображаемым диаметром сферы неподвижных звезд

будет изменяться. Стрелка поворачивается относительно этой линии на 360°
за 27,3 дня. Поэтому для наблюдателя на Луне (которому стрелка кажется непод»

вижной) диаметр сферы неподвижных звезд (а следовательно, и сама эта сфера)
кажется вращающимся с периодом 27,3 дня.

б) Земля, однако, остается неподвижной в направлении, указываемом стрел-
стрелкой. Таким образом, она не всходит и не заходит для наблюдателя на Луне. При
наблюдении с Луны кажущаяся скорость вращения Земли вокруг Луны равна
нулю.

в) Нахождение кажущейся скорости вращения Солнца представляет собой
более трудную задачу. На рис. 33 показаны различные расположения системы
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Земля — Луна. Все движения происходят против часовой стрелки. На этом ри-

рисунке положение 1 соответствует положению новолуния для земного наблюдателя.
В положениях 1 и 3 направления стрелки, указывающей с Луны на Землю, па-

параллельны между собой. При движении из положения 1 в положение 3 Луна
поворачивается вокруг своей оси на 360° отно-

относительно сферы неподвижных звезд. (Поло-
(Положение 2 Луна занимает в середине этой дуги
после поворота на 180°.) Заметим, что в поло-

положении 1 Солнце находится в зените для на-

наблюдателя на Луне, расположенного у хво-
хвостового конца лунной стрелки. Однако в
положении 3 оно еще не поднялось снова в
положение «полдня» для этого наблюдателя.
Полдень на Луне не наступит до тех пор, по-
пока Луна не придет в положение 4.

Угол, на который поворачивается радиус-
вектор Земли при ее перемещении по орбите
из положения 1 в положение 4, обозначим 0.

Из рис. 33 видно, что на этот же угол пово-

поворачивается радиус-вектор Луны при ее пере-
перемещении по орбите вокруг Земли из положе-

положения 3 в положение 4. Таким образом, один
полный кажущийся оборот Солнца вокруг
Луны занимает время

?О Т — T-4-t A)
Рис. 33.

~" '

где Тл — время, за которое Луна совершает один оборот вокруг Земли, а *ле —

время, за которое Луна поворачивается на угол 0 вокруг Земли. Луна повора-
поворачивается на угол 360° за время Тл. Следовательно, время, которое необходимо

для того, чтобы Луна повернулась на угол 0 градусов, равно

*л0 = @/360) Тл. B)

Аналогично время, за которое Земля поворачивается на угол 0 вокруг Солнца,

равно

Из рис. 33 видно, что время, за которое Земля переходит из положения 1 в поло-

положение 4, совпадает с временем одного кажущегося оборота Солнца вокруг Луны.
Следовательно,

ГС-Л='39- <4)

Сравнивая соотношения B) и C) и подставляя вместо t3Q равное ему на основании

D) время Гс_л, получим tJlQ/TJl = 0/360, *3е / Тз = 0/зво> т-е-

Выражение ?л0 из равенства E) можно подставить в A):

тс-л ^

27,3-365
3~':9>а днеи'

Интересно отметить, что оба положения / и 4 соответствуют фазе новолуния для

земного наблюдателя. Следовательно, длительность нашего лунного месяца со-

составляет 29,5 дней.
4. Да. Из рис. 21.7 видно, что максимальный угол между направлением

от Земли к Солнцу и направлением от Земли к Венере равен приблизительно 38°.
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В системе Тихо Браге Солнце вместе со всеми планетами поворачивается во-

вокруг Земли один раз за 24 часа. Следовательно, промежуток времени между мо-

моментом, когда мы видим Солнце, и моментом, когда мы видим Венеру в том же

месте нашего неба, при условии, что они находятся на этом максимальном угловом

удалении друг от друга, равен C87360°) 24 ч=2,5 ч. Поскольку мы не можем

видеть никаких звезд или планет при дневном свете, это означает, что мы не можем

видеть Венеру позднее, чем через 2,5 ч после заката Солнца, или раньше, чем за

2,5 ч до восхода. Ее никогда нельзя видеть под углом, превышающим 38° над

горизонтом.
Система Коперника делает по существу такие же предсказания о движении

Венеры (и Меркурия), как и система Тихо Браге (см. рис. 21.6).
5. а) Поскольку Луна тратит около четырех недель, чтобы обойти вокруг

Земли, а Земля тратит 52 недели, чтобы обойти вокруг Солнца, Луна делает за

О
Солнце

Земная
орбита,

Лунная
ар&игпа

Земля о

Рис. 34. Рис. 35.

год около 13 оборотов вокруг Земли. Это число может быть также найдено, если
взять значения периодов для Земли и Луны из табл. 21.2 для Солнечной системы:

Т3/Тл = C,16 • 107)/B,36 • 10е) = 13,4.

В этих годовых движениях Земли и Луны Луна окажется между Землей и Солнцем
12 раз. Это видно из рис. 34, на котором указаны положения Земли, Солнца
и Луны, которые они занимают через промежутки времени в один месяц на про-

протяжении трех месяцев или четверти года. Из рис. 34 нетрудно видеть, что за

время перехода Земли из положения 0 в положение 1 Луне надо сделать немного

более одного оборота вокруг Земли, чтобы оказаться между Землей и Солнцем.
За четверть года, необходимую Земле, чтобы перейти из положения 0 в положение

Зу Луна сделает три оборота, но она должна сделать еще четверть оборота вокруг
Земли, чтобы снова оказаться между Землей и Солнцем. Поэтому в течение чет-

четверти года Луна должна сделать в общей сложности 3,25 оборота, чтобы оказаться

между Землей и Солнцем 3 раза. Следовательно, в течение одного года A3 оборотов
Луны вокруг Земли) Луна будет находиться между Землей и Солнцем 12 раз,
или раз в месяц. (Как видно из второго ответа к задаче 3, более точный подсчет

дает один раз в каждые 29,5 дней.) Аналогичное рассуждение показывает, что

Земля поворачивается вокруг своей оси 367 раз в течение високосного года и 366

раз в простые годы.

б) В течение месяца Луна (и Земля) проходит 1/12 часть земной орбиты, или

A/12). 2л> A,5-1011 м) = 8-1010 м. (Более точно, B9,5/365). 2л- A,5- Ю11 м) =
= 7,6-1010 м.)

в) На рис. 35 радиус земной орбиты вокруг Солнца равен 3 см. Отношение

радиусов лунной орбиты вокруг Земли и земной орбиты вокруг Солнца равно
C,8-108)/A,5- 10п) = 1/400; поэтому лунная орбита вокруг Земли должна была
бы иметь на том же рисунке радиус 3/400 см. Это было бы меньше, чем толщина

линии, изображающей орбиту Земли.
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Часто встречаются рисунки, на которых траектория Луны показана как

бы навивающейся на орбиту Земли. Такие рисунки редко бывают верными, так

как орбита Луны вокруг Солнца всегда вогнута по отношению к Солнцу. Это
видно из того факта, что сила гравитационного притяжения между Солнцем
и Луной в два раза больше, чем сила гравитационного притяжения между Землей

и Луной. Следовательно, Луна всегда испытывает ускорение по направлению

Земля Земная орбита

/
Лунная
србита

Рис. 36.

к Солнцу. Ускорение Луны по направлению к Земле равно 2,7* Ю-3 м/с2, а ее

ускорение по направлению к Солнцу равно 5,9* 10~3 м/с2. Таким образом, даже
когда Луна находится между Землей и Солнцем, как показано на рис. 36, резуль-

результирующее ускорение Луны все равно направле-

dHoii Солнцу.
ЗбМЛЯ \ г) Для наблюдателя, находящегося на Солн-

ц Лц\ це» Луна не будет казаться совершающей сло-

ОЛинЯ~*1
и

j жное (возвратное) движение. Если бы при наб-

l - людении с Солнца у Луны были бы участки с
•

возвратным движением, то ее скорость «в обра-
Рис# 37.

тном направлении» в положении, показанном на

рис. 37, должна была бы превышать направлен-

направленную «вперед» скорость системы Земля — Луна. Скорость системы Земля — Лу-
Луна по ее орбите вокруг Солнца равна Bя-1,5-10п м)/C65-8,6-104 с) « 30 км/с.
Скорость Луны относительно Земли равна

Bя.З,8.108 м)/B7-8,6-10* с) « 1 км/с.

Поскольку Луна вместе с Землей движется вокруг Солнца со скоростью 30 км/с,
скорость Луны в ее вращении вокруг Земли, равная 1 км/с, слишком мала, чтобы

вызвать возвратное движение.
7. Эта задача непосредственно связана со вторым законом Кеплера. Следует

использовать данные, приведенные в задаче 5.

а) Площадь, заметаемая радиусом, проведенным от Солнца к Земле, в одну

секунду, равна nR2/T, где Т — время одного полного оборота, выраженное в

секундах. Поскольку Земля совершает один оборот за 365 дней C,2-107 с), пло-

площадь, заметаемая в секунду радиус-вектором Солнце — Земля, равна

я A,5.10й мJ/C,2.107 с) = 2,2.1016 м2/с.

б) Для радиус-вектора, проведенного от Земли к Луне, период вращения
равен 27,3 дня B,4» 106 с). Таким образом, площадь, заметаемая в секунду радиус-
вектором Земля — Луна, равна

яD-108 мJ/B.4.106 с) = 2,Ы0и м2/с.

И. Закон Кеплера устанавливает, что прямая, проведенная от Солнца з

Земле, заметает равные площади за равные промежутки времени. Когда Земля
движется по своей орбите быстрее, эта линия должна быть короче. Поскольку
промежуток времени с 21 сентября по 21 марта короче, в это время Земля дви-
движется более быстро, и поэтому она проходит ближе к Солнцу во время зимы в

Северном полушарии. Вследствие наклона земной оси солнечные лучи падают
более наклонно на это полушарие и в продолжение меньшего числа часов еже-

ежедневно. Эти эффекты влияют на погоду гораздо сильнее, чем сравнительно
небольшое уменьшение расстояния до Солнца, составляющее около 3%. По этой
причине Северное полушарие получает меньше тепла в декабре, чем в июне.
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12. Эта задача относится к третьему закону Кеплера в применении к орбите
кометы. Поскольку мы знаем, что отношение R3/T2 постоянно и нам известен

период Ту мы можем вычислить R> которое по определению равно среднему зна*
чению из наибольшего и наименьшего расстояний кометы от Солнца. Затем, зная

наименьшее расстояние, мы можем определить наибольшее.

Из табл. 21.1 для третьего закона Кеплера берем ?>3/Г2 = 3,4-1018 м3/с3.
Поскольку период Т кометы Галлея равен 75 годам

= 2,4» 109 с и Т2= 5,8« 1018 с2,
то

? = [C,4.10" м3/с2).E,8.1018с2)]1/з = 2,7.1012 м.

Так как R определяется как полусумма наибольшего и наименьшего расстояний:

^тах = ад—^т1п = 2.2,7.1012 м—8,9-101» м = 5,3-1012 м.

(Расстояние ближайшего прохождения 8,9-1010 м пренебрежимо мало по срав-
сравнению с расстоянием наибольшего удаления.) Если эту орбиту изобразить

Солнце

в одном масштабе с орбитой Земли, то она будет, очевидно, значительно

длиннее, как показано на рис. 33.

16. а) Спутник будет неподвижно висеть над некоторой точкой земного шара,

если его период Т совпадает с периодом вращения Земли вокруг своей оси, кото-

который почти в точности равен одним суткам (в действительности 365/366 суток).
Радиус орбиты такого спутника можно определить с помощью третьего

закона Кеплера, поскольку известно, что Луна (спутник Земли) находится на

расстоянии 59,5 земных радиусов от центра Земли и вращается с периодом 27

B7,3) суток. Пусть Rc и 7?л обозначают радиусы орбит спутника и Луны соот-

соответственно, а Тс и Тл обозначают их периоды, тогда из R^/T^ = R^/T^ имеем

#с = (Ял-Гс/ГлУ/з = [E9>5 земных радиусовK-A суткиJ/B7 сутокJ]1/з =
= 6,6 земных радиусов.

Поскольку радиус Земли равен 6,4» 106 м, получаем

Высота спутника над поверхностью Земли будет

4,2.107 м —6,4-106 м = 3,6-107 м.

б) Спутник имеет ускорение, направленное к центру Земли И равное по ве-

4я2-D,2-107 м)
личине

2я\2
Т =0,22 м/с2.

(Ь24.60.60)аса"

в) Сила тяжести (а следовательно, и ускорение силы тяжести) пропорцио-
пропорциональна 1/R2. Поэтому ускорение^ на высоте спутника и g3 на поверхности Земли

связаны следующим образом:

(k — коэффициент пропорциональности). Имеем:

gz = g3-Rl\R\ = $fl м/с2 F,4-106 мJ/D,2.107 м/с2
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Таким образом, мы видим, что в п. б) ускорение можно определить на основе

знания R и Т, не пользуясь законом обратных квадратов для силы, а в п. в) ту
же величину можно найти на основе знания g на поверхности Земли с помощью

закона обратных квадратов. Это и есть те два метода, которыми пользовался

Ньютон при вычислении ускорения Луны (см. стр. 75—76 Учебника).
17. Поскольку вес есть просто сила тяжести, действующая на человека,

он равен

Р ?тютч_@,667- 10-Ю) A,9-10»7)-100 о ла шзн

(W
~

G,18.10')»
-^4Ь*Ш п-

18. Сила притяжения

GmLm2 @,667-10~10 Нм2/кг2)-60 кг-70 кг .

о 1А , „
=__=

р^
=2,8.10-' Н.

Я2

Эта сила притяжения составляет только малую часть от веса девушки

(F/P= 4,8- Ю-10). Очевидно, должно существовать что-то другое, что притягивает
юношей и девушек друг к другу!

19. Используя закон всемирного тяготения, мы можем приравнять центро-

центростремительную силу гравитационной силе, действующей на спутник (если его

орбита устойчива). Таким образом, если мы обозначим массу спутника mc, a

массу Земли т3 ,
то

шс4я2/?с тс-т3

Подставляя #с=6,36-10б м+5-105 м=6,87-10б м, Тс= 98-60 с=5,88-103 с,
имеем

4я2- F,87-106 мK
Шз~~

@,667Л0-10 м3/(кг-с2)).E,88.103 сJ
~~Ь'5Ь'Ш кг>

20. а) Как и в задаче 19, мы можем написать

тс4л2^/Г2 = Gmnjlmc/R*t тял = 4я2^3/СГ2.

Если Rx& Rnjl (где Rnjl— радиус планеты), то мы можем записать

тпл = 4я^3пл/0Г*.
Но /плл

= 4я7?дЛр/3, где р
— плотность планеты. Таким образом,

Разрешая это уравнение относительно рГ2, имеем

что является универсальной постоянной, поскольку G — универсальная кон-
константа.

б) Подставляя числовые данные,, получаем

р712 = Зя/@,667.10-10 м3/(кг.с2))=1,4Ы011 кг-с2/м3.

21. Эта задача предназначена в первую очередь для обсуждения в классе,
чтобы способствовать выяснению представлений у учащихся о движении планет.

Класс должен понимать, что Земля свободно падает на Солнце. Если бы это

движение началось из состояния покоя, она бы и упала по прямой линии прямо
на Солнце. Действительную ситуацию можно оценить, если сравнить ее с про-
проблемой прицельного бомбометания с самолета. Бомба не отцепляется от самолета

непосредственно над целью. Если бы летчик поступил таким образом, у него

получился бы перелет. Чем быстрее летит самолет, тем больше будет перелет.
Движение по орбите получится в том случае, если скорость лежит в таких пре-
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делах, что: 1) скорость достаточно велика, чтобы при перелете бомба вообще не
попала бы в Землю, а пролетела бы мимо нее; 2) скорость недостаточно велика,
чтобы бомба совсем ушла из гравитационного поля Земли.

Подобным же образом Земля не падает на Солнце просто оттого, что она

находится на устойчивой орбите; она обладает такой тангенциальной (касатель-
(касательной) скоростью, что, падая на Солнце, она все время «промахивается» мимо него.

22. Эту задачу учащимся трудно рассматривать с какой-либо степенью стро-
строгости. Основное, что следует здесь понять,— что Земля и Луна обе притяги-
притягиваются к Солнцу. (Земля и Луна вращаются вокруг их общего центра масс, ко-

который в свою очередь движется вокруг Солнца. Центр масс системы Земля — Луна
находится на расстоянии примерно 5/6 земного радиуса от центра Земли.)

а) За год как Земля, так и Луна, совершают один полный обход вокруг Солн^

ца. Их скорости при движении вокруг Солнца равны.

б) Из третьего закона Кеплера мы знаем, что для всех тел, которые движутся
по устойчивым орбитам вокруг Солнца, величина отношения R^IT2 будет постоян-

постоянной, независимо от массы этих тел. Таким образом, поскольку R и Т — одни
и те же у Луны и у Земли (и у системы, состоящей из этих двух тел), существую-
существующая орбита должна быть равновесной орбитой как для Земли и Луны по отдель-

отдельности, так и для них обеих вместе.

Некоторые из учащихся могут заметить, что траектория Луны вокруг Солнца
будет зависеть от той конкретной точки, в которой будет находиться Луна на ее

орбите вокруг Земли в тот момент, когда Земля «исчезает». Это связано с неболь-
небольшими изменениями скорости и направления движения Луны вокруг Солнца,
вызванными ее вращением вокруг Земли. В некоторых точках лунной орбиты
вокруг Земли Луна движется быстрее, чем Земля, в их совместном движении

вокруг Солнца, в других точках — медленнее. Кривизна лунной траектории
вокруг Солнца также слегка изменяется при различных положениях Луны от-

относительно Земли и Солнца. Однако в сравнении с движением системы Земля —

Луна вокруг Солнца движение Луны вокруг Земли является совершенно ни-

ничтожным. Скорость системы Земля — Луна при ее движении вокруг Солнца

равна
Bя.1,5-1011 м)/C65-8,6.104 с) = 3-10* м/с.

Скорость Луны в ее вращении вокруг Земли равна

Bя-3,8-108 м)/B7.8,6-104 с) = 103 м/с.

Следовательно, скорость Луны вокруг Солнца в 30 раз выше, чем ее скорость

вокруг Земли. Отсутствие Земли не изменило бы существенно продолжитель-
продолжительность года для обитателя Луны!

в) Имеется две возможности: 1) мы можем записать

Fc-J\lF3-n ^ (тс 1тз ) * (#л-з/^л-с)а
или 2) мы можем записать силы притяжения между Луной и Солн-

Солнцем в виде ^л.с=4я2Л4л^л.с/Г^.с и между Луной и Землей в виде/7л.3 =

«== 4я2Мл/?л.з/^л-3 • Поэтому

рл-с #л-с Тл-з 1,5-1011 м / 27,3 дня V пп

^л-з
~

Tic Rn* 3>8*108 м V 365 дней )
"•*'

г) Солнце действует как на Луну, так и на Землю. Если бы мы могли, со-

сохранив притяжение Земли и Луны к Солнцу, «выключить» притяжение Земли

и Луны друг к другу, то и в этом случае они обе продолжали бы двигаться вокруг
Солнца по орбитам того же радиуса и с той же скоростью. Когда мы добавляем

притяжение между Землей и Луной, то если они не вращались бы друг вокруг
друга, они должны были бы упасть друг на друга. Таким образом, мы видим, что
не происходит никакого захвата Луны Солнцем, даже в отсутствие гравитацион-
гравитационного притяжения между Луной и Землей. Этот вопрос иногда задают в слегка

измененной форме: «Когда Луна направляется от Земли к Солнцу, почему бы
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Солнцу ие украсть Луну?» Хороший ответ гласит: «Потому что оно уже обла-

обладает ею».

23. Эта умеренно трудная задача имеет своей целью рассмотрение следствий

вращения Земли вокруг своей оси. В ней идет речь о видимом весе человека,

т. е. о показаниях весов, на которых он взвешивается.

а) Предположим, что человек стоит на весах, сначала на полюсе, потом на

экваторе.

Находясь на полюсе, человек будет вращаться вместе с Землей с периодом

в 24 часа, но это вращение человека не приводит к появлению ускорения по на-

направлению к центру Земли. Он находится в статическом равновесии. Сила ре-
реакции весов Fs, направленная вверх, уравновешивает силу тяжести Fg, направ-
направленную вниз, так что мы имеем FS=F~. Сила тяжести F~ равна mg= 100 кг-

•9,8 Н/кг = 980 Н. Весы показывают 980 R,

\Се8ещыиполюо Теперь посмотрим с Северного полюса на чело-
\ииг —

века, стоящего на весах, расположенных на экваторе

(рис. 39). Здесь на человека опять действуют две силы:

Fg — сила тяжести, направленная к центру Земли,
и Fs — сила реакции весов, направленная нормаль-
нормально к поверхности, т. е. по радиусу от центра Земли.

Однако в этом случае Fg> Fs. Это происходит
вследствие того, что человек, участвуя в равномер-
равномерном движении по окружности, испытывает ускоре-

ускорение к центру Земли. Сила, необходимая для созда-

создания этого ускорения, и обеспечивается силой тя-

тяжести. Если бы против силы тяжести Fg не действо-
действовала сила реакции весов, она вызвала бы ускоре-

ускорение 9,8 м/с2. Однако против нее действуют весы,

уменьшая ускорение до величины 4n2R/T2. Таким
Рис* 39*

образом, сила реакции весов Fs> направленная вверх
и противоположная направленной вниз силе Fg,

должна быть такова, чтобы направленная вниз результирующая сила, равная
их векторной сумме, создавала именно это ускорение 4tl2R/T2. Сила, соз-

создающая такое ускорение, равна m4n2R/T2. Следовательно,

4я2F,4-106 м)-100 кг__о л

242604с2
6А

Кажущийся вес человека согласно показаниям весов, расположенных на

экваторе, будет на 3,4 Н меньше, чем те 980 Н, которые будут показывать те же

весы, но расположенные на полюсе. Это означает потерю 0,35%.
б) Для того чтобы человек совсем не действовал на весы, расположенные на

экваторе, необходимо, чтобы выполнялось требование An2R/T2~v2/R —g. При
этом v2=Rg=~-F,4-Ю* м)-9,8 м/с2 и у' = 7,9-103 м/с.

Период обращения 7", необходимый для существования такой линейной ско-

скорости, должен был бы равняться

Tf = 2nR/v = 2n-FA'WQ м)/G,9-103 м/с) = 5,Ы03 с=1,4 ч.

в) Скорость v\ найденная в п. б), и действительная скорость v будут обратно
пропорциональны соответствующим периодам:

v'/v = T/T'= 24/1,4=17.
24. Эта задача решается непосредственно с помощью третьего закона Кеплера

Т2= R3/K и закона тяготения Ньютона Ы2К= GM, где М — масса космиче-

космического корабля.

а) ^0,667.10-Ц. 10*
Т2== A20K

' А
4я2

~~

' '
Т== 1Q2

4я2
~~

' '

1,69-10-8'

так что Г=1,0Ы07 с, или 120 дней.

б) Скорость спутника на его орбите равна
0 = 2лМ2О/A,ОЫО7) = 7,5-1О-5 м/с = 0,075 мм/с.
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Ничтожная величина этой скорости показывает, что эта задача вряд ли
имеет практический смысл. Вывести такой спутник на орбиту было бы в высшей

степени тонким делом. При решении задачи мы считали, что гравитационная
сила, действующая между спутником и космическим кораблем, удерживает его
на круговой орбите. Это будет иметь место в действительности только в том случае,
если гравитационное поле, сквозь которое движется космический корабль,
настолько близко к однородному, что его изменение на протяжении 240-метрового
диаметра орбиты спутника мало по сравнению с гравитационным полем самого
космического корабля. Можно подсчитать, что для гравитационного поля Солнца
это условие будет выполнено на расстоянии, примерно в десять раз превышающем
радиус земной орбиты.

Когда вы подойдете к разделу, посвященному кинетической энергии, веро-
вероятно, будет весьма полезно вернуться к этой задаче еще раз и вычислить кинети-

кинетическую энергию спутника в предположении, что его масса равна 100 кг. Это
снова проиллюстрирует, как трудно было бы вывести его на указанную
орбиту.

25. Как показывает эта задача, гравитационные силы становятся значитель-
значительными только для тел, обладающих огромными массами.

а) Пусть М — масса планеты. Из определения G имеем GM = 4я2/С, где
К=гЧТ2. Следовательно, М = 4jiV3/GT2.

б) Ускорение (центростремительное) спутника по направлению к планете

равно а=4л2г/72.

в) Мы не можем вычислить гравитационную силу, действующую на спутник,
не зная, чему равна его масса; если же масса спутника m известна, то искомая

сила равна та=4л2тг/Т2.
г) Поскольку сила тяготения обратно пропорциональна квадрату расстояния,

напряженность гравитационного поля на поверхности планеты в 102 раза больше,
чем в месте нахождения спутника. Так как напряженность гравитационного
поля в месте нахождения спутника равна ускорению спутника по направлению

к планете, которое определено в п. б), ее значение на поверхности планеты равно

400л2г/Г2.
26. Вы можете использовать эту задачу, чтобы еще раз проиллюстрировать,

что закон Ньютона выполняется только в инерциальной системе отсчета. Весьма

вероятно, что некоторые из учащихся будут вычислять ускорения по формулам
at— F/ml=Gm2Ir2, a2= F/m2=Gm1/r2 и удивятся, почему они различны. Най-

Найденные выше ускорения правильны для наблюдателя в инерциальной системе —

например, для воображаемого наблюдателя, на которого не действуют эти две

массы и который находится где-то между ними. Он увидит, что одна из масс при-
приближается к нему с ускорением аъ а другая с противоположной стороны с уско-

ускорением а2. Тогда относительное ускорение для обеих масс равно %+ а2 и никакого

конфликта не получается.

Если вы изучали фиктивные силы достаточно подробно, вы можете рассмот-

рассмотреть эту задачу иначе.

Полная сила (реальная и фиктивная), действующая в ускоренной системе

отсчета, связанной с тъ равна F— Gm1mjriJr тъах. Первый член в этом выра-
выражении представляет (реальную) силу взаимодействия. Второй член описывает

(фиктивную) силу, которая должна быть приложена к тг просто для того, чтобы

удержать ее в покое в ускоренной системе отсчета, связанной с mv Поэтому
ускорение т2 относительно тх равно ar

— F/m2~ {Gm1!ri)Jr a1= a2+ ax. Это

выражение симметрично относительно % и а2; следовательно, аг =аг .

27. Эта задача дает практический ответ на вопрос: «Как мы можем оценить

число звезд в нашей Галактике?» Данные, на которых она основана, получены

из наблюдений над относительным движением большого числа звезд по отношению

к Солнечной системе. Вместо упрощающих предположений и грубых приближе-
приближений, которые мы делаем при решении этой задачи, мы можем истолковать наши

результаты как оценку порядка величины этого числа.

а) Предположим, что Галактика представляет собой шаровое скопление
звезд и что звезды сферически-симметрично распределены по ее объему. Тогда
мы вычислим силу тяготения, действующую на Солнце, так же, как если бы вся
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масса звезд, лежащих внутри его орбиты, была сконцентрирована в центре Га-

Галактики, аналогично тому, как мы делаем, когда вычисляем гравитационное

притяжение Земли (см. раздел 21.8). При сферическом распределении масс звезды,

лежащие вне солнечной орбиты, не действуют на Солнце результирующей гра-
гравитационной силой F=GMm/R2= m4n2R/T2t так что

4л^_ 4я* B,7. IP*))*
GT* —(Q,67.1O-11)F1Oi5J~~'*

б) Предположим, имеется N звезд, каждая массой т= 2* 1030 кг; тогда их

полная масса М— Nm. Конечно, нет никаких оснований полагать, что все звезды

Галактики имеют такие же размеры, как Солнце, но Солнце — рядовая звезда,
и его масса должна приблизительно равняться средней массе звезды. Тогда

yV = 3.104l/B-103e) « 1011 = 100 биллионов.

Таким образом, мы определили только число звезд, лежащих на расстояниях
в пределах 30 000 световых лет от центра Галактики. Есть основания полагать,
что это составляет примерно половину расстояния до края. Для сферической
Галактики полное число звезд будет при этом в 23 раз больше, чем то число, ко-

которое мы только что определили, или приблизительно на порядок больше.

Поскольку наши прочие приближения безусловно нисколько не лучше этого, мы

можем принять, что 1011 дает число звезд в нашей Галактике, будучи умножено
на 102 или 103.



ГЛАВА

22 КОЛИЧЕСТВО ДВИЖЕНИЯ И ЗАКОН СОХРАНЕНИЯ
КОЛИЧЕСТВА ДВИЖЕНИЯ

Краткое содержание главы 22

В главе 22 вводится понятие о количестве движения и показывается, что

полное количество движения изолированной системы остается постоянным. По-

Помимо практического значения, которое имеет закон сохранения количества дви-

движения как средство решения некоторых задач собственно механики, эта идея

занимает свое место среди законов сохранения как еще одна величина, остающаяся

постоянной, несмотря на метание и пляску субмикроскопических частиц и часто

сложные движения и взаимодействия тел больших размеров,— как своего рода

интеллектуальный наблюдательный пункт, с которого человек организует штурм

проблем, расширяющих его власть над внешним миром.

Разделы 22.1, 22.2. Понятие количества движения вводится при анализе

закона Ньютона в форме FAt= mAv. В этой форме закон Ньютона означает, что

интенсивность движения измеряется либо импульсом FAt, либо количеством

движения m&v. Сама по себе концепция импульса не особенно важна, если не

учитывать того, что она приводит к определению количества движения.

Разделы 22.3, 22.4. В разделе 22.3 подробно рассматриваются количества

движения двух взаимодействующих тел. Это рассмотрение приводит к закону

сохранения количества движения в разделе 22.4; у изолированной системы двух

тел полное количество движения никогда не изменяется, т. е. количество дви-

движения сохраняется. В этих двух разделах представлены центральные идеи на-

настоящей главы.

Раздел 22.5. Путем рассмотрения положения и поведения центра масс

разъясняется применение закона Ньютона к протяженным, а не только точечным

объектам. Однако данный курс построен таким образом, что понятие центра масс

может быть дано довольно поверхностно без большого ущерба для понимания

дальнейшего материала.

Раздел 22.6. Закон сохранения количества движения обобщается с системы

двух тел на систему, содержащую любое число взаимодействующих тел. Важно,
чтобы учащиеся знали о том, что закон сохранения количества движения при-
применим к системам, содержащим более двух тел. Однако если они действительно

поняли содержание раздела 22.4, здесь потребуется немного дополнительных

аргументов.

Раздел 22.7. Рассматривается третий закон Ньютона: если В действует
силой F на А у то А должно действовать силой — ^на В. Настоящий курс по-

построен таким образом, что этот закон легко следует из закона сохранения коли-

количества движения,
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План изучения главы 22

В табл. 13 предлагается возможное планирование материала этой главы,

соответствующее общему планированию материала части III, приведенному во

Введении на стр. 219. Разделы, заключенные в квадратные скобки, можно изу-

изучать более бегло или вообще пропустить при изучении материала в классе, без

потери связности изложения.

ТАБЛИЦА 13

Глава 22

Разделы

22.1, 22.2

22.3, 22.4
22.5
22.6
22.7

9-недельный план изучения

части III

В классе,

часы

2

2

2

1

1

В лабо-
лаборатории,

часы

1

1*)
0

0

0

Опыты

Ш.7

III.8

15-недельный план изучения
части III

В классе,
часы

2

3

2

1

1

В лабо-
лаборатории,

часы

1

2*)
0

0

0

Опыты

III.7

111.8,111.9

*) Это лабораторное занятие можно провести и несколько позднее, в связи с после-

последующими разделами этой главы.

Дополнительные материалы к главе 22

Лаборатория. Лабораторная работа Ш.7 (Изменения количеств дви-

движения при взрыве) может быть использована до обсуждения этих вопросов в

классе, в качестве введения к понятию изменения количеств движения в системе

двух тел, или может быть проведена непосредственно после первого урока, по-

посвященного изучению раздела 22.3.

Лабораторная работа II 1.8 (Опыт с тележкой и кирпичом) показывает, что

количество движения сохраняется при столкновении двух тел даже в том случае,

когда начальное количество движения не равно нулю. Этот эксперимент можно

проделать при изучении раздела 22.4 или после него.

Лабораторная работа II 1.9 (Столкновение при движении в двух измерениях)
подчеркивает векторный характер закона сохранения количества движения и тот

факт, что сохраняющейся величиной является векторная сумма количеств дви-

движения отдельных тел. Эту работу можно провести при прохождении раздела 20.4

или после него, но ее можно сохранить в резерве как основу для обобщения всей

вашей работы над темой «количество движения» и как удобный способ перехода
к закону сохранения энергии.

При анализе вопросов, связанных с разделами 22.3—22.5, посвященными

количеству движения и центру масс, большую помощь учащимся окажут репро-

репродукции с нескольких стробоскопических фотографий упругих столкновений

намагниченных ползунов с сухим льдом. Вы можете оставить некоторые из этих

репродукций в резерве, с тем чтобы обратиться к ним позднее в связи с кине-

кинетической энергией (в разделах 23.4, 23.5 и 23.7), распределением энергии (раздел
23.6) и потенциальной энергией (раздел 24.2).

Домашние, классные и лабораторные задания. Даже если вы

проходили разделы 22.5—22.7 в классе довольно бегло, можно все же рекомен-
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довать задачи, относящиеся к этим разделам. Методы, развитые в разделах 22.1—

22.4, в сочетании с основными сведениями, почерпнутыми в последующих раз-

разделах, достаточны для их решения.

Задача 15 показывает, что в некоторых случаях как закон сохранения коли-

количества движения, так и F=ma могут быть применены с равным успехом.

Ответы, решения и таблица, в которой задачи классифицируются по их

примерному уровню трудности, приведены на стр. 315.

22.1. Импульс

22.2. Количество движения

Цель. Дать понятие об импульсе и использовать его для определения коли-

количества движения; показать, что количество движения является динамической,
в отличие от кинематической, величиной.

Содержание, а) Импульс определяется как произведение FAt.

б) Импульс есть вектор.

в) Часто можно измерить произведение FAty даже не зная по отдельности

ни F, ни At.

г) Поскольку импульс FAt измеряется изменением величины mvt естест-

естественно рассматривать эту величину тю как особое физическое понятие, которое

называется количеством движения и обозначается р.

д) Количество движения есть вектор.

е) Сила равна скорости изменения количества движения: F= Ар/At.
Методические указания. Количество движения представляет собой

крайне важный инструмент физического исследования. Было бы, однако, небла-

неблагоразумно задерживаться слишком долго на этих разделах до прохождения раз-

раздела 22.3. Полезность понятия о количестве движения начинает выявляться в

разделе 22.3, так что лучше всего пройти несколько вперед, а затем вернуться

к материалу этих разделов, если возникнет такая необходимость.

Лабораторную работу II 1.7 (Изменения количеств движения при взрыве)
можно провести, как только учащиеся познакомятся с понятиями количества

движения и импульса.

1. Вводя понятие импульса и показывая, что импульс вызывает изменение mv,

т. е. FAt~ mAv> следует напомнить учащимся, что они имеют здесь дело с уже

знакомыми им явлениями и ничего нового пока не вводится. Отошлите их к раз-

разделам 19.8—19.10. «Импульс равен изменению количества движения» есть просто

одна из формулировок закона Ньютона. F= та есть форма этого закона, приме-
применимая к бесконечно малым промежуткам времени, FAt= tnAv применяется к

конечным приращениям времени и скорости. Вы можете подчеркнуть это,

попросив вспомнить, что такое ускорение.
2. Вероятно, будет полезно несколько поупражняться с классом на эту тему.

Дайте учащимся три из четырех величин F} At, m и Av\ попросите их определить

ускорение а так, чтобы они воспользовались либо соотношением а
~

Av/At> либо
a=F/m\ наконец, попросите определить четвертую из этих величин. Ваши

вопросы должны быть простыми в смысле арифметического подсчета; найденные

и заданные четыре величины и два произведения FAt и mAv выпишите в виде

таблицы.
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Например, предположим, вы хотите сообщить телу массой 1 кг скорость

12 м/с за 3 секунды. При каком постоянном ускорении и с помощью какой силы

можно это сделать?
а= 12/3 = 4 м/с2, F= Ь4 = 4 Н,

mAv=\2 кг-м/с, fA/ = 4-3 = 12 Н-с.

Какой получился бы ответ, если бы надо было достигнуть этой скорости

за 1 с? (а=12 м/с2, F=\2 H),
за 2 с? (а= б м/с2, F = 6 Н),
за 4 с? (а= 3 м/с2, F= 3 H),
за 6 с? (а= 2 м/с2, ^ = 2 Н),
за 12 с? (а= 1 м/с2, F=l H).

Конечно, тАи остается равным 12 кг* м/с; но отметьте, что FAt также остается

равным 12 Н«с. После того как вы дали этот ряд величин, вы можете просить

определить силу непосредственно. Какая потребуется сила, если t= 1/2 с? B4 Н).
Какая потребуется сила, если /==20 с? @,6 Н).

Вы можете легко составить подобные задачи. По рассмотренному образцу,

попросите определить а для нескольких изменений в условиях так, чтобы было

ясно численное значение /¦'АЛ'или mAv; затем попросите найти неизвестную

величину, уже не обращаясь к а.

3. Когда учащиеся убедятся в там, что mAv определяет FAt и наоборот,
можно спросить, имеет ли значение (на практике), чему равны порознь F и At

(или т и Av).

4. Непременно обсудите хогя бы один пример, когда импульс создается от-

относительно малой силой, действующей в течение длительного времени. Нельзя,

чтобы учащиеся получили ложное представление об импульсе как о некотором

резком толчке.

5. В классной работе следует обращать внимание как на величину, так и на

векторный характер количества движения. Например, автомобиль массой 2 т,

движущийся со скоростью 30 км/ч на северг имеет другое количество движения,

нежели автомобиль массой 1 т, движущийся со скоростью 60 км/ч на юг.

Может оказаться желательным определить изменение количества движения

уже на этой стадии. Пусть 1,5-тонный автомобиль, ехавший на север со скоростью
40 км/ч, внезапно останавливается и едет на запад со скоростью 40 км/ч. Чему

равно изменение его количества движения? Если при этом несколько взвизгивают

покрышки и тормоза
— тем лучше. Это лишний раз подчеркивает, что для из-

изменения количества движения должны действовать силы.

Пример, приведенный выше, можно рассмотреть количественно, если задать

входящие в него величины в определенной системе единиц. Пусть, например,
автомобиль с массой 1,5 т едет со скоростью 20 м/с. Какой импульс необходим,

чтобы изменить направление его движения с северного на западное? Необходимый

для этого импульс равен 3 l/~2-104 кг-м/с (или Н-с) в юго-западном направле-

направлении (рис. 40).
Некоторые учащиеся усвоят векторную природу импульса и без системати-

систематического изучения того подробного построения, которое проведено в Учебнике.

Лучший способ изучения этого в вашем классе зависит от того, сколько времени
вы уделили изучению векторов в гл. 6. Например, если ваши учащиеся знают,

что произведение скаляра на вектор есть тоже вектор, тот факт, что FAt есть
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Рис. 40.

вектор, является очевидным. Сила всегда имеет направление. Учег времени дей-
действия силы не изменяет характера ее направленности. (Между прочим, уравнение
FAt=mAv было бы бессмысленным, если бы FAt не было вектором, a mAv

было бы вектором. Если бы мы не установили направление силы, мы не знали бы

и направления вызванного ею изменения скорости.)
Если вы давали графическую интерпретацию перемещения и скорости, когда

проходили гл. 5, вы можете дополнительно дать представление своим учащимся
о совместном действии многих импульсов, если

кратко повторите сними основные графические
сведения. Графическое представление об имтгуль-
се как о площади под графиком зависимости F

от t нет нужды подчеркивать только для того,

чтобы учащиеся могли производить вычисления

с участием импульса. Действительно, важность

понятия импульса состоит в том, что, хотя мы

можем не знать по отдельности ни F, ни At,
мы все же имеем возможность в реальном эк-

эксперименте судить о величине их произведе-

произведения, именно — по изменению количества движе-

движения тела. (Заметим, что мы измеряем непосредственно mAv> a FAf вычисляем,
только если нужно.) Следовательно, графический смысл импульса не играет

большой роли. Больше того, большинство учащихся не представляет себе, как

изобразить графически полный импульс, создаваемый силой, изменяющей свое

направление. (Не стоит тратить время на объяснение того, что в этих случаях

приходится изображать на графиках поведение отдельно трех компонент силы по

осям х, у и z.)
Помимо представления о том, что количество движения есть mv, учащиеся

должны чувствовать, что любые два тела, обладающие одинаковым количеством

движения, независимо от того, как они его приобрели, обладают некоторым общим

свойством. Это их общее свойство состоит в том, что оба они могут быть останов-

остановлены одним и тем же импульсом FAt. Учащиеся должны понимать, что именно

произведение mv имеет значение. Любое данное количество движения может

быть образовано бесчисленным множеством комбинаций различных масс и ско-

скоростей. Все такие комбинации, дающие одно и то же количество движения, об-

обладают общим свойством. Все они могут быть остановлены одним и тем же им-

импульсом FAt.

Хотя два тела могут иметь равные скорости, не существует однозначной
зависимости между их скоростями и импульсами, необходимыми для их оста-

остановки; эти импульсы будут зависеть от их масс.

В последующих главах будет показано, что вторым динамическим свойством

является кинетическая энергия; два тела с равными кинетическими энергиями

могут быть остановлены при затрате одного и того же количества работы FAx*

Единицы измерения импульса с тем же успехом могут быть использованы

для измерения количества движения. То, что эта единица измерения не имеет

специального наименования и может быть выражена очевидным образом в виде

двух различных комбинаций более обычных единиц, может смущать некоторых

учащихся. Когда мы пользуемся выражением FAt для того, чтобы подсчитать

импульс или количество движения, наиболее удобно использовать в качестве
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единицы измерения Н«с. С другой стороны, если используется тЛя, наиболее

просто выражать эти величины в кг» м/с. Оба эти способа записи единиц иден-

идентичны: 1 Н-с= 1 кг-м/с. Это очевидно ввиду того, что 1 Н= 1 кг*м/с2.

Учащиеся должны иметь прочные представления о количестве движения,

о том, что это вектор и что количества движения изменяются импульсами
— си-

силами, действующими в течение некоторого времени. Однако в настоящей главе

они изучают только определения, не наполненные новым физическим содержа-
содержанием. Не задерживайтесь слишком долго на этом новом выражении прежних

физических понятий.

Необходимо добиться только достаточно прочного усвоения этих определе-
определений для перехода к изучению двух следующих разделов, которые составляют

плеть и кровь настоящей главы.

Упражнения
A. Сила в 10 Н действует на некоторое тело в продолжение 5 с. Чему равна

величина ее импульса? Чему равно изменение количества движения тела? Если

рассматриваемое тело сначала находилось в покое и имеет массу 2 кг, чему равна
его конечная скорость? E0 Н«с; 50 кг»м/с; 25 м/с.)

Б. Мяч для игры в гольф массой 100 г ударили битой. После удара мяч дви-

движется со скоростью 50 м/с. Если мяч и бита находились в соприкосновении в

течение 5« 10~3 с, то чему равна средняя сила, действовавшая на мяч со стороны
биты? A000 Н.)

B. Две силы действуют на 10-килограммовую массу, которая первоначально
находилась в состоянии покоя. Сначала тело подвергается в течение 3 с действию
силы в 20 Н в направлении на север. Через одну секунду после приложения первой
силы тело подвергается действию второй силы в 30 Н, которая действует в на-

направлении на восток в течение 2 с.

а) Чему равна компонента импульса в направлении на север? F0 Н-с.)
б) Чему равна компонента импульса в направлении на восток? F0 Н«с.)
в) Чему равно окончательное количество движения тела? F0 J^2 кг* м/с, в

северо-восточном направлении.)
г) Если бы направленная на восток сила была приложена первоначально в

тот же самый момент, что и сила, действующая на север, а не на секунду позднее,

чему равнялось бы окончательное количество движения тела? (Было бы тем же

самым, что и в п. в).)
Г. На 2-килограммовый шар, движущийся с начальной скоростью 3 м/с

направо, действует в течение 3 с постоянная сила F, направленная влево. После

взаимодействия шар движется налево со скоростью 6 м/с. Чему равна величина F?

FН.)
Д. Тело подвергается действию переменной силы, которая возрастает линейно

с течением времени от 0 до 10 Н за 0,1 с, остается равной 10 Н в течение 0,5 с,
а затем линейно убывает до 0 в течение 0,2 с. Чему равен полный импульс этой
силы? Если тело имеет массу 3 кг и первоначально находилось в покое, чему будет
равна его конечная скорость? F,5 Н«с; 217 м/с.)

22.3. Изменения количеств движения при взаимодействии двух тел

22.4. Закон сохранения количества движения

Цель. Преподать закон сохранения количества движения и выработать
некоторые представления о его полезности.

Содержание, а) Когда два тела разлетаются при «взрыве» из состояния

покоя, их количества движения равны и противоположно направлены.

б) При лобовом столкновении двух равных масс количество движения одной
из них полностью передается другой,
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в) При скользящем столкновении изменение количества движения одного

тела равно по величине и противоположно по направлению изменению количества

движения другого.

г) Новый способ представления всех вышеуказанных результатов состоит

в утверждении, что полное количество движения обоих тел остается одним и тем

же до и после столкновения.

д) Этот закон выполняется в самых общих случаях.
Методические указания. В этих разделах содержатся основные по-

понятия настоящей главы. Если они основательно поняты — ваша миссия может

считаться почти выполненной. Последующие разделы представляют просто част-

частные случаи или простые обобщения закона сохранения количества движения.

Отведите по крайней мере три урока, а если понадобится, то и больше, на изу-

изучение материала этих двух разделов.

Лабораторная работа III.8 может быть проведена в любое время, начиная

с этого места, при прохождении настоящей главы.

Важно понимать, что в данном курсе сохранение количества движения пред-
предстает как экспериментально установленный закон и не может быть доказано или

выведено путем каких бы то ни было логических рассуждений. В то время как

такое доказательство может быть основано на третьем законе Ньютона, в Учеб-

Учебнике закон сохранения количества движения устанавливается на чисто эмпири-
эмпирической почве, а затем уж выводится третий закон Ньютона *) (см. раздел 22.7

Учебника). Преимущества этого подхода состоят в подчеркивании ведущей роли

наблюдений; они выявляются при использовании закона сохранения количества

движения для анализа столкновений между атомными частицами, когда о силах

взаимодействия известно очень мало или ничего.

Изучение содержания этих разделов может быть проведено в три этапа:

1) обсуждение наблюдаемых изменений количеств движения двух разлетающихся
или сталкивающихся тел и развитие идеи о сохранении количества движения

системы; 2) упражнения в применении и понимании закона сохранения количе-

количества движения; 3) введение понятия об изолированной системе (это понятие в

Учебнике явно не обсуждается, но его необходимо разобрать в классе; предло-
предложения по проведению такого разбора содержатся ниже).

1. Для того чтобы подчеркнуть тот факт, что закон сохранения количества

движения базируется непосредственно на экспериментальных наблюдениях,

полезно сосредоточить внимание учащихся на прямом подтверждении этого

закона, приведенном на рис. 22.7. Несмотря на то, что этот рисунок анализи-

анализируется в Учебнике, он заслуживает того, чтобы дополнительно обратить на него

внимание при классном обсуждении с целью убедиться, что учащиеся правильно
поняли смысл этого эксперимента.

Учащиеся могут исследовать движение каждого из ползунов в течение четы-

четырех промежутков времени между вспышками (или в течение 1 с). Большой ползун

проходит 24 см, малый — 47,9 см.

Рис. 22.7 имеет одну качественную особенность, которая может смутить

некоторых учащихся: перемещение каждого ползуна в течение «первого» про-

промежутка времени между вспышками вдвое меньше, чем в течение любого другого

*) При взаимодействии между двумя телами силы равны и противоположно

направлены.
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промежутка, ввиду того что «взрыв» происходит примерно посередине между

двумя вспышками. В отношении рис. 22.7 можно задать два вопроса, чтобы удо-

удостовериться в том, что учащиеся правильно «видят» этот рисунок.

а) Оцените, в какой момент произошел «взрыв» по отношению к вспышкам.

Учащиеся, которые будут производить такую оценку, рассматривая поло-

положения малого ползуна, без труда заметят, что «взрыв» происходит приблизи-

приблизительно посередине между вспышками. Однако некоторые учащиеся, рассматривая
положения большого ползуна, могут думать, что «взрыв» произошел непосред-

непосредственно перед вспышкой. Эта распространенная ошибка связана с тем, что темный

промежуток между двумя первыми положениями большого ползуна кажется

таким маленьким. Попросите учащихся объяснить это; вы можете указать, что

большой ползун проходит не только этот темный промежуток, но также и рас-

расстояние, равное ширине белого кольца на его ободе.

б) Пользуясь только значением скорости, приведенным в Учебнике, найдите

размеры малого ползуна.
Это может быть легко и быстро сделано, если учащиеся используют тот факт,

что малый ползун случайно смещается на диаметр за каждую вспышку. Поскольку
и =0,48 м/с и поскольку каждая вспышка соответствует 1/4 с, расстояние, про-

проходимое между двумя вспышками (или диаметр), равно 1/4 с» 48 см/с= 12 см.

После краткой предварительной беседы, подобной приведенной выше, можно

указать аналогию рис. 22.7 и 22.5 и обсудить изменения количеств движения,

происходящие у тел, изображенных на этих рисунках. Аналогичная классная

беседа может быть построена на основе данных, полученных учащимися при

выполнении ими лабораторной работы II 1.7 (Изменения количеств движения

при взрыве).
Будет весьма полезно подробно рассмотреть также изменения количеств

движения по рис. 22.9 и 22.11 или вместо этого разобрать решение задачи 24.

После обсуждения изменений количеств движения в этих примерах и фор-
формулировки закона сохранения количества движения можно вернуться к каждому

из этих случаев и проанализировать их с точки зрения закона сохранения. Разу-
Разумеется, при этом придется всего лишь повторить уже проделанную работу, но

теперь вы будете рассматривать каждое столкновение с общей позиции в смысле

полного количества движения, а не интересоваться отдельными количествами

движения тел, входящих в ту или иную систему.

2. Следующий шаг включает выполнение упражнений. Несмотря на относи-

относительную легкость, с которой учащиеся овладевают применением закона сохра-

сохранения количества движения, следует предложить им несколько простых примеров,

подобных описанным в Учебнике, или задач, подобных задачам 11—18. Сначала

используйте простые числовые значения и требуйте численных ответов. Такое

применение закона сохранения количества движения не вызовет затруднений
у большей части учащихся, но не имеет смысла пытаться обсуждать в классе

более тонкие вопросы до того, как учащиеся целиком освоятся с непосредствен-*
ными приложениями закона сохранения количества движения.

3. Окончательный этап в изучении закона сохранения количества движения

состоит в уяснении того, когда два тела можно рассматривать как замкнутую

систему, изолированную от внешних воздействий.
В основе понимания учащимися закона сохранения количества движения

лежат два фундаментальных положения. Наиболее очевидное и наиболее важное
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состоит в представлении о том, что когда взаимодействуют только два тела, полное

количество движения их обоих не изменяется. Это в высшей степени общее поло-

положение не зависит от взаимодействия; взаимодействие может быть простым или

сложным, оно может быть вызвано химической реакцией типа взрыва, упругими

силами, мышечным сокращением и т. д. Покуда мы имеем дело только с двумя

телами, количество движения сохраняется. Этот аспект и был в центре нашего

внимания до сих пор. Второй аспект более тонкий. Он связан с вопросом о том,

когда два тела в самом деле являются изолированными от окружающего мира.

Вам придется потратить некоторое время на его обсуждение, иначе ваши уча-

учащиеся могут подумать, что закон сохранения количества движения применяется

только в курсе физики, но не в природе.

Прежде чем перейти к подробному рассмотрению изолированных систем,

укажем источник путаницы у учащихся. Когда учащимся предлагается искус-

искусственная проблема, скажем, о столкновении двух шаров, они могут применить

закон сохранения количества движения, чтобы получить ответ о движении этих

шаров после взаимодействия. Однако они знают, что отдельный шар не будет
сохранять свою скорость; он будет замедляться. Следовательно, вместо того

чтобы быть универсальным, мощным законом, сохранение количества движения

может показаться всего лишь уловкой, которую используют для получения пра-

правильного ответа в случае особого класса задач. Потребуется большой разговор
в классе, чтобы связать закон сохранения количества движения с многообразными
проявлениями его в природе, которые учащиеся наблюдают изо дня в день.

Замечания об изолированности

При рассмотрении задач на количество движения вопрос об изолированности
системы (что включить в эту систему, а что исключить из нее) решается не всегда

о'динаково просто. Единственный случай, когда осуществляется почти идеальная

изоляция, представляет собой взаимодействие где-нибудь в космическом про-

пространстве. Такие случаи трудно представимы, но зато просты для понимания.

Второй тип изолированных систем иллюстрируется взаимодействием гладких
тел на поверхности замерзшего озера (если считать, что лед лишен трения) или

бильярдных шаров на столе (если снова пренебречь трением). В этих случаях

внешние силы не являются малыми. Сила тяжести тянет тела вниз, в то время

как лед или стол толкают их вверх. Однако поскольку эти поверхности являются

твердыми, указанные силы автоматически регулируются так, что оказываются

равными и противоположными, а результирующая сила, действующая на рас-

рассматриваемые тела по направлению вверх или вниз, равна нулю. В таких случаях,

следовательно, осуществляется своего рода псевдоизоляция, когда действуют
большие внешние силы, дающие при сложении нуль.

Третий очень важный случай (и именно тот, который должны понять учащиеся

для того, чтобы оценить широкую применимость закона сохранения количества

движения) включает изоляцию взаимодействия во времени
— применение закона

сохранения количества движения только в течение того промежутка времени,

когда происходило взаимодействие. Рассмотрим вопрос об обмене количествами

движения между двумя бильярдными шарами, сталкивающимися на столе для

игры в бильярд. Никто не сомневается в том, что бильярдный шар, пущенный
катиться по столу, в конце концов остановится благодаря трению. Следовательно,
два бильярдных шара на столе не образуют истинно замкнутую систему. Но

рассмотрим сам момент удара. Стол, являющийся внешним телом для рассмат-

рассматриваемой системы, действует на шары силой трения во время их соударения. Эта
сила может быть и не малой. Однако здесь важно то, что импульс, сообщаемый
этой силой за короткое мгновение столкновения, пренебрежимо мал по сравнению

с импульсом сил взаимодействия между шарами во время столкновения. Поэтому
можно сказать, что количество движения системы двух шаров сохраняется во
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время соударения, несмотря на то, что оно не сохраняется, если рассматривать
его в течение более длительного времени. Если нам надо учесть действие сил

трения, мы можем применить закон сохранения количества движения к взаимо-

взаимодействию, а затем рассмотреть влияние трения на эти результаты.

Следующей иллюстрацией этого случая может служить взрыв ракеты. Здесь
в качестве внешней силы, действующей на ракету, выступает сила тяжести. Однако

взрыв происходит за такое короткое время, что можно импульсом, сообщаемым

ракете силой тяжести за время взрыва, пренебречь и использовать закон сохра-

сохранения количества движения в системе, связанной с ракетой, для сравнения ситуа-
ситуации непосредственно перед взрывом и сразу же после него. Мы можем далее, если

необходимо, рассмотреть влияние силы тяжести на данную массу, имеющую

данную скорость. Кроме того, гравитационный случай обладает особым свойством.
При взаимодействии в постоянном гравитационном поле ускорения всех тел

равны, так что силой тяжести можно пренебречь.
Используйте закон сохранения в практических случаях. Вернитесь в класс-

классной беседе к каждому из примеров, приведенных в разделе 22.3 Учебника. По-

Попросите отдельных учащихся точно указать, какие два тела рассматриваются
в каждом случае, и почему эти два тела образуют «замкнутую» систему. Пред-
Предложите им также снова конкретно сформулировать закон сохранения количества

движения специально в применении к каждой из рассматриваемых систем.

Например, в первом примере раздела 22.3 Учебника взаимодействующими
телами являются мальчик и взрослый человек (рис.22 .5). Их можно рассматри-
рассматривать как изолированную систему, потому что они стоят на гладкой поверхности
льда; термин «гладкая» означает, что мы можем пренебречь трением. Направлен-
Направленная вниз сила земного притяжения в точности нейтрализуется направленной
вверх силой реакции льда. Поскольку как взрослый, так и мальчик были непод-

неподвижны перед толчком, начальное количество движения равно нулю. Следова-
Следовательно, полное количество движения (векторная сумма) должно всегда оставаться

равным нулю. Если взрослый человек приобретает некоторое количество движения

в одном направлении, мальчик должен приобрести такое же количество движения

в противоположном направлении. Спросите у класса, что произошло бы, если бы

мальчик толкнул взрослого вниз, так что сам мальчик подскочил бы вверх и

поднялся в воздух? Двигался бы при этом взрослый человек вниз? Образуют
ли мальчик и взрослый систему, «изолированную» в отношении вертикальных
движений?

Спросите у учащихся, какое влияние оказывают вылетающие пороховые
газы на закон сохранения количества движения в применении к ружью и пуле.

Когда пуля оставляет ствол ружья и из него вылетают пороховые газы, они

обычно уносят с собой пренебрежимо малое количество движения. Однако вопрос
о том, является количество движения, уносимое газами, пренебрежимо малым
или нет, не так важен, как важно само осознание учащимися того, что они счи-

считают это количество движения пренебрежимо малым. Если бы кто-нибудь изобрел
ружье, в котором газы уносили бы значительное количество движения, эти газы

пришлось бы включать, наряду с ружьем и пулей, в рассматриваемую систему
1фи вычислении количеств движения.

На рис. 22.9, 22.11 и 22.24 показаны соударения бильярдных шаров. Боль-
Большинство учащихся думает, что эти шары катятся по столу. В действительности
сни подвешены на длинных нитях. Именно по этой причине пятнышки и полоски,

нанесенные на них, кажутся неподвижными или очень медленно поворачиваю-
поворачивающимися.

Некоторые учащиеся могут заинтересоваться тем фактом, что когда проис-

происходит нецентральное соударение между движущимся (невращающимся) бильярд-
бильярдным шаром и неподвижным шаром равной массы, эти два шара после удара раз-
разлетаются по направлениям, образующим прямой угол друг с другом. Учащиеся

могут заметить это при выполнении лабораторной работы II 1.9 (Столкновение
при движении в двух измерениях). Этот факт связан с законом сохранения кине-
кинетической энергии (к которому учащиеся подводятся в последнем пункте лабора-
лабораторной работы III.9, см. пояснения в разделе ЛР Учебника, посвященном этому
эксперименту) и может быть легко доказан после изучения темы «Энергия». Это
доказательство дано в Приложении 8 на стр. 423.
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Упражнения
A. Шар из замазки массой 5 кг, движущийся со скоростью 6 м/с, ударя-

ударяет кусок дерева массой 1 кг, находившийся первоначально в состоянии покоя.

Замазка прилипает к дереву. Чему равна конечная скорость куска дерева?
E м/с.)

Б. Пуля массой 10 г вылетает со скоростью 1000 м/с из свободно висящего
ружья массой 2 кг. Чему равна скорость отдачи ружья? E м/с.)

B. 5-килограммовое тело «взрывается» в состоянии покоя. Оно разлетается
на два куска. Один из этих кусков массой 4 кг летит направо со скоростью 50 м/с.
Опишите движение другого куска с массой в 1 кг. (Движется налево со скоростью
200 м/с.)

Г. Масса в 10 кг движется направо со скоростью 20 м/с и взаимодействует с

другой массой, которая первоначально двигалась налево со скоростью 20 м/с.
После взаимодействия обе массы оказываются движущимися направо со скоростью
5 м/с. Как велика вторая масса? F кг.)

Д. Можно ли с помощью одного лишь закона сохранения количества движе-
движения определить движение после столкновения? Если у вас есть время на этой

стадии, вы можете использовать этот вопрос для объяснения причин, побуж-
побуждающих нас искать другие динамические величины в последующих главах. Спро-
Спросите учащихся, не могут ли какие-нибудь другие конечные скорости двух шаров
на рис. 22.8 оставить неизменным их полное количество движения? Учащиеся

смогут ответить на этот вопрос более просто, если вы используете специальные
числовые значения. Скажите, например, что шары имеют массу 0,5 кг каждый
и что начальная скорость была 4,4 м/с. (Заметим, что при этой скорости шары
проходят немного меньше 27 см за 3/48 с. Обратите внимание также на то, что

кажущееся удлинение шара приблизительно на 2 см в сочетании с этой скоростью
означает, что затвор камеры был открыт приблизительно 1/220 с в течение каждого

кадра.)
Учащиеся должны понимать, что равное количество движения может

быть получено с помощью большого числа других комбинаций. Спросите у них,
с какой скоростью двигался бы после столкновения первый шар, если бы второй
шар приобрел скорость 3,3 м/с, а не 4,4 м/с, как на самом деле. Они должны сразу
же сообразить, что первый шар продолжал бы двигаться вперед со скоростью
1,1 м/с, вместо того чтобы остановиться. Что было бы, если бы второй шар получил
скорость 4,1 м/с? Первый шар сохранил бы скорость 0,3 м/с в прежнем направ-
направлении.

Вы можете поставить перед учащимися вопрос, каким образом второй шар
делает выбор между всеми этими возможностями? Из физических соображений
ясно, что результат должен определяться деталями взаимодействия при столк-

столкновении. В гл. 23 мы включим в наше рассмотрение столкновений энергию и,

таким образом, устраним эту неопределенность.

22.5. Центр масс

Цель. Дать понятие о центре масс путем рассмотрения системы, состоящей

из двух тел.

Содержание, а) Центр масс системы двух тел есть точка, которая делит

расстояние между ними в отношении, обратно пропорциональном массам этих

тел. Таким образом, т1х1= т2х2.
б) Если система двух тел изолирована, скорость ее центра масс уц не изме-

изменяется. Полное количество движения этой системы равно (тх+ т2)уц.
Методические указания. Этот раздел можно пройти кратко или даже

совсем опустить без серьезного ущерба для связности изложения. Это не озна-

означает, что понятие центра масс является второстепенным. Напротив, оно состав-

составляет основу для понимания всей механики на любом уровне, отличающемся от

самого элементарного. Если у вас много времени, вам, безусловно, следует вклю-

включить в рассмотрение и этот раздел. Его можно сократить только благодаря тому,
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что большинство учащихся не задумывается всерьез над движением протяженных

тел, но так или иначе считает, что «среднее» движение определяется законом Нью-

Ньютона,— интуитивное ощущение, которое случайно оказывается верным.

Действительные силы, действующие на протяженное тело, могут быть весьма

сложными. Если такое тело толкнуть «нецентрально» (т. е. так, чтобы резуль-

результирующая сила не проходила через центр масс), оно будет не только двигаться

поступательно, но и вращаться. Кроме того, одна часть тела может толкать дру-

другую, и действие этих сил следует принимать во внимание. Можно показать, что

центр масс такого тела движется так, как если бы вся масса тела была сосредо-

сосредоточена в его центре тяжести и если бы на него действовали только силы, прило-

приложенные извне. Это можно продемонстрировать с помощью куска дерева совер-

совершенно неправильной формы, центр масс которого надо пометить белой краской.
Если подбросить его в воздух, такое тело будет вертеться и кувыркаться, но белая

точка в его центре масс будет двигаться по гладкой параболе.

Не только движение самого центра масс оказывается особенно простым,

но и движение других частей относительно центра масс может быть опи-

описано весьма просто. Вспомните, например, анализ рис. 22.16, проведенный в

Учебнике.

Несомненно, наиболее удовлетворительный способ дать учащимся возмож-

возможность удостовериться, что они усвоили понятие центра масс, заключается в том,

чтобы заставить их проанализировать побольше стробоскопических фотографий,

содержащихся в этой главе. Если они будут достаточно много этим заниматься,

это хотя и приведет к большой затрате времени, но будет весьма полезно в смысле

приобретения знаний. Вероятно, можно наметить следующий порядок выпол-

выполнения этого анализа.

1. Предложите учащимся отметить положение центра масс на каждом кадре

рис. 22.8, а затем вычислить скорость центра масс. В заключение определите

скорость каждого шара по отношению к центру масс. Это особенно простой слу-

случай, требующий незначительного времени для выполнения измерений, но со-

содержащий большинство из наиболее важных идей. Калька и линейка с сантимет-

сантиметровыми делениями составляют все необходимые для этого принадлежности.

2. Можно обсудить рис. 22.17 для того, чтобы учащиеся оценили, насколько

просто движение центра масс, несмотря на то, что гаечный ключ оказывается

движущимся весьма сложным образом. С помощью следующих упражнений

можно подвести учащихся к рассмотрению этого движения как результата двух

простых образующих его движений.

Упражнения
A. Если гаечный ключ имеет длину 20 см, чему равна средняя скорость его

центра масс? (Учащиеся должны будут найти, что гаечный ключ проходит рас-
расстояние, равное его длине (или чуть-чуть больше), за две вспышки. Следовательно
0=0,20/0,067=3 м/с. Заметьте, что, выполняя этот подсчет, учащиеся будут
опираться на тот факт, что vn существенно постоянна.)

Б. В какую сторону движется гаечный ключ? (Единственное соображение,
позволяющее решить вопрос о направлении движения по стробоскопической
фотографии, состоит в том, что движение ключа, вероятно, будет замедляться
силами трения. Потребуется выполнить довольно скрупулезные измерения,
чтобы показать, что ключ движется слева направо.)

B. Искажает ли камера картину движения? (Да, размеры ключа кажутся
различными на разных краях фотографии.)
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Г. Чему равна скорость вращения ключа вокруг его центра масс? (Он по-

поворачивается один раз примерно за 14 вспышек, т. е. его частота вращения
незначительно больше, чем 2 оборота в секунду.)

Д. Чему равна мгновенная скорость отверстия на конце рукоятки ключа

в какой-нибудь данный момент времени? (Учащиеся могут оценить ее графически,
разделив смещение на время. Однако чтобы сделать это более точно, им придется
сначала найти тангенциальную (линейную) скорость вращения и ее направление.
Они могут сделать это, зная частоту вращения и расстояние от отверстия до

центра масс (через который проходит ось вращения). К этой скорости (относи-
(относительно центра масс) надо прибавить (векторно) скорость центра масс.)

3. Дома учащиеся должны проделать графическое упражнение. Оно пред-

представляет собой обобщение п. 1 на случай движения в двух измерениях и позволяет

дополнительно углубить представления учащихся о столкновениях и о том,

насколько различно могут выглядеть явления, если их рассматривать в различных
системах отсчета.

Проанализируем столкновение двух равных масс, представленное на рис.

22.9, в следующем виде.

Отмечаем на кальке положения центров обоих шаров в различные моменты

времени. Это может выглядеть так, как изображено на рис. 41, а. Соединяем

соответствующие положения шаров после столкновения (рис. 41, б) и отмечаем

положения средней точки этого отрезка, т. е. центра масс. Проделаем это для

обоих шаров до столкновения (рис. 41, в). Это может выглядеть несколько гряз-

грязновато, тем не менее это все же можно проделать. Выполняем измерения, позво-

позволяющие убедиться, движется ли центр масс прямолинейно и с постоянной ско-

скоростью во время столкновения.

Это упражнение можно углубить, если поставить вопрос, каким бы мы видели

это столкновение, если бы мы двигались вместе с центром масс этой системы,

а не оставались в покое. Возьмем второй листик кальки и поставим в середине
его точку или крестик, который будет изображать центр масс (ц. м.). Наклады-
Накладываем этот лист на рис. 41, в таким образом, чтобы наш крестик был совмещен

с первым положением центра масс, и отмечаем на кальке положения шаров в этот

момент времени. То же самое проделываем для каждого следующего положения

центра масс последовательно. Окончательный рисунок будет похож на рис. 41, г.

Главное, что следует отметить, заключается в том, что в этой системе отсчета шары

кажутся идущими навстречу друг другу из противоположных направлений с

равными скоростями (на самом деле равны их количества движения, но мы здесь

имеем дело с равными массами, так что это одно и то же), и разлетаются в другом

направлении с противоположно направленными скоростями. В действительности

скорости шаров при разлете меньше тех, с которыми они сближаются, поскольку
кинетическая энергия не сохраняется целиком (частично переходит в другие,

формы).
4. Некоторые преподаватели считают более полезным проделать упражнения,^

описанные выше в п. 3, в классе, а на дом задают анализ рис. 22.24, который

учащиеся должны выполнить по тому же образцу. Однако как только они при-

приступают к подобному анализу рис. 22.24, так сразу же выступает трудность, свя-

связанная с тем, что теперь положение центра масс не столь очевидно, как раньше,

поскольку неизвестна масса каждого шара. Поэтому, прежде чем проводить ана-

анализ, связанный с изучением поведения центра масс на этом рисунке, надо решить

задачу 24. При этом можно определить, что отношение малой массы к большой
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tnjm6 равно 0,42 или примерно 3 : 7, так же как это было на рис. 22.11 и 22.15.
Действительно, это одни и те же шары, хотя дополнительное увеличение на рис.
22.24 может несколько вводить в заблуждение. Теперь учащиеся могут, так же

/8

6)
Рис. 41.

как и в п. 3, отметить положения центра масс и найти его скорость во время столк-

столкновения. Они могут также определить движение относительно центра масс с

помощью второго куска кальки, аналогично тому, что было сделано в упражнении

п. 3, но на этот раз они не получат равных и противоположно направленных
скоростей у обоих шаров. Вместо этого они обнаружат, что шары (если рассмат-
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ривать их из центра масс системы) имеют равные и противоположно направленные
количества движения. Центр масс является своего рода «центром количества

движения»; полное количество движения системы относительно ее центра масс

всегда равно нулю.

22.6. Закон сохранения количества движения в общем случае
Цель. Распространить закон сохранения количества движения на случай

системы многих тел.

Содержание. Количество движения любой изолированной системы со-

сохраняется независимо от числа тел, входящих в эту систему.

Методические указания. Для учащихся важно знать, что закон со-

сохранения количества движения является общим. Однако большинство из них,

вероятно, убедилось в этом при изучении предыдущего материала. Подробное
понимание ими приводимых здесь аргументов не существенно. Этот раздел можно

пройти, задав его для домашнего чтения, с кратким обсуждением выводов, если

хотите.

Поскольку сохранение количества движения для системы двух тел было

введено как экспериментально обоснованный факт, его расширение на случай
любой изолированной системы дает весьма умеренный выигрыш в общности. Так

как закон сохранения количества движения зависит от эксперимента, он, строго

говоря, не может быть доказан *). Однако если он уже установлен для системы

двух тел, его обобщение на систему п тел требует только принципа аддитивности.

Поскольку входящие в него величины — сила и количество движения
— явля-

являются векторами, для которых принцип аддитивности был установлен ранее, мы

приходим к заключению, что указанное обобщение справедливо. Даже если эти

правдоподобные аргументы не убедят каждого учащегося, вы должны удостове-

удостовериться в том, чго они ясно представляют себе, что закон сохранения количества

движения был установлен экспериментально для всех типов консервативных

систем.

В классе достаточно разобрать, не задерживаясь, один пример. Вот один из

многих возможных вариантов. Бильярдный шар, двигавшийся в направлении на

восток со скоростью 2 м/с, ударяет два других таких же шара. После столкновения

ударявший шар движется на север со скоростью 1/2 м/с, а один из ударенных

шаров движется на восток со скоростью 1 м/с. С какой скоростью и в каком на-

направлении движется третий шар?

Вполне достаточно (и весьма желательно) решить эту задачу графически.

Конечное количество движения состоит из трех векторов и должно равняться

начальному количеству движения. (Заметим, что рассматриваемое столкновение

является неупругим, поскольку кинетическая энергия после столкновения мень-

меньше, чем вначале.)
Для проверки усвоения можно предложить задачу попроще.

Упражнение
Три одинаковых массы расположены близко друг к другу и находятся в

состоянии покоя на гладком горизонтальном столе, лишенном трения, когда

*) Как и любой принцип, представляющий собой обобщение эксперименталь-
экспериментальных данных, ибо всегда может быть высказано предположение, что он оправды-
оправдывается только с достигнутой точностью наблюдений. Такова же и судьба закона

Ньютона, который не имеет места при больших скоростях. (Прим. перев.)



происходит взрыв, разбрасывающий их в разные стороны. На фотографии, сде-

сделанной через несколько мгновений после взрыва (рис. 42, а), видны две массы.

Где находится третья?
Поскольку пройденные расстояния пропорциональны скоростям, а массы

одинаковы, векторы количеств движения будут такими, как изображено на рис.

42,6.

Мает!

о
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О

Мочальное положение

Q Мааса f

Рг

МассаВ О

Рг

Таним
должен быть

Ps

г)
Рис. 42.

О МассаS

Начальное количество движения равно нулю. Поэтому и конечное количе-

количество движения должно быть равно нулю. Отсюда можно определить количество

движения третьей массы, как это сделано на рис. 42, в.

Окончательное расположение масс представлено на рис. 42, г.

22.7. Силы взаимодействия

Цель. Ввести понятия о силах действия и противодействия.
Содержание. Если тело А действует на тело В, то тело В действует на

тело А противоположно направленной силой равной величины.

Методические указания. Если лабораторная работа III.9 (Столк-
(Столкновение при движении в двух измерениях) еще не была проведена, она может слу.

жить хорошим способом подвести учащихся на материале эксперимента к изу-

изучению гл. 23.

Пп. в) и г) задачи 16 послужат хорошим введением к основному материалу

этого раздела.

Как уже упоминалось в разделе Руководства, посвященном закону сохра-

сохранения количества движения, традиционный подход к этой теме состоит в утверж-

утверждении равенства «действия и противодействия» в качестве экспериментального
закона и в последующем выводе из него сохранения количества движения. В этом

курсе принят другой подход, согласно которому экспериментальным законом
считается закон сохранения количества движения, а третий закон Ньютона
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выводится из него. Следовательно, материал этого раздела играет вспомогатель-

вспомогательную роль в нашем курсе. Тем не менее, этот раздел должен быть рассмотрен,

поскольку излагаемые в нем понятия еще встретятся нам, например, в следующей
главе, посвященной энергии. Интенсивная практика здесь не нужна, и в разделе

ДКЛ нет задач, посвященных специально этой теме.

Если ваши учащиеся подходили к рассмотрению сохранения количества

движения только в тех случаях, когда сила действует в течение очень короткого

времени, может получиться некоторое недопонимание равных и противоположно

направленных сил, рассматриваемых в этом разделе. Они должны теперь понять,

что когда взаимодействуют два тела, то Api=—Ajt?2. Из Ap1=F2_1A/ и А/?2 =

= Fj.gA/ следует, что ^2-1==—^1-2* Те учащиеся, которые представляют себе

только полное изменение входящих сюда величин, могут подумать, что только

среднее значение F2_i равно взятому со знаком минус среднему значению Fj_2 • Чтобы

понять этот раздел, они должны усвоить, что Арх=—Ар2 для любого промежутка

времени, который мы пожелаем рассматривать. Тогда, если частное значение А/

выбрано достаточно малым, так, чтобы рассматриваемые силы не изменялись

существенно в течение этого промежутка времени, эти две силы будут равны
и противоположны в произвольный момент. Поэтому они должны быть равны и

противоположны все время. Используемое при этом доказательстве At не является

«временем, в течение которого происходило столкновение или взрыв». Это есть

произвольный малый интервал времени, который мы сами выбираем из сообра-
соображений малости изменения рассматриваемых величин в течение этого интервала.

Выражение «равно-противоположные силы» может показаться противоре-

противоречивым, в действительности оно даже должно казаться противоречивым, если

учащиеся привыкли к правильным векторным обозначениям. Два вектора равны
только в том случае, если оба они имеют одно и то же направление. Но в физике
часто случается, что выражение «равны по величине и противоположны по на-

направлению» заменяют для краткости выражением «равно-противоположны».

При рассмотрении изолированности системы может оказаться весьма полез-

полезным обсудить следующий хорошо известный парадокс, если вы еще не сделали

этого.

Лошадь впряжена в телегу и пытается везти ее вдоль улицы. Однако чем

сильнее тянет она телегу вперед, тем сильнее телега тянет лошадь назад, причем

эти силы равны по величине и противоположны по направлению. Как же при

этом лошадь все же ухитряется везти воз?

Парадокс разрешается, если вспомнить, что надо рассматривать только ту

систему, движение которой нас интересует. Если мы хотим понять движение телеги,

то и рассматривать надо эту телегу и внешние силы, действующие на нее. Лошадь
тянет ее вперед, а трение между колесами и осями и между колесами и грунтом

направлено назад и препятствует ее движению. Когда сила тяги лошади превы-

превышает силу трения, воз получает ускорение по направлению вперед.

Если нас интересует движение лошади, то надо рассматривать только те

силы, которые действуют на лошадь. Такими внешними действующими силами

являются направленная назад сила тяги со стороны телеги и направленная вперед

сила, с которой земля толкает ноги лошади (она возникает как реакция на ту

силу, с которой ноги лошади толкают землю назад). Когда вторая из этих сил

превышает первую, лошадь испытывает ускорение по направлению вперед.
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Задача о лошади и телеге представляет собой просто частный случай более

обшего утверждения касательно равных и противоположных сил. Эти две равные

и противоположные силы, о которых идет речь в этом разделе, всегда действуют
на разные тела. Если оба тела рассматриваются вместе как единая система, эти

силы взаимно уничтожаются. Только благодаря этому полному взаимному уни-

уничтожению мы можем пренебречь очень сложными межатомными силами при рас-

рассмотрении, скажем, движения камня, падающего под действием поля тяготения.

В случае, когда лошадь и телега рассматриваются вместе как одно тело, сила

тяги лошади, действующая на телегу, и сила тяги, действующая на лошадь со

стороны телеги, взаимно уничтожаются, так что остаются только сила, действую-
действующая со стороны грунта на ноги лошади и толкающая их вперед, и силы трения,

действующие на колеса телеги (направленные назад). Когда первая из них пре-

превышает все остальные, лошадь и телега (единое тело) с ускорением движутся

вперед.

Ни к чему пытаться дать строгое определение, позволяющее отличать нью-

ньютоновы силы от неньютоновых. По мере того как физик подробно анализирует
вещество и взаимодействия, он обнаруживает существование запаздывания во

времени при действии любого типа сил. Большинство физиков придерживается
того взгляда, что никакой сигнал не может распространяться быстрее света;

следовательно, распространение большинства обычных силовых полей очень

похоже на распространение света, испущенного сверхновыми звездами, которое

обсуждается в Учебнике.

Нет необходимости анализировать пример со сверхновыми звездами сколько-

нибудь подробно. Если вы попытаетесь быть строгими, вы можете встретиться
с вспросами некоторых учащихся, которые являются почти семантическими:

Содержит ли свет, испущенный сверхновой звездой, часть вещества этой

сверхновой? Если нет, то как же может центр масс сверхновой звезды (находив-
(находившийся в покое до того, как был испущен свет) двигаться после испускания света?

Не нарушается ли здесь закон сохранения количества движения?

Если свет составляет часть сверхновой звезды, почему получается так странно,
что мы даем сверхновой звезде обратный толчок?

Какова природа той силы, с которой сверхновая звезда дает толчок свету?

Поскольку свет всегда должен идти со скоростью света, как можно говорить
о том, что свет получает толчок?

Вы, наверное, никогда не сможете ответить удовлетворительно ни на один

из вопросов, поскольку учащиеся не знают в достаточной степени электромагнит-
электромагнитной теории (равно вы не можете обещать им, что они удовлетворят свою любозна-

любознательность в части IV).
Как отмечено в Учебнике, положение исправляется, когда принимается во

внимание количество движения света. Луч света энергии Е переносит количество

движения Е/с, где с — скорость света. Некоторые из учащихся могут спросить,
обладает ли свет не только количеством движения, но и массой. Ответ должен

быть утвердительным; он обладает массой, определяемой соотношением Е = тс2.
В части IV на это будет пролит дополнительный «свет».

Ракеты

Цель. Проиллюстрировать использование закона сохранения количества
движения путем рассмотрения одного приложения, приобретшего особый интерес
в последнее время, а именно — принципа действия ракет.
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Содержание. Реактивный корабль получает направленное вперед коли-
количество движения, равное направленному назад количеству движения вылетающих
из сопла газов.

Методические указания. Этот материал состоит из одного единствен-
единственного примера на применение закона сохранения количества движения. Его можно

пройти, задав для домашнего чтения. Если у вас есть лишнее время, вашим уча-
учащимся будет интересно обсудить некоторые примеры с помощью графиков, при-
приведенных на рис. 22.20.

Ниже приводится образец задачи на движение ракеты. Если бы применялось
топливо, обеспечивающее скорость газовой струи при выходе из сопла, равную
3,3 км/с, какой массы потребовалась бы ракета, чтобы грузу весом 1000 кг сооб-
сообщить конечную скорость 10 км/с? (Сопротивлением воздуха и силой тяжести

пренебречь.) Поскольку v/ve=3, рис. 22.20, а показывает, что /n/mo= 0,05.
Поэтому потребовалась бы полная масса, равная 20 000 кг. (Заметим, что если бы

учитывалось сопротивление воздуха и сила тяжести, потребовалось бы около

50 000 кг горючего, чтобы сообщить 1000 кг полезного веса скорость 10 км/с;
11 км/с есть та скорость, которой должно обладать тело для того, чтобы оно могло

наватца покинуть Землю.)
Можно взять и другие пробные задачи из дополнительных сведений, приво-

приводимых ниже.

Дополнительные сведения по реактивному движению. Приведенные в Учеб-
Учебнике оценки для отношения полной массы ракеты с топливом к конечной массе

ракеты (или «полезному весу») уже устарели. В современных американских и

советских ракетах используются такие сорта топлива, которые обеспечивают
значительно большие скорости истечения газовой струи, чем 2 км/с, использо-
использованные для иллюстрации в Учебнике. Ракетное топливо, применявшееся в 1957 г.,
давало скорость истечения около 2,6 км/с. Современные сорта химического горю-

горючего подняли эту цифру до 5 км/с. Предварительно нагретое газообразное топ-

топливо обеспечивает скорости истечения около 6 км/с. Эти значения типичны для

кораблей-спутников с человеком на борту.
Гораздо более высокие скорости истечения, скажем приблизительно 100 км/с,

потребуются для того, чтобы сделать осуществимыми дальние космические путе-
путешествия. Такие скорости истечения потребуют чего-либо более эффективного,
нежели химическое горючее. Одна из возможностей заключается в испускании

пучка ионов, предварительно ускоренных электрическим полем. По-видимому,
в будущем придется брать с собой некий компактный эффективный источник энер-
энергии, вроде ядерного реактора, чтобы создавать необходимое электрическое на-

напряжение. Другое предложение в отношении реактивных полетов будущего под-

подразумевает использование атомных бомб для выбрасывания осколков в направ-
направлении, противоположном движению ракеты.

Если вы читали о ракетном топливе в газетах или журналах, вы, вероятно,
встречались с термином «удельный импульс», используемым для характеристики
горючего. Например, топливо в некоторой определенной ракете может иметь

удельный импульс 250 фунт-секунд на фунт. (Эта единица образована фунтом
силы, умноженным на секунду и отнесенным к фунту массы.) В системе СИ этот

удельный импульс составляет 9,8» 250= 2,45* 103 Н-с/кг, что в точности соот-

соответствует разбираемому в Учебнике значению скорости истечения газов в 2,45 км/с:

1 Н-с t
Н-с кг-м/с2 ,1 = 1 г~- = 1 м/с.

кг кг Н

Удельный импульс, выраженный в Н-с/кг, показывает, какой импульс (в
Н'С) получает ракета при сгорании 1 кг топлива и выбрасывании продуктов
сгорания. При проектировании ракет иногда удобно переписать 2,45* 1СР Н-с/кг
в виде 2,45-103 Н«кг/с. Это означает, что мы получили бы 2,45* 103 Н, если бы
топливо сгорало с постоянной скоростью 1 кг/с. Одна из инженерных проблем
при изготовлении ракет состоит в том, чтобы сжигать топливо и выбрасывать
продукты сгорания достаточно быстро.

Рассмотрим для примера 100-тонную ракету (массой около 10б кг). Сила
тяжести, действующая на нее, составляет 9,8» 10б Н. Если бы использовалось
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топливо с удельным импульсом 3-103 Н-с/кг (т. е. со скоростью истечения газов

из сопла 3 км/с), сгорающее со скоростью 1 кг/с, получилась бы сила всего в

3* 103 Н. Чтобы преодолеть земное притяжение, минимальная скорость сгорания
должна быть 3,3» 102 кг/с. Поскольку это просто уравновесило бы силу тяжести,
более приемлемой будет скорость в 400 кг/с. Заметим, что всего через 100 с масса

выброшенных газов уже составит 4* 104 кг, т. е. 40% от первоначальной массы.

Один из поистине самых удивительных результатов, полученных при этом

рассмотрении, заключается в том, что конечная скорость ракеты зависит только от

скорости истечения газов из сопла и от отношения полезного груза к первона-

первоначальной массе ракеты, но не зависит от скорости, с которой сгорает ракетное
топливо. Таким образом, нет никакой реальной необходимости в том, чтобы меж-

межпланетный корабль извергал из сопла ревущее пламя, если только ракета не

должна быстро ускориться. Зачем же тогда ракеты строят так, а не иначе? Ответ

даегся в предыдущем примере. Топливо надо сжигать с большой скоростью, чтобы

преодолеть гравитационное притяжение.
Другая особенность, которая должна быть предусмотрена при проектиро-

проектировании ракеты, состоит в необходимости избегать чрезмерных ускорений, которые
могут повредить некоторые сложные и капризные устройства в самой ракете (на-
(например механизм управления или топливную систему) или в транспортируемом
ею корабле. По мере того как сгорает топливо, масса ракеты уменьшается, а ее

ускорение возрастает. В многоступенчатых ракетах, после того как масса до-

достаточно уменьшится, включается новый двигатель, в котором сгорание топлива

происходит более медленно (а потому, возможно, и более эффективно). Конечно,
когда происходит это включение, может иметь место дальнейшее уменьшение
массы за счет выбрасывания отработавшего реактивного двигателя первой сту-
ступени (обычно более мощного, с интенсивным сгоранием топлива) вместе с резер-
резервуарами, содержавшими уже истраченное к этому моменту горючее.

На рис. 22.20 представлен график зависимости отношения оставшейся массы
т к первоначальной полной массе ракеты с топливом т0 от отношения приобре-
приобретенной к этому моменту скорости v к скорости истечения газов из сопла ve. Урав-
Уравнение, связывающее эти величины, имеет вид

или

2,30 Ig(m/mo)=—о/ов1
или

lg(me/m) = 0,434 u/ve.

Вывод этого уравнения (для сведения преподавателей) содержится в Приложении 6
на стр. 422. Эта формула предполагает, что вся масса, оставляющая ракету,

(т0—т) движется со скоростью ve относительно ракеты в направлении, проти-
противоположном направлению движения ракеты.

Нижний предел скорости истечения газов, например, для одной из первых
ракет Атлас массой 80 т, которая вывела на орбиту спутник массой 4 т A8 декабря
1958 г.), может быть получен, если положить v=8 км/с (скорость спутника на

равновесной орбите вблизи земной поверхности) и воспользоваться либо при-
приведенным выше равенством, либо рис. 22.20, а. Из полученного выше уравнения
получаем

lg B0) = 0,434 (8/^),

или

ve
= 0,434 (8)/1,3 = 2,67 км/с.

С помощью рис. 22.20, а мы находим значение v/ve, отвечающее т/то= 0,05.
Это значение равно приблизительно 3. Поэтому ve— 8/3= 2,67 км/с. Это значение
дает нижний предел для скорости газовой струи, выходящей из сопла, потому
что: 1) будет действовать некоторое сопротивление воздуха; 2) движение проис-
происходит под действием силы тяжести и 3) некоторую часть первоначальной массы

составляли резервуар для топлива и первая ступень реактивного двигателя.
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ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

Даже если вы не делали ударения на содержании разделов 22.5—22.7 в своей
классной работе, все же можно рекомендовать проделать относящиеся к ним

задачи. Методы,, развише в разделах 22.1—22.4, в сочетании со справочными
сведениями из последующих разделов будут достаточны для их решения.

Задача 15 служит иллюстрацией того, как в некоторых случаях и закон

сохранения кшигаествд движения, и уравнение F= та могут быть использованы
с равным усиешш.

В табл. 14 задачи расклассифицированы по их примерному уровню труд-
трудности и ржжредедьены по разделам, к которым они относятся. Указаны те из них,
которые ©собеыж) подходят для классного обсуждения. Особенно рекомендуемые
задачи ©тмечшы зжачком #.

ТАБЛИЦА 14

Разделы

22.1

22.2, 22.3

22.4

22.5

22.6

22.7

Со звез-

звездочкой

1, 2, 3

8, 1-2

13, 14

21

29

31

Легкие

4

15#, 18#
22, 23

Средние

Б#, 6#, П
9. Щ
16, Щ
Щ

28, 30
32

Трудные

"#
19,20
24

26, 27#

Классные

б#, Ч
Щ

16, 20

24

26, 27#
32

Краткие ответы
1*. 1,5 Н-с.
2*. 32 кг-м/с =32 Н-с.
3*. а) Четыре: бросание, отскок, захват и постоянный импульс тяготения,

б) Отскок. Здесь мяч испытывает примерно вдвое большее изменение скорости,
чем при броске или захвате. Импульс тяготения — наименьший из всех.

8*. F = Ъ00 H, в направлении, противоположном направлению количества
движения.

12*. Нуль. Результирующее изменение количества движения всегда совпа-
совпадает по направлению с полным импульсом.

13*. Каждый вектор скорости в построении а) умножается на массу того
тела, движение которого он изображает, и для представления этих новых векторов
выбирается новый масштаб.

14*. Масса более быстрого относится к массе более медленного как 2 : 5.
21*. Направление движения центра масс после столкновения будет тем же

самым, что и до столкновения: оно направлено вверх, и отклоняется примерно
на 1° против часовой стрелки от направления движения шара, идущего снизу.

29*. Большая часть количества движения передается земле (через дорогу),
а небольшое количество — молекулам воздуха, окружающим автомобиль.

31*. Нет; векторная сумма импульсов, создаваемых одними лишь силами
взаимодействия, не может равняться нулю, потому что полный импульс, вклю-
включающий количество движения света, должен равняться нулю.

Ответы с указаниями и решениями
4. а) Для прямолинейного движения импульс равен mix/—v) = 3 кг- f 18 м/с—

--10 м/с) =24 Н-с.
V

б) Поскольку импульс FAt=24 Н-с, имеем Aaf= 24 Н-с/12 Н=2с,
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Заметим, что векторное уравнение
FAt = m(v'— v) = mAv,

приводит к FAt = m (vr—v) только при условии, что начальная и конечная

скорости параллельны. В общем случае величина (V—v) не равна (vf—v).
б. К этой задаче возможны два подхода. Первый состоит в определении силы

и в умножении ее на время, чтобы получить импульс; второй состоит в непосред-

непосредственном определении изменения скорости и приравнивании т Аи импульсу.

Поскольку сила постоянна, ускорение тоже постоянно и может быть опре-

определено из Ах=а (Atf/2: a— 2Ax/(AtJ. Тогда импульс FAt= (ma)At= 2mAx/At=
= 2-2 кг-4 м/2 с=8Н-с.

При втором подходе мы замечаем, что средняя скорость тела за рассматрива-
рассматриваемый период равна Ах/At. Его конечная скорость должна быть вдвое больше сред-

средней, поскольку движение начинается из состояния покоя, а сила постоянна. По-

Поэтому изменение скорости равно 2Ах/At, и мы имеем импульс mAv=r2mAx/At=
— 8 Н'С, как и в первом случае.

6. a) FAt=mAv, At= т Аи//7= E• 104 кг-0,3 м/с)/250 Н = 60 с.

б) Вагон проедет d = vcv А/ = (@,3 + 0)/2)-60 = 9 м. Поэтому столкновения
не произойдет.

7. а) Если сила была постоянной, ускорение тоже должно быть постоянным
и может быть вычислено из кинематического соотношения a—v2/2d. Сила затем
вычисляется из закона Ньютона F = та:

mv* 0,01 кг-(850 м/сJ__, П4

F—W= 2^Хм"
-1'8-*0 н.

б) Если мы воспользуемся найденным значением силы, мы можем определить

время At из уравнения FAt=mAv:

At = mAv/F = 0,0l кг-850 м/с/A,8.104 Н) = 4,7-10-4 с.

Мы можем решить п. б) и непосредственно, пользуясь только исходными
данными, вспомнив, что для движения с постоянным ускорением средняя ско-

скорость есть полусумма начальной и конечной скоростей. Тогда

At = d/vcv=2d/v = 2-0,2 м/850 м/с = 4,7-10-4 с.

В действительности тормозящая пулю сила не остается постоянной, однако тем

не менее наша аппроксимация дает нам сревдюю силу^ равно как и верное пред-
представление о времени, необходимом для остановки пули.

9. Эта типовая задача служит весьма хорошей основой для повторения изо-

изолированных систем и закона сохранения количества движения.

Если мы предположим на время, что воздух отсутствует, то нет никакого

средства человеку достичь берега вместе со всем, что при нем имеется. Он может

двигаться в одном направлении, только если выбросит что-нибудь в противо_-

положном. К счастью, выбрасываемый предмет может быть очень маленьким,

поскольку, начав движение, человек уже будет двигаться дальше с постоянной

скоростью. Если мы предположим, что имеется трение о воздух, он может поль-

пользоваться своими руками как «пропеллером». При еще более отвлеченном предпо-

предположении, если считать, что трение о воздух отсутствует, но воздухом можно

дышать, он может пользоваться выдыхаемым воздухом как ракета газовой струей,
поворачивая голову при вдохе.

10. а) Для движения вдоль прямой линии импульс равен

m(v'—v)=\0 кг-(—2 м/с—10 м/с)=—120 кг.м/с=—120 Н-с.

Знак минус показывает, что этот импульс направлен противоположно начальной

скорости.
б) FAt равен импульсу, так что F=—120 Н«с/4 с=—30 Н. Таким образом,

сила в 30 Н действует в направлении, противоположном начальной скорости.
в) Начальное количество движения mv= 10 кг* 10 м/с= 100 кг»м/с. Конечное

количество движения mv'= 10 кг«(—2 м/с)=—20 кг «м/с. Изменение количества

движения, разумеется, равно импульсу.
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П. Окончательное количество движения тг равно 2 кг* 0,2 м/с =0,4 кг«м/с.
Полное количество движения обоих тел равно 10 кг» м/с, поскольку к ним при-
приложен именно такой полный импульс. Тогда окончательное количество движения

т2 равно 10—0,4 = 9,6 кг*м/с. Поэтому
а) тх получила импульс 0,4 кг* м/с;
б) т2 получила импульс 9,6 кг*м/с;
в) т2у2 = 9,6 кг*м/с, т.е. у2

= (9,6 кг*м)/с/0,5 кг = 19,2 м/с.
15. Сначала тележка B0 кг) и мальчик F0 кг) движутся вместе со скоростью

2 м/с. Следовательно, общее количество движения этой системы равно B0 кг+
+ 60 кг)*2 м/с = 160 кг-м/с.

а) В этом случае окончательное количество движения мальчика равно 60 кг*
•2 м/с = 120 кг* м/с, а на долю тележки остается 160—120= 40 кг* м/с. Поскольку
она обладает массой 20 кг, ее скорость должна быть равна 40 : 20= 2 м/с. Таким
образом, в скорости тележки не происходит никаких изменений. Этот результат
почти заранее очевиден, поскольку для того чтобы «приземлиться» с той же ско-

скоростью, с которой катится тележка, мальчик должен был бы прыгнуть с нее

сбоку, не сообщая ей никакого импульса.

б) Если, оставив тележку, мальчик не обладает скоростью, а следовательно,

и количеством движения, тележка должна обладать всем первоначальным коли-

количеством движения 160 кг* м/с. Следовательно, она движется со скоростью 160 : 20=
= 8 м/с. Поэтому искомое изменение скорости равно 6 м/с. Физически это про-
происходит оттого, что мальчик должен прыгать с тележки назад, чтобы достигнуть
земли без количества движения. Отталкиваясь для этого назад, он толкает те-

тележку вперед.
в) Если мальчик движется вдвое быстрее, чем вначале двигалась тележка,

он обладает скоростью 4м/с. Его количество движения равно 60*4= 240 кг*м/с.
Если конечное количество движения тележки обозначено через рк, то мы
имеем рк+ 240= 160, откуда рк = —80 кг* м/с. При этом тележка обладает ско-

скоростью —80:20 =—4, т. е. 4 м/с в направлении, противоположном тому, в ко-

котором она первоначально двигалась. Изменение скорости составляет —6 м/с.
16. Эта задача на закон сохранения количества движения, но она может

также быть использована как введение к изучению третьего закона Ньютона,

которому посвящен раздел 20.7 Учебника.

а) Тележка А проходит расстояние d^ = 0,45 м за время t, а тележка В про-

проходит за то же самое время расстояние <i,g=0,87 м. Отсюда их скорости равны

v^
— d^/i, vB = dB/t; следовательно, v^jvB = ^/^д = 0,45 м/0,87 м = 0,52.

б) Оба рассматриваемые количества движения равны по величине: т,?ОА
—

= mBvBf поэтому имеем т^/тв= vb/va — 1/0,52 = 1,9.
в) Поскольку количества движения равны и противоположны, импульсы

также равны и противоположны.

г) Среднее значение ускорения а— Ду/А?, это дает

===== 0 52
ав \vB/t AvB

* '

так как изменения скоростей происходят в противоположных направлениях.
17. Эта задача на закон сохранения количества движения с уклоном в область

ядерной физики.
а) Пусть тр обозначает массу протона, a vp

— его скорость перед столкно-

столкновением. Поскольку ядро гелия находится в покое, полное количество движения

этой системы до столкновения равно mpvp. После столкновения оно равно #iHet>He—

pp где Vp —окончательная скорость протона, а знак минус появился оттого,

что скорость v' противоположна по направлению всем прочим скоростям: tnpVp
=

v'p
__ mp{vp+y'p) A,67-1Q-27 кг)(Ы07 + 6-106) м/с

_

е""
vНе

~~

vHe
~~

4-10^ м/с

= 4.1,67.10-" кг = 7.10-« кг.

б) Нет. Силу вычислить нельзя.
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в) Сила, действующая при столкновении, не может быть определена, если не

известно время, в течение которого взаимодействовали эти частицы.

Замечание 1. Мы можем оценить эту силу следующим образом. Из экспери-
экспериментов другого типа известно, что ядерные силы действуют только на расстояниях

порядка 2* Ю-16 м. Если поделить 2* 10~15 м на 0,5* 107 м/с, мы получим для про-

продолжительности столкновения оценку 4* 10~22 с. Используя это значение, имеем

/7 = 010//=: A,67-Ю-27 кг).(МО7 м/с)/D.10-22 с) = 40 Н.

Приведенный подсчет верен лишь по порядку величины. Средняя скорость
может быть и меньше; расстояние, на котором происходит взаимодействие, может

быть меньше, поскольку протон и ядро гелия могут едва коснуться друг друга.

Даже если v в десять раз меньше, сила взаимодействия будет составлять 10 Н„
что представляет собой фантастически огромную величину, если учесть, что эта

сила действует между такими малыми частицами. Однако правильный ответ на эту

задачу состоит в том, что сила не может быть определена.
Замечание 2. Отрицательный ответ в п. б) имеет особое значение. Он показы-

показывает реальную силу закона сохранения количества движения. Здесь перед нами

случай, когда никто не знает действительных сил взаимодействия, но закон

сохранения количества движения применим и может дать нам полезную инфор-
информацию, например, о массах сталкивающихся ядер.

18. До столкновения полное количество движения этой системы, состоящей
из двух вагонов, равно количеству движения груженой платформы, поскольку
только она и движется. После столкновения полное количество движения системы

должно быть таким же, как раньше. Поскольку при столкновении вагоны сцепля-

сцепляются, после столкновения оба они дви-

движутся с одной и той же скоростью:

рт m v

-и'

Рис. 43.

3-104 кг-1 м/с .

а
.

=

3.10*кг+ 2.10*кг
= °'6 М/С'

Большинство учащихся видели,
как два товарных вагона с лязганьем

дергаются при сцепке. Может оказаться

г нелишним обратить внимание на тот

факт, что, хотя действующие между
ними силы весьма сложным образом
меняются со временем, конечный ре-

результат легко предсказать. Если по

этому вопросу возникнет дискуссия, вы можете сказать своим учащимся, что

при сцепке происходит рассеяние в окружающее пространство кинетической

энергии. Однако лучше попытаться обойти вопрос об энергии на этой стадии, так

как она будет предметом изучения в трех последующих главах.

19. а) Вода выбрасывается под прямыми углами к направлению движения
саней со скоростью v, равной скорости движения последних. Скорости эт»х двух

струй воды относительно земли будут v± и v2, как показано на рис. 43. Изменение

количества движения воды, выброшенной из каждой трубки, равно тогда У" 2mv
в одном из направлений, изображенных векторами рг и р2 на том же рисунке.

б) Уменьшение количества движения саней равно увеличению количества
движения воды в направлении движения саней. Это приращение количества дви-
движения воды, как показано на том же рисунке, равно p~mv. Изменение количе-
количества движения саней составляет —mv.

в) Когда вода выбрасывается симметрично в обе стороны, полное количество

движения выброшенной воды относительно саней равно кулю. Если бы вся вода

выбрасывалась с одной стороны, то происходило бы изменение ее количества

движения относительно саней, что создавало бы силу давления, действующую на

сани в сторону, противоположную направлению выбрасывания воды, причем
эта сила могла бы столкнуть сани с рельсов.
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Эту задачу можно продолжить, попросив учащихся ответить на вопрос п. б)
в случае, когда выходные сопла повернуты на 90°, так что они выбрасывают
воду прямо вперед по движению саней, со скоростью относительно саней,
равной скорости их движения в любой момент.

В этом случае вода будет изменять свою скорость относительно земли на

величину 2v. Поэтому изменение количества движения малой массы воды т

будет равно 2тъ, а изменение количества движения саней будет —2mv.
20. а) Из закона сохранения количества движения имеем MV=mv, т. е.

V=mv/M. Следовательно, время, которое будет затрачено на сближение с кос-
космическим кораблем, равно*) tc = d/V= Md/mv.

б) Космонавт тратит на продвижение массу кислорода т. При этом для ды-

дыхания у него остается масса т0—т. При скорости дыхания R этого хватит ему
на время t^~ (т0—m)IR.

в) Если положить tc= tA (случай, когда космонавт едва успеет вернуться), то

—=—^5—, RMd= mmov— m2v.
ftlV k\

т. е,

vm2—movm+RMd= 0,

что дает квадратное уравнение относительно т.

Количество кислорода, затрачиваемое на продвижение, может иметь любое

значение в интервале, ограниченном корнями этого уравнения, которые равны

__
mov ^ V(m0vJ—AvRMd

_
__

9

г) Подставляя в полученное для т выражение заданные числовые значения,

найдем
25 =F 1^625— 225 _

.е
_

ЛК
т = ¦—^г =0,45 или 0,05 кг.

С помощью числовойчпроверки'учащиеся легко убедятся в том, что при 0,05 кг <
< т< 0,45 кг космонавт сможет вернуться, в то время как при т< 0,05 кг или

т>0,45 кг он истратит кислород прежде, чем достигнет своего космического

корабля. Для приведенных выше значений выпускаемой массы время возвращения

составляет 200 и 1800 с соответственно **).
22. а) Скорость центра масс не изменяется: ац

= 0,5 м/с.
б) Полное количество движения равно (m1-{-m2) v^ —т^-}-m2v2. Поэтому

2 кг-0,5 м/с—1 кг-0,7 м/с
—U,о М/С.1

т2 1 кг

23. Ракета, движущаяся в «свободном пространстве», представляет собой изо-

изолированную систему. Эта система состоит из выбрасываемого вещества и всего

того, что остается в ракете. Поскольку на рассматриваемую систему не дей-

действуют никакие внешние силы, центр масс всей этой системы не может иметь

ускорения. Поэтому скорость центра масс остается постоянной.
24. Надо стремиться к тому, чтобы учащиеся проводили измерения с точ-

точностью до 0,1 мм и 0,1°, хотя искажения на фотографии, вероятно, превышают
эти значения. В зависимости от того, сколько упражнялись ваши учащиеся в

выполнении графических построений подобного рода, задавая эту задачу, полезно

*) Если учитывать изменение массы за счет выпущенного кислорода, более

точно можно записать (М—m)-V= tnV. При условии т<^.М это исправление
несущественно, хотя для ракеты имеет принципиальное значение. (Прим. перев.)

**) Если учащиеся знакомы с исследованием квадратных неравенств, входя-
входящих в программу средней школы по математике, полученные результаты можно

непосредственно получить, исследуя неравенство tj^tzy т. е. Mdlmv^(m0—m)/Rt
или um2—movm-\- RMd^O. (Прим. перев.)
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указать, что векторы скорости можно построить в относительных единицах,

даже если мы и не знаем ни истинного масштаба фотографии, ни интервала вре-

времени между вспышками. При таком построении скорость тела можно считать

пропорциональной расстоянию, проходимому между двумя последовательными
вспышками. Направления движения можно определить, проведя касательную
к окружностям, представляющим последовательные изображения каждого шара,

большой шар

Малый шар

\Бтшоишср
\

Рис. 44.

используя кальку, если нежелательно делать рисунок прямо на фотографии. Рас-
Расстояния можно определять с помощью линии центров, производя измерения

между наиболее ярко освещенными краями.

а) Соответствующие векторные диаграммы приведены на рис. 44. Векторное
уравнение имеет видяН-Дя—©'. Поэтому Av есть вектор, проведенный из конца v
в конец v'. (Мы взяли длину каждого вектора в три раза большей, чем соответ-

соответствующее расстояние между центрами на фотографии.)
б) Изменения скорости противоположны по направлению в пределах 0,5°.

Любой ответ от 0° до 1,5° является приемлемым.
в) Нет. Из векторной диаграммы отношение этих величин равно

Доб/Дум = 1,13/2,68 = 0,422.

г) Согласно закону сохранения количества движения, отношение изменений

скоростей должно быть обратно пропорционально отношению масс: m^Av^^m^Av^,
Av6/AvM = тм/тб.

д) Следовательно, mjm^ = Av^Av^ = 0,442, mM — 0,422- 201 = 84,8 г. (в
качестве ответа приемлемы значения от 80 до 90 г).
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Ясно, что эти шары представляют собой ту самую пару с массами 201 и 85 г,
которая уже встречалась нам в других рисунках.

Замечание. Вам, вероятно, интересно знать, сохраняется ли при этом столк-

столкновении энергия. Можно попросить учащихся сохранить их решения этой задачи

до того времени, когда вы перейдете к анализу сохранения энергии в последующих
главах. Начальная энергия пропорциональна величине

201-A,76J/2+84,8.A,59J/2 = 418,

а конечная энергия — величине

201-A,2J/2 + 84,8- B,35J/2 = 378.

Таким образом, около 9,5% энергии оказываются потерянными; соударение
было неупругим, хотя и весьма близким к упругому.

25. а) Начальная скорость тележки равна 0,4 м/с. Поскольку количество

движения должно сохраняться, когда ее масса удваивается, ее скорость должна

стать вдвое меньше. Поэтому изменение скорости гележки равно 0,2 м/с.
б) Центр масс 2-килограммового кирпича и 2-килограммовой тележки лежит

на линии, соединяющей их, посередине этого отрезка. Следовательно, скорость
центра масс тележки и кирпича составляет половину скорости движения тележки

до «столкновения». Поэтому центр масс дви-

движется со скоростью 0,2 м/с перед столкно-
столкновением и после столкновения (рис. 45) *).

26. а) Мы должны считать, что сначала

камень находился в состоянии покоя. При
этом он имел нулевое количество движения

Кирпич

Телеэюна

Рис. 45.

16нг-м/с
Рис. 46.

перед взрывом, а значит, и нулевое количество движения после взрыва. Количество

движения килограммового куска равно 12 кг-м/с; количество движения 2-килограм-
2-килограммового куска равно 16 кг-м/с и направлено под прямым углом к количеству дви-

движения первого. Третий кусок должен иметь такое количество движения р, чтобы

векторная сумма всех трех этих импульсов равнялась нулю (рис. 46).
б) Векторная диаграмма на рис. 46 показывает направление, в котором отле-

отлетает третий осколок, а по теореме Пифагора величина его количества движения

равна 20 кг-м/с (стороны этого векторного треугольника относятся как пифаго-
пифагоровы числа 3, 4, 5). Поскольку его скорость составляет 40 м/с, его масса должна

быть равна 0,5 кг.

27. а) Количество движения должно сохраняться при любом взаимодействии

между массами 1 кг и 4 кг. Килограммовая масса имеет после взрыва количество

движения 12 кг» м/с. 4-килограммовая масса должна иметь равное и противополож-

противоположное количество движения, и поэтому ее скорость должна равняться 3 м/с.

б) Поскольку на рассматриваемую систему не действуют никакие внешние

силы, центр масс всей этой системы остается все время неподвижным.

в) Поскольку никакие внешние силы не действуют и поскольку перед взры-

взрывом количество движения всей системы равно нулю, оно должно остаться равным

нулю и после взрыва. Когда рама и массы оказываются вместе (после прили-
прилипания масс к замазке), все они имеют ту же самую скорость

— нуль. (При разум-
разумных размерах массы достигают рамы задолго до того, как пройдет 100 с.)

*) При разборе этой задачи следует иметь в виду, что здесь рассматривается
не полное количество движения, а только его горизонтальная компонента. В вер-
вертикальном же направлении эта система не является изолированной ввиду наличия

силы тяжести и реакции стола. (Прим. перев.)
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г) При взрыве массы 1 кг и 4 кг разлетаются со скоростями 12 и 3 м/с соот-
соответственно. Масса 1 кг стукается и прилипает первой, вызывая движение рамы
в своем направлении. Количество движения рамы с приставшей к ней массой
1 кг составляет 12 кг-м/с и равно количеству движения первой массы перед столк-
столкновением. Затем о раму стукается масса 4 кг и передает ей 12 кг-м/с в противо-
противоположном направлении, таким образом останавливая раму с массами котооые
затем все вместе остаются в покое.

д) Расстояние, на которое сместилась рама, можно вычислить, если офор-
оформить рассуждения, приведенные в п. г), количественно. Однако наиболее просто

это сделать, если вспомнить, что центр масс не
движется.

Предположим, что рама перемещается на

расстояние х. Тогда ее надо учитывать как мас-

массу 5 кг на расстоянии х от прежнего и (нового)
положения центра масс. Если L обозначает дли-
длину рамы, то килограммовая масса будет нахо-

находиться на расстоянии (Ц2+х) от центра масс, а

4-килограммовая масса — на расстоянии (L/2—x)
от него. Следовательно, обозначая соответствую-
соответствующие расстояния dp, dlf d4 имеем из условия не-

неподвижности центра масс (рис. 47):цмрамЫ'
С П7,г

(L/2 + x) v

L/%/2+хтг+шр

= (L/2~x) m4,

Рис- 47-
откуда х =0,15 L.

Многие из учащихся, кто не может решить
эту часть задачи в общем виде с использованием L, смогут сделать ее если
придать этой величине L какое-нибудь частное значение.

28. Положительное направление выбрано в направлении движения плат-
формы.

а) Поскольку тележка и платформа первоначально покоятся и поскольку
ни на одно из этих тел не действуют внешние силы, изменение их полного коли-
количества движения равно нулю: Ap = 0 = mTAi;T+ mnAi>n, где vT обозначает ско-
скорость тележки, a vn

—-

скорость платформы; AvT=vT—0, так что

ит=(—80 кг-0,3 м/с)/20 кг =—1,2 м/с.
Тележка движется в направлении, противоположном направлению движения
платформы,

б) Если мы положим импульс искомой силы равным изменению количества
движения платформы, то получим FAt=mn\vn, т.е.

F= mnvn/At = (80 кг-0,3 м/с)/3 с = 8 Н.

в) Скорость тележки относительно движущейся платформы равна
»отн = »т—vn = {— \,2 м/с)—0,3 м/с =—1,5 м/с.

г) Если мы воспользуемся связью между количеством движения и импульсом
для вычисления силы, действующей на тележку, мы получим

/7 = тт(Ауц)отн/Д^ = 20 кг-(—1,5 м/с)/3 с= —10 Н.

Эта сила не равна по величине той, которая согласно нашему прежнему расчету
действует на платформу, так как в качестве системы отсчета мы использовали
здесь движущуюся платформу. Поскольку платформа обладает ускорением она
не представляет собой инерциальную систему отсчета, в которой можно было бы
применять закон движения Ньютона. Применение закона Ньютона в ускоренной
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системе отсчета приводит к появлению фиктивной силы инерции, равной в данном

случае 2 Н, которая зависит от системы отсчета, а не от какого-либо действия

рассматриваемых тел.
30. а) Количество движения одной из составляющих двойной звезды не должно

оставаться постоянным, потому что существует внешняя сила (гравитационное
притяжение) второй составляющей; действующая на него. (Изменениями коли-
количеств движения вследствие испускания света можно пренебречь.) Поэтому
количество движения каждой из составляющих изменяется, но сумма этих двух
векторов- остается постоянной, поскольку мы считаем, что эта двойная звезда
находится достаточно далеко от всех прочих звезд, так что ее можно рассмат-

рассматривать как изолированную от них. Это означает, что когда одно количество дви-

движения изменяется, другое должно измениться на такую же величину в противо-
противоположном направлении. Эти изменения происходят периодически, т. е. повто-

повторяются по мере того, как образующие двойную звезду массы совершаюг обороты
друг относительно друга.

б) Предположим, что Сириус и его двойник имеют равные массы и вращаются

друг вокруг друга так, что они вместе движутся в космическом пространстве.

Точка, находящаяся посередине между этими двумя звездами, должна двигаться

равномерно и прямолинейно, как показано на рис. 48. Каким это движение будет

Сириуе

Двоит п^7
Сириуса

Рис. 48.

казаться наблюдателю, зависит от размеров системы и частоты вращения, а также

от угла, под которым производится наблюдение. Если наблюдатель находится
в плоскости вращения, одна звезда будет периодически заслонять другую. Такие

пары называются затменно-двойными звездами. При других углах зрения види-
видимая звезда будет казаться виляющей на своем пути. Величина и частота этих

виляний будет зависеть от отношения масс звезд, образующих двойную, и от

формы их орбит.
32. а) Полный импульс, который первое тело передает второму, в точности

равен и противоположен полному импульсу, передаваемому первому телу со

стороны второго, поскольку соответствующие площади, заключенные между

этими графиками и осью времени для Ft.2 и F2-i, равны по величине и находятся

по разные стороны от оси t. Следовательно, результирующее изменение количе-

количества движения равно нулю, и полное количество движения будет тем же самым,

что и в начале.

б) Количество движения не сохраняется в течение взаимодействия; например,
в течение интервала времени, когда Ft-2 больше нуля, a F2-! равна нулю, коли-

количество движения второго тела возрастает, в то время как количество движения

первого тела остается тем же самым *).

*) Следует обратить внимание, что подобное «взаимодействие» не может

происходить между реальными телами. В противном случае закон сохранения
количества движения не выполнялся бы для промежутков времени, подобных

описанному в п. б). Тогда, уменьшая время взаимодействия (например увеличивая
относительную скорость при столкновениях), мы могли бы обнаружить это на

опыте. {Прим, перев.)



ГЛАВА

23 РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

В гл. 23 вводится понятие энергии — одно из самых полезных понятий в

физике. Идея энергии будет обобщена в двух последующих главах и широко ис-

используется во всей остальной части курса. Применение закона сохранения энер-

энергии является мощным средством для решения широкого круга проблем, особенно
в тех случаях, когда мы не имеем подробных сведений о силах взаимодействия

(например в случае столкновений).
В отношении общих замечаний об этих трех главах, посвященных энергии,

мы отсылаем читателя к изложению краткого содержания части III во Введении.

Краткое содержание главы 23

Работа вводится как мера передачи энергии, начиная с понятия о расходе
топлива. Работа, которая идет на ускорение тела, приводит к соответствующему
изменению величины /пи272, называемой кинетической энергией. Подробно ана-

анализируется упругое столкновение.

Разделы 23.1—23.3. На основе повседневных интуитивных представлений
об «энергии», «трудовой деятельности», «работе» и «топливе» вырабатывается

определение научного понятия работы. Работа равна произведению силы на

перемещение, происходящее в направлении этой силы.

Раздел 23.4. Работа, идущая на ускорение тела, приводит к изменению

величины mv2/2 — кинетической энергии тела. Одно и то же количество работы

всегда производит одно и то же изменение кинетической энергии. Тело, находя-

находящееся в движении, способно произвести работу, величина которой в точности

равна первоначальному значению тхР/2 этого тела.

Разделы 23.5—23.7. Подробно разбираются изменения кинетической

энергии при столкновениях двух тел, причем сделан упор на упругих столкно-

столкновениях (т. е. таких столкновениях, при которых сохраняется кинетическая энер-

энергия). Наконец указывается, что столкновение оказывается «упругим» тогда и

только тогда, когда сила взаимодействия между сталкивающимися телами яв-

является функцией только от расстояния, разделяющего эти тела.

Разделы 23.8—23.10. Общие следствия из законов сохранения количества

движения и кинетической энергии применяются к упругим столкновениям с целью

найти решения определенного класса проблем. Обсуждаются также некоторые

характеристики неупругих столкновений.

План изучения главы 23

Гл. 23 содержит большое количество нового и важного материала, который

потребует значительного времени в классе для полного усвоения. Придется по-

потратить время и на решение задач, включающих работу и кинетическую энергию
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для того, чтобы выработать умение количественно использовать эти понятия в раз-
различных физических ситуациях. Раздел ДКЛ содержит большое число задач,

которые подходят для возбуждения классной беседы. Несколько дополнительных

задач, полезных при опросе или при классном обсуждении, содержится в соот-

соответствующих разделах Руководства.

В табл. 15 предлагается возможное планирование материала, согласующееся
с общим планом части III, предложенным во Введении на стр. 219. Разделы, за-

заключенные в квадратные скобки, можно не проходить в классе, без потери связ-

связности изложения.

Глава 23

Ра здслы

23 Л—23.3

23.4

23.5, [23.6], [23.7]
23.8, [23 9], 23.10, 23.11

9-недельный план изучения
части III

В классе,
часы

2

1

1

2

В лабора-
лаборатории,
часы

0

0

0

1

Опыты

ШЛО

ТАБЛИЦ А 15

15-недельный план изучения

части III

В классе,
часы

3

1

3

2

В лабора-
лаборатории,
часы

0

0

0

1

Опыты

ШЛО

Дополнительные материалы к главе 23

Лаборатория. В лабораторной работе ШЛО (Моделирование процесса

столкновения ядер) монеты, съезжающие с наклонной плоскости на лист милли-

миллиметровой бумаги, моделируют ядерные частицы, входящие в камеру Вильсона

и останавливающиеся в ней. При этом могут быть получены кривые зависимости

пробега от энергии, которые можно использовать для изучения сохранения энер-

энергии-импульса при столкновении между двумя модельными частицами. Эту работу
можно выполнить параллельно с изучением разделов 23.7 и 23.8.

В высшей степени полезно провести с учащимися анализ увеличенных стро-
стробоскопических фотографий упругих столкновений (в двух различных системах

отсчета), при прохождении разделов 23.4—23.7 (кинетическая энергия и распре-

распределение энергии) и 24.2 и 24.6 (потенциальная энергия).
Домашние, классные и лабораторные задан и я. Ответы, реше-

решения и таблица, в которой произведена классификация задач по их примерному

уровню трудности, содержатся на стр. 341.

23.1. Превращение энергии

23.2. Работа — мера превращения энергии

23.3. Уточнение понятия работы

Цель. Ввести понятие работы как количественной меры превращения

энергии.

Содержание, г) Количество превращенной энергии может быть выражено

через произведенную работу или через израсходованное топливо, причем для
выполнения двух одинаковых работ требуется затратить вдвое больше труда или

топлива, чем на выполнение одной из них.
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б) Расход топлива, очевидно, изменяется в зависимости от величины прило-

приложенной силы и от расстояния, на котором действует эта сила. Работа определяется

как произведение силы на расстояние. Работа по определению получается в джоу-

джоулях, если сила выражена в ньютонах, а расстояние, на котором действует эта си-

сила,— в метрах.

в) Величина произведенной работы не зависит от времени действия силы.

г) Сила, которая «не двигает» тело, не производит работы. Работа произ-
производится только в том случае, когда сила действует параллельно направлению
перемещения.

Методические указания. Это очень важный материал, и для его про-

проработки потребуется около двух или даже трех уроков. Разумнее всего, пожалуй,
не пытаться определить энергию с помощью понятия работы. Пусть представление
об этой важнейшей физической величине вырабатывается на протяжении этой

и двух последующих глав. Однако уже пора дать точное определение работы,
поскольку работа является чисто механическим понятием.

Обычно учащиеся представляют себе расход топлива как количественную

меру чего-то, по крайней мере как плату за конкретную произведенную работу.
Это полезное представление следует подчеркнуть, поскольку, в конце концов,

закон сохранения энергии, который мы изучаем, есть не что иное, как «бухгал-

«бухгалтерия природы»
— подведение общего баланса полной оплаты (включая «скры-

«скрытые» члены) за выполнение широкого круга разнообразных работ. Цена — ин-

интуитивное количественное понятие, и обобщение представления о расходе топлива

на определение механической работы может быть произведено также количест-

количественно.

Логическое построение начального этапа изучения работы и энергии тща-

тщательно проведено в тексте Учебника, и разумнее всего возможно ближе придер-
придерживаться этого построения. В противном случае очень легко попасть в порочный
круг определений «работы» и «энергии», по-видимому, используя два термина

для описания одного и того же. Термин «работа» следует применять только к

внешним силам, изменяющим энергию системы. Это понятие становится очень

запутанным, если работа производится чем-либо находящимся внутри системы,

поскольку тогда очень трудно выделить фактор или силу, совершающую работу

(например, когда качается маятник, энергия непрерывно превращается из по-

потенциальной в кинетическую и обратно, однако нет никакого смысла утверждать,
что маятник совершает работу над самим собой или над гравитационным полем

Земли; маятник и Земля составляют систему, полная энергия которой не изме-

изменяется при колебаниях маятника).

Некоторым учащимся трудно примириться с тем, что если сила действует
на неподвижное тело, то она не производит работы. Стальная балка поддерживает
здание. Она действует с огромной силой, но никуда не движется. Она не требует

горючего. Она не производит работы. Далее, каждому из нас время от времени

приходится держать над головой тяжелую вещь, ожидая, пока кто-нибудь примет
ее от нас. Держать в таком положении значительный груз в течение более или

менее длительного времени нелегко. Мы устаем от этого. Естественно, хочется

сказать, что мы производим при этом работу. Однако вся работа, которую мы

совершили, пошла на преодоление внутреннего трения (при кровообращении)
и явилась следствием выделения тепла за счет окислительных процессов в ор-

организме.
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Результат состоит в нагревании нашего тела, но над внешней системой

мы не производим никакой полезной работы.
Мы часто сталкиваемся с тем, что наш словарь научно-технических терминов

содержит не совсем точные понятия из обыденной речи. Возьмем к примеру слово

«работа». Мы дали строгое определение этому понятию. Однако учащиеся должны

понять, что «работа» в физике не охватывает всего множества значений, которое
это слово им^ет в разговорном языке. Решение задачи представляет собой «труд-

«трудную работу», но выделяемая при этом энергия очень мала.

Работа является лишь одним из способов превращения энергии. Другие

будут рассмотрены в последующих главах.

Работа производится только той компонентой силы, которая действует в

направлении перемещения. Эта мысль развивается в Учебнике указанием на то,

что когда какое-нибудь тело скользит с постоянной скоростью по поверхности
стола без трения, горючее не расходуется. Сила, действующая со стороны стола

и не позволяющая телу падать, перпендикулярна к движению и не совершает

работы. (Рассмотрение работы как скалярного произведения двух векторов см.

в Приложении 7 на стр. 423.)
К этому вопросу можно подойти и с точки зрения конечного состояния си-

системы. Изменяется ли запас энергии благодаря действию силы? Рассмотрим ползун
с сухим льдом, удерживаемый нитью таким образом, что он движется по окружи

ности постоянного радиуса. Это есть снова случай действия постоянной силы

перпендикулярно направлению движения. Предположим, что нить пережи-

пережигается через 5 оборотов. Ползун отлетает по касательной с той скоростью, которую
он имел при вращении. Теперь повторим опыт, но на этот раз пережжем нить

после того, как ползун совершит 10 оборотов. В этом случае центростремительная
сила действовала вдвое дольше. Она непрерывно сообщала ускорение ползуну.
И все-таки ползун отлетает точно так же, как в первый раз. Сила действо-
действовала перпендикулярно направлению движения. Не было произведено никакой

работы.
В Учебнике указывается, что произведенная работа зависит только от силы

и от расстояния, пройденного в направлении силы, но не зависит от времени, в

течение которого эта сила действовала. Некоторые из учащихся могут не согла-

согласиться с подобным утверждением, ссылаясь на некоторые случаи, когда кажется,

что время влияет на работу (например требуется больше бензина, чтобы проехать

данное расстояние со скоростью 60 км/ч, чем со скоростью 30 км/ч). В этих двух

случаях разница в расходе горючего не связана с различием кинетической энергии

автомобиля. Начальная и конечная кинетические энергии его равны нулю в обоих

случаях. Силы трения, возникающие при движении одного твердого тела по

другому (например шин по дороге), практически не зависят от скорости тела,

так что трение шин не влияет на различие в расходе горючего. Объясняется это

различие действием жидкостного трения, сопротивлением воздуха движению

автомобиля и трением между различными частями машины и смазочными мас-

маслами. Когда тело движется сквозь жидкость, сила трения возрастает при уве-

увеличении скорости тела примерно пропорционально скорости. (Это тот самый эф-
эффект вязкого торможения, который приводит в конце концов к установлению

равномерной скорости движения несмотря на работу двигателей.) Поэтому быстро

идущий автомобиль потребляет больше топлива, чем медленно идущий, на

преодоление одного и того же расстояния, так как для движения с постоянной
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скоростью при наличии сил жидкостного трения к быстрому автомобилю должна

быть приложена большая сила, чем к медленному. Таким образом, быстрый
автомобиль производит большую работу, а следовательно, и бензина сжигает

больше *).

Упражнения
A. Вычислить работу, произведенную мальчиком, который протащил санки

на расстояние 20 м, если он действует силой в 100 Н на веревку, составляющую

угол 45° с горизонтом. A000 УТДж.)
Б. Человек тянет массу 20 кг вверх по абсолютно гладкой наклонной пло-

плоскости, составляющей угол 30° с горизонтом. Он поднимает эту массу на высоту
5 м над землей.

а) Какую работу он производит? (980 Дж.)

б) Какую силу нужно для этого прикладывать к массе? (98 Н.)

в) Какое расстояние прошла масса вдоль наклонной плоскости? A0 м.)

г) Какую работу пришлось бы произвести, чтобы сделать то же самое, если

бы поверхность была не абсолютно гладкой, а действовала бы с постоянной тор-
тормозящей силой, равной 50 Н и направленной вдоль наклонной плоскости?

A480 Дж.)
B. Какую работу совершает человек, снимающий мяч и спортивную сумку

весом 7,5 кг с полки, находящейся на высоте 2 м, и опускающий его на пол? (Мяч
«производит» над человеком 150 Дж работы.)

Г. Какую работу надо совершить, чтобы пронести чемодан весом 15 кг по

горизонтальному пути на расстояние в 50 м? (Нуль.)
Д. Юноша массой в 60 кг танцует с девушкой массой 50 кг. Он ведет свою

даму, действуя на нее в среднем с силой 80 Н. Во время танца они движутся со

скоростью 0,5 м/с в течение 5 мин. Какую работу производит бедный юноша?
A2 000 Дж.)

23.4. Кинетическая энергия
Цель. Ввести понятие кинетической энергии.

Содержание. Работа есть форма превращения энергии. Когда работа

над телом производится таким образом, что это приводит тело в движение и не

сопровождается никакими иными изменениями, тогда вся переданная телу энер-
энергия превращается в энергию движения, или кинетическую энергию. При этом

произведенная работа тождественно равна изменению величины выражения ти2/2.
Это выражение определяется как энергия, свойственная движению (кинетическая
энергия).

Одна и та же работа всегда приводит к одному и тому же изменению

кинетической энергии, независимо от того, совершается ли она малой силой,

действующей на большом расстоянии, или большой силой, действующей
на малом расстоянии. Тело, находящееся в состоянии движения, способно

совершать работу. Величина работы, которую можно получить при полной

остановке тела, равна той, которая была затрачена на приведение этого тела

в движение. Кинетическая энергия тела /шЯ/2 является важнейшим парамет-

параметром, описывающим динамические свойства этого тела. Она никоим образом

*) Следует отметить еще одну причину указанного различия в расходе го-

горючего (правда, менее важную, чем силы вязкого торможения). Чтобы приобрести
большую скорость, автомобиль в начале движения должен иметь большее уско-

ускорение и, таким образом, больше израсходовать бензина. В конце пути эта «лишняя»

кинетическая энергия переходит в тепло при действии тормоза, так что средние

силы, действующие на более быстрый автомобиль, оказываются большими, чем

действующие на медленный. (Прим. перев.)
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не зависит от того, каким путем рассматриваемое тело пришло з свое нынешнее

состояние.

М е т о д и ч е с к и е указания. Излагаемые в этом разделе положения яв-

являются основными для понимания кинетической энергии. Придется отвести по

крайней г,:ере одно полное классное занятие на обсуждение этого раздела.
В этом разделе вводится первое количественное определение любой из форм

энергии. Чтобы как следует дать почувствовать учащимся, что такое кинетиче-

кинетическая энергия и как она связана с работой, лучше всего разобрать в классе не-

несколько примеров. Образец подобного рассмотрения предлагается в Учебнике.

Для начала можно подробно проработать пример с массой в 1 кг, ускоряемой
силой в 5 Н, действующей на протяжении 10 м, и силой в 10 Н, действующей на

протяжении 5 м. Покажите, что в обоих случаях совершается одна и та же ра-

работа и в результате получается одна и та же кинетическая энергия.

Учащиеся иногда с трудом осознают тот факт, что кинетическая энергия
является совершенно другой физической величиной, нежели количество дви-

движения. Это различие должно быть уяснено. Нижеследующие примеры могут
оказать помощь в этом отношении. В первом примере кинетическая энергия вы-

выступает как свойство движения. Этот пример показывает, как одна и та же ра-

работа, произведенная в двух различных случаях, приводит к одинаковым изме-

изменениям кинетической энергии, но к совершенно различным изменениям количеств

движения. Второй пример подчеркивает разницу в свойствах двух тел, движу-

движущихся с одинаковыми количествами движения, но с сильно отличающимися

энергиями.

Пример 1. а) Пусть сила 1500 Н действует на расстоянии 200 м на автомобиль

массой 1500 кг, первоначально находившийся в состоянии покоя. Произведенная
работа равна

W1 = F1x1 = 1500.200 = 3- 10е Дж.

Чтобы найти конечную скорость автомобиля после того, как он прошел эти
200 м, мы заметим, что ускорение равнялось

a1 = F1/m = 1500/1500=1 м/с2,
так что

vl=2a1x1 = 400 м2/с2, т.е. ух = 20 м/с.

Количество движения автомобиля будет равно

p1 = m1i>1 = 1500-20 = 3-104 кг-м/с.

Кинетическая энергия будет равна

(?K)i = mv\l2= 1500-400/2 = 3-105 Дж,

что совпадает с величиной произведенной работы Wt (см. выше).
б) Теперь пусть снова действует сила в 1500 Н в прежнем направлении на

протяжении еще 200 метров, тогда

W2 = F2x2 = 1500.200 = 3- 10б Дж.

Чтобы определить конечную скорость, найдем ускорение, которое снова равно

a2 = F2/m = 1500/1500=1 м/с2.

Конечная скорость v2 дается выражением

V2==V2^.2a2x2 = 400 + 2-1-200 = 800 м2/с2, т.е. У2 = 28,3 м/с.

Новое количество движения автомобиля будет равно

р2 = ти2= 1500-28,3 = 4,24.104 кг-м/с.
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Таким образом, изменение количества движения в течение второго интервала ус-

ускорения составляло

(А) = р2— р1 = 1,24-104 кг-м/с,

в то время как при первоначальном ускорении оно равнялось

(Ap)i = Pi — 0 = ^= 3-104 кг-м/с.

Окончательная кинетическая энергия будет равна

(?к)а = mvt/2 =1500-800/2 = 6-105 Дж.

Таким образом, изменение Ек было одинаковым в течение обоих интервалов
ускорения, в то время как изменение количества движения было совершенно

различным. В каждом случае

A(EK) = W = 3.\05 Дж.

Почему так должно быть? В первый период автомобиль двигался с постоянным

ускорением из состояния покоя до скорости в 20 м/с. Необходимое для этого время
определяется из

20

следовательно, tt=20 с. Время, в течение которого происходило второе уско-
ускорение, должно быть равно

яа = 28,3 = ^+ ?12*2 = 20+ (Ыа).
откуда /2=8,3 с.

Таким образом, хотя одинаковые силы действовали на протяжении равных
расстояний, время, в течение которого действовали эти силы, было совершенно
различным в каждом из этих двух случаев. Причина этого заключается в том,
что при втором ускорении тело уже обладало значительной начальной скоростью,
что позволило ему преодолеть данное расстояние за гораздо более короткий срок.
Как было показано в гл. 22, изменение количества движения происходит благо-

благодаря импульсу. В течение двух рассмотренных интервалов произведенная работа
была одинаковой, но были приложены совершенно различные импульсы, равные

произведению силы на время.

Пример 2. Для того чтобы подчеркнуть разницу между двумя мерами дви-
движения — импульсом и энергией, часто бывает полезно привести пример, как

100-граммовая пуля и 1500-килограммовый грузовик ударяют в большой кусок
дерева. Пуля может иметь начальную скорость в 300 м/с, грузовик — 0,02 м/с.
Таким образом, оба тела имеют одинаковое начальное количество движения в

30 кг- м/с, но кинетическая энергия пули равнялась бы при этом (Ек)п = 4,5* 103 Дж,
в то время как для грузовика (Ек)г — 0,3 Дж. Эта разница в кинетических энер-
энергиях проявляется в том, что грузовик сообщает куску дерева легкий толчок,
а пуля, обладающая тем же количеством движения, но гораздо большей энергией,

раскалывает дерево.
Интересно напомнить в этой связи один спор, возникший в восемнадцатом

веке. Французский философ и математик Декарт предложил считать величину
mv важнейшей характеристикой движущегося тела, сохраняющейся для изоли-

изолированных тел. Немецкий философ и математик Лейбниц ожесточенно возражал

ему, утверждая, что Декарт неправ и что важнейшей величиной является mv2,
а не mv. Как мы теперь видим, оба они были правы, но говорили о совершенно

различных свойствах тела.

Другим интересным и иногда вызывающим затруднения пунктом в вопросе
об изменениях кинетической энергии является ее изменение в различных системах

отсчета, движущихся друг относительно друга. Кинетическая энергия тела есть

понятие относительное. По отношению к наблюдателю, едущему в поезде, бейс-

бейсбольный мяч имеет совсем другую скорость (а следовательно, также и количество

движения и кинетическую энергию), чем по отношению к неподвижному. По-

Поскольку количество движения изменяется как первая степень скорости, изме-
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нения количества движения для любого наблюдателя будут одинаковыми. Однако
кинетическая энергия зависит от квадрата скорости, и потому изменения кинети-

кинетической энергии будут различными по отношению к различным системам отсчета.

Следующий пример иллюстрирует это положение.

Пример 3. Представим себе человека, который едет на открытой платформе
товарного поезда, который движется со скоростью 10 м/с. Пусть человек бро-
бросает бейсбольный мяч в направлении движения поезда, прилагая к нему силу

50 Н на протяжении однометрового рззмаха своей руки. Мяч приобретает ско-

скорость 10 м/с относительно платформы. Кинетическая энергия мяча относительно

платформы составляет 1 кг.A0 м/сJ/2 = 50 Дж. Однако что происходит при этом

с точки зрения наблюдателя, находящегося на земле? Первоначально мяч дви-

двигался со скоростью 10 м/с в результате движения платформы. Его первоначальная
кинетическая энергия равнялась поэтому 50 Дж. После того как человек бросил
его, мяч имеет скорость 20 м/с. Его новая кинетическая энергия стала равна

поэтому 1 кг-B0 м/сJ/2=200 Дж, а изменение кинетической энергии в процессе
бросания составило 200—50= 150 Дж. За счет работы какого тела было получено

это изменение энергии? Сила, действовавшая на мяч, по-прежнему равнялась

50 Н. Однако расстояние, на котором действовала эта сила, будет совсем другим

с точки зрения наблюдателя, находящегося на земле. Его можно вычислить

следующим образом.
На поезде рука человека проходит путь 1 м. Если сила, которую он прилагал

к мячу, была постоянной, то и ускорение было постоянно. Конечная скорость
его руки была равна 10 м/с. Таким образом, средняя скорость равна 5 м/с, а время
ускоренного движения равно t = s/v— 1/5 с. За эти 1/5 с поезд сам проходит
1/5-10 = 2 м относительно неподвижного наблюдателя. Следовательно, толкая

мяч, рука человека проходит 1 м в результате ее собственного движения и 2 м

в результате движения поезда, т. е. всего 3 м относительно земли. Поэтому ра-
работа, совершенная с точки зрения неподвижного наблюдателя, равна 50 Н«3 м =

= 150 Дж, что в точности совпадает с изменением кинетической энергии, имевшим

место согласно его наблюдениям. Это количество работы не является фиктивной
величиной. Человек производит работу только в 50 Дж, толкая мяч с силой 50 Н

на расстоянии в 1 м. Однако ноги человека толкают поезд назад, а поезд толкает

его ноги вперед с той же самой силой в 50 Н. Действуя на ноги человека этой

силой, поезд проходит 2 м. Таким образом, сам поезд совершает 100 Дж работы
над мячом. Эта работа совершается за счет энергии, высвобождаемой при сгорании
угля в топке паровоза.

Упр ажнения
A. Масса 10 кг движется с постоянной скоростью 10 м/с.

а) Какую работу надо произвести, чтобы удвоить ее скорость, т. е. сделать
ее равной 20 м/с? (Надо передать движущейся массе 1500 Дж.)

б) Какую работу надо совершить, чтобы уменьшить вдвое эту скорость, т. е.
сделать ее равной 5 м/с? (Нужно отнять от массы 375 Дж.)

Б. Постоянная сила 20 Н действует в течение 10 с на тело массой 5 кг, нахо-
находившееся первоначально в состоянии покоя.

а) Чему равно конечное количество движения тела? B00 кг* м/с.)
б) Чему равна конечная кинетическая энергия тела? D000 Дж.)
в) Какая работа была совершена для сообщения телу скорости? D000 Дж.)
B. Сила, которая увеличивается от 0 до 100 Н со скоростью 10 Н/с, действует

на тело в течение 10 с. Эта сила производит 12 500 Дж работы для того, чтобы
ускорить тело из состояния покоя до скорости 50 м/с.

а) Чему равна масса тела? A0 кг.)
б) Какую постоянную силу надо было приложить к телу, чтобы сообщить

ему такую же конечную скорость, действуя на 1 м пути? A2 500 Н.)
Г. Масса 2 кг, движущаяся со скоростью 20 м/с, обладает таким же коли-

количеством движения, как масса 10 кг.

а) Чему равна скорость массы 10 кг? D м/с.)
б) Чему равна кинетическая энергия каждой из масс? D00 Дж, 80 Дж.)
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Д. Тело массой 10 кг обладает кинетической энергией 500 Дж. Чему равно
его количество движения? A00 кг-м/с.)

Е. Тело массой 10 кг, неподвижно лежащее на абсолютно гладком столе,

получает импульс 30 Н-с. Чему равна конечная кинетическая энергия? D5 Дж.)
Ж- а) С какой кинетической энергией ударяется о землю камень весом в 2 кг,

если он падает с высоты: 5 м; 10 м; 20 м? A00 Дж; 200 Дж; 400 Дж.)
б) Сравните количества движения камня непосредственно перед его ударом

о землю в каждом из случаев п. a), {p—mv; Y~2nw\ 2mv.)

23.5. Передача кинетической энергии от одной массы к другой

23.6. Еще одка трактовка простейшего случая столкновения тел

23.7. Сохранение кинетической энергии при взаимодействии упругих тел

Цель. Показать, что кинетическая энергия сохраняется, когда сила взаи-

взаимодействия зависит только от расстояния между взаимодействующими массами.

Содержание. При столкновении двух тел полная кинетическая энергия
системы до и после столкновения остается той же самой. Однако во время взаи-

взаимодействия кинетическая энергия может изменяться. Когда сила взаимодействия
имеет характер отталкивания, величина «исчезающей» кинетической энергии

дается выражением FAs, где F — постоянная сила отталкивания при взаимодей-

взаимодействии, a As — изменение расстояния между двумя телами. При данной силе

отталкивания, если расстояние между телами уменьшается, то полная кинети-

кинетическая энергия также уменьшается. Полная кинетическая энергия возрастает

при увеличении этого расстояния. Признак «упругого» столкновения состоит

в том , что сила взаимодействия между двумя телами зависит только от расстояния

между ними. В этом случае после того как взаимодействие завершится, полная

кинетическая энергия системы оказывается той же самой, что и до начала взаи-

взаимодействия.

Методические указания. Содержание этих разделов весьма важно,

но довольно трудно для усвоения. Рассчитывайте затратить по крайней мере
один полный день на классную беседу, даже если вы полностью опустите общее

решение, приведенное в разделе 23.7. Для подробного изучения всего этого круга

вопросов придется отвести минимум три дня на классное обсуждение.
После того как учащиеся проработали содержание разделов 23.6 и 23.7,

можно снова рассмотреть в классе пример, который проиллюстрирован на рис.

23.8 и 23.9.

Некоторым учащимся может показаться, что условия, необходимые для того,
чтобы столкновение было упругим, реализуются более часто, чем это имеет место

в действительности. Чтобы внести ясность в этот вопрос, можно привести пример

неупругого столкновения. Для этой цели подойдет столкновение двух автомо-

автомобилей. Когда толчок приходится на буфера, сжимаются соответствующие пру-

пружины. Если дело этим и ограничивается, то никаких трудностей не возникает.

Когда пружины расправляются, силы повторяют в обратном порядке процессы,
происходившие при сжатии. Однако если при столкновении что-либо деформи-
деформируется таким образом, что не происходит возвращения к первоначальному виду,

то силы, действующие, когда автомобили разлетаются, отличаются от сил, дей-

действовавших при сближении автомобилей. Этот случай неупругого столкновения

и является наиболее типичным при катастрофах.
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Следующее рассуждение позволяет кратко резюмировать и облегчить по-

понимание проблемы, обсуждаемой в тексте Учебника и проиллюстрированной на

рис. 23.8 и 23.10. Рассмотрим рис. 23.10. Начнем с анализа подписи под этим

рисунком: Ахх — расстояние, которое проходит масса тх за промежуток времени

между t0 и ?j_; Ах2 — расстояние, проходимое массой /п2 за промежуток времени
от t0 до /j; s — расстояние между т1 и т2 в момент /0; As — изменение s в течение

интервала времени между /0 и tv Из рисунка легко видеть, что

т.е. As = Aa:2 — Ахх.

Как указано в тексте Учебника, когда т1 проходит расстояние Ахг, она

движется против тормозящей силы F. Поэтому она теряет кинетическую энергию.

Ее изменение равно произведенной работе:

Для т2 сила F является ускоряющей, и изменение ее кинетической энергии
дается формулой

АЕК2 — -JrFAx2.
Полное изменение кинетической энергии обеих масс просто равно сумме

индивидуальных изменений:

А?к = FАх2—FAX! = F (Ах2— Ах±) = FAs.

Изменение кинетической энергии при взаимодействии двух тел в течениз»

произвольного достаточно короткого интервала [дается выражением F(t) As,
где F(I) — сила взаимодействия и As — изменение расстояния между ними.

F записана здесь в виде F(t), чтобы показать, что, вообще говоря, она будет раз-
различной в разные моменты времени в течение взаимодействия. В том случае, когда

рассматривается сила отталкивания, кинетическая энергия убывает при умень-
уменьшении s и увеличивается при возрастании s. Если сила взаимодействия опреде-
определяется исключительно расстоянием между телами, то мы можем вместо F(t)
записать F(s). Тогда, если два отталкивающих друг друга тела расходятся так,
что расстояние между ними, равное сначала s, становится равным s+ As, изме-

изменение полной кинетической энергии будет в точности равно по величине и про-

противоположно по знаку тому изменению их полной кинетической энергии, которое

имело бы место в случае их сближения, когда расстояние между ними изменяется

от s+ As до s. Это происходит оттого, что силы в обоих этих случаях равны, так

как F является однозначной функцией s. Всякий раз, когда это имеет место, ки-

кинетическая энергия будет сохраняться в процессе полного столкновения (но не

в каждый момент во время столкновения). Столкновения между телами, силы

взаимодействия между которыми принадлежат к этому типу, называются упру-

упругими столкновениями.

Вас могут попросить объяснить, почему большинство столкновений являются

неупругими. Пример с автомобилями представляет собой простейший случай.

Более тонкий пример представляет поведение резинового мяча. Известно, что

если уронить резиновый мячик, то он не подскочит до прежней высоты. Таким

образом, удар его о пол или о землю не является абсолютно упругим. Однако

мяч в точности восстанавливает свою первоначальную форму. Это уже не первый
случай, когда мы должны критически пересмотреть наши определения, наш сло-

словарь научных терминов. В разговоре слово «упругий» используется по отношению

к мячу для обозначения его свойства восстанавливать после удара свою первона-
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чальную форму. Это необходимое условие любого упругого столкновения. Однако
это условие не является достаточным. Резина представляет собой материал, в

котором любые деформации сопровождаются возникновением значительных сил

внутреннего трения.
Аналогичное поведение пружинного упора (типа вагонного буфера или пру-

пружинного амортизатора) может помочь нам разобраться, что же происходит в

случае подпрыгивания мяча. Несколько легче «выделить» силы, действующие на

отдельные части пружинного упора, нежели сделать это для мяча, имеющего

однородное строение. Пружинный упор (рис. 49, а) можно представить себе как

полый стержень, соединенный с платформой посредством идеальной (без потерь)
пружины, но так, что движение этого стержня относительно платформы сопро-

сопровождается значительным трением. Прикрепив к ногам пружинные упоры, чело-

человек ^ожет до некоторой степени уподобиться мячу, высоко подпрыгивая вверх

после каждого толчка о землю. Эта игрушка доставляет удовольствие детям.

Рассмотрим силы, действующие на ту часть стержня, которая прикреплена
к платформе. Когда пружинный упор толкается о землю, начинается сжатие

пружины. На рис. 49, б изображены дей-

действующие на стержень силы для некото-

некоторого определенного момента сжатия пру-
пружины при движении упора вниз.

В конце концов пружина достигает

максимального сжатия, после чего плат-

платформа начинает движение вверх. В точ-

точке, соответствующей тому же сжатию

пружины, которое мы рассматривали при

движении вниз, сила действия пружины

будет такой же, как и выше на рис. 49, б.

Однако сила трения направлена теперь

Пружина^

Стержень

Платформа

\Источник
трения

реэ
платформу^

'пр

Wrp

'рез Н&

платформу

Рис. 49. Рис. 50.

в противоположную сторону, и поэтому результирующая сила при уменьшении

As меньше, чем результирующая сила при увеличении As. Это соотношение между
силами показано на рис. 50.

Точно так же результирующая сила, действующая на мяч при любой его

деформации s, когда он приближается к полу, больше, чем та, которая действует

на него при том же удалении от пола s, когда он поднимается вверх при отскаки-

отскакивании. Эта сила зависит не только от расстояния между мячом и полом, но также

и от направления, в котором движется мяч относительно пола. Кинетическая

энергия исчезает, переходя в энергию теплового движения частиц, составляющих

мяч. Можно спросить у учащихся, не пробовал ли кто-нибудь из них рукой тен-

теннисный или волейбольный мяч сразу после того, как им усиленно играли. Его

температура заметно выше, чем у окружающих тел.

334



У пр ажнения
А. Шар массой 200 г, движущийся со скоростью 6 м/с, налетает на другой

неподвижный шар и испытывает лобовое соударение с ним. Масса второго шара
100 г. Когда шары находятся друг от друга на расстоянии, не превышающем
5 см, они отталкиваются с постоянной силой в 40 Н. Второй шар после столкно-
столкновения имеет скорость 8 м/с.

а) Какую кинетическую энергию приобретает второй шар в результате столк-
столкновения? C,2 кг-м2/с2, или 3,2 Дж.)

б) Чему равна кинетическая энергия первого шара после столкновения?

@,4 кг-м2/с2, или 0,4 Дж.)
в) Какое расстояние проходит каждый шар за время столкновения, т. е. за

то время, в течение которого они находятся друг от друга на расстоянии, не

превышающем 5 см? (8 см.)
Б. Брусок массы 5 кг скользит по абсолютно гладкой поверхности со ско-

скоростью 1 м/с по направлению к другому бруску, находящемуся в покое. Второй
брусок имеет массу 1 кг. Когда расстояние между этими брусками не превышает

10 см, они отталкиваются с силой 50 Н.

а) Чему равна величина и направление ускорения каждого бруска в то время,
когда они взаимодействуют, т. е. находятся ближе, чем в 10 см друг к другу?
(аг= 10 м/с2, назад; а2=50 м/с2, вперед.)

б) Столкновение начинается тогда, когда бруски сближаются до расстоя-
расстояния в 10 см. Какой путь пройдет каждый из них от положения, занимаемого в

момент начала взаимодействия, за 1/60 с? За 1/30 с? A/60 с : ^х1=11/12»1/6о=
=0,015 м, Д*2 =Vi2- Vee = 0,007 м; 1/30 с: ^x1=ьu^1Uъ = 0,028м, Д*а=в/в.1/80 =

=0,028 м.)
в) Вычислите изменение общей кинетической энергии через 1/60 с и 1/30 с

после начала столкновения. A/60 с: АЕК = 50E/i2* Veo—u/i2* Veo)=—50* V2* Veo=
=—6/i2H-m=0,42 Дж; 1/30 с : Д?к = 0.)

В. Масса 10 кг, движущаяся со скоростью 5 м/с, упруго сталкивается с 5-ки-

5-килограммовой массой, первоначально находившейся в покое. Чему равна конечная

кинетическая энергия системы? A25 Дж.)

Обсуждение процесса превращения кинетической энергии при соударении,
проведенное в разделе 23.5 Учебника, довольно отвлеченно, так что может ока-

оказаться, что учащимся трудно представить себе мысленно все происходящее. Сле-

Следующая демонстрация позволяет им наблюдать на примере замедленного дви-

движения, что происходит при взаимодействии двух тел. Вероятно, лучше всего

использовать ее при обсуждении материала разделов 23.5—23.7.

Для иллюстрации процесса столкновения, показанного на рис. 23.8 Учеб-

Учебника, используются две груженые тележки, снабженные буферами с «мягкими»

пружинами, как показано на рис. 51, а. Однако имеется небольшое различие

между столкновением, рассматриваемым в Учебнике, и этим: там сила взаимодей-
взаимодействия равнялась нулю, когда расстояние между телами превышало d, и оставалась

постоянной, когда расстояние между ними было меньше d. В случае с пружин-

пружинными буферами взаимодействие начинается в тот момент, когда буфера коснутся
друг друга, а расстояние между тележками равно d (рис. 51, б). По мере сбли-

сближения тележек во время взаимодействия сила, действующая между ними, воз-

возрастает, в противоположность силе, описанной в Учебнике, которая остается

постоянной.

Тем не менее, конечный результат взаимодействия в обоих случаях будет

одним и тем же, несмотря на то, что дать строгое математическое описание

этого взаимодействия было бы трудно. Если положить три кирпича на налетающую

тележку и один
— на покоящуюся, мы получим примерно то же соотношение

масс, что и в Учебнике.
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Другое различие между абстрактным столкновением, описанньы в Учеб-

Учебнике, и реальным столкновением, предлагаемым здесь, состоит в том, что столк-

столкновение двух тележек является неупругим. Некоторая энергия теряется здесь

на трение. Влияние трения можно уменьшить, если использовать более высокие

начальные скорости. Следует продемонстрировать столкновения с различными

начальными скоростями.

p.

1 Расстояние
уЗзоимодействш 6)

Рис. 51.

При наблюдении движения сталкивающихся тележек обратите внимание

учащихся на следующие его характерные черты (лучше всего с помощью наво-

наводящих вопросов).
1. Во время столкновения налетающая тележка теряет свою кинетическую

энергию, а ударяемая
— приобретает ее. Когда тележки находятся на минималь-

минимальном расстоянии друг от друга, обе они движутся очень медленно, фактически
с одной и той же скоростью. Это выглядит таким образом, будто полная кинети-

кинетическая энергия системы при минимальном расстоянии между тележками меньше,

чем в любой другой момент, однако в этом нельзя убедиться при простых качест-

бснных наблюдениях. В то же время легко проверить, что большая часть энергии
накапливается в пружинах при минимальном расстоянии между тележками (так
кгк при этом сжатие пружин максимально), как это утверждается в Учебнике.

2. При увеличении общей массы тележек увеличивается время взаимодей-

взаимодействия, а расстояние наибольшего сближения уменьшается для данной начальной

скорости. При увеличении скорости налетающей тележки время взаимодействия

оказывается постоянным (поскольку при таком взаимодействии сжатие пружин
почти в точности пропорционально силе отталкивания).

3. Если бы тележки были нагружены одинаково и одна из них находилась

до столкновения в покое, налетающая тележка после удара остановилась бы,
а ударяемая пришла бы в движение с той кинетической энергией, которой обла-

обладала до удара налетающая, при отсутствии потерь энергии на трение в пружин-
пружинных буферах. В действительности налетающая тележка продолжает движение
с малой скоростью, но быстро останавливается благодаря трению о стол, иногда

еще до того, как закончилось столкновение.
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23.8. Кинетическая энергия и количество движения

Цель и содержание. Показать, что применение законов сохранения

энергии и количества движения к упругому центральному удару позволяет оп-

определить конечные скорости, не зная сил взаимодействия. Применение этого

метода иллюстрируется на примере открытия нейтрона Чадвиком.
/Методические указания. Понятия этого и последующих разделов

настоящей главы важны, но по своей природе они относятся скорее к приложе-

приложениям предшествующих идей, нежели к основаниям для последующего построения

курса. Полное решение для случая упругого столкновения интересно и полезно,

но довольно трудно. Придется отвести около двух классных занятий на краткое

изучение упругого столкновения и суммирование идей всей главы в целом.

Лабораторную работу ШЛО (Моделирование процесса столкновения ядер)
можно провести либо в конце изучения разделов 23.5—23.7, либо здесь, в связи

с разделом 23.8. Дальнейшие указания см. в разделе ЛР Руководства.

Некоторые учащиеся могут не понимать важности изучения «столкновений».

Широкий круг проблем современной физики основан на так называемой проблеме
двух тел. Проблемы, связанные с движением планеты вокруг Солнца, динамика

ракеты и столкновение двух протонов представляют примеры проблехмы двух
тел. К счастью, эта сравнительно простая физическая ситуация — взаимодей-

взаимодействие двул: тел — имеет довольно широкое применение. Общая проблема, вклю-

включающая взаимодействие более чем трех тел, до сих пор не поддается точному

решению.

Проблема двух тел, связанная с движением планет, может быть решена с

помощью закона Ньютона, что приводит к нахождению движения для последо-

последовательных очень малых участков орбиты. Решение такого типа возможно потому,

что сила взаимодействия точно определена для всех точек пространства законом

всемирного тяготения. Но даже и в этом случае получение решения является

лелом утомительным. В случае полета ракеты или столкновения двух протонов,

решение с помощью закона F = ma вообще невозможно, поскольку неизвестна

сила взаимодействия. Мы можем достигнуть значительного прогресса в решении

этих проблем с помощью использования законов сохранения. Когда столкновение

можно считать упругим, можно применять закон сохранения импульса в соче-

сочетании с законом сохранения кинетической энергии.

Обсуждение в классе можно начать с анализа лобового столкновения т1 и т2,

когда т2 первоначально покоится, а т1 налетает на нее со скоростью, равной i^.
Полное количество движения перед столкновением равно, следовательно, т^.

После столкновения пг1 и т2 будут иметь скорости v[ и v2 соответственно (обе
в направлении vx). Закон сохранения количества движения означает, что

Однако этого недостаточно для решения проблемы. Другими словами, знание

Ееличин mlt т2 и v± еще не дает нам возможности предсказать конечные скорости

ь[ и v[. Существует бесконечное число комбинаций, удовлетворяющих уравнению
сохранения импульса. Чтобы убедиться в этом, рассмотрим случай mi = т2 = т.

Тогда это уравнение принимает вид

mi>i = m(i>l + i>J), B)
или

v2 = v1—v[. C)

337



В качестве его решений можно было бы взять:

l = v2/2 и т.д.

Таким образом, не существует однозначного решения проблемы. На языке мате-

математики, трудность состоит просто в том, что мы имеем две неизвестные величины

v[ и v'2, но всего одно соотношение между ними, соответствующее сохранению

количества движения. Если добавить к нему второе уравнение, неопределенность

в решении можно устранить. Таким уравнением в случае упругого соударения

является уравнение, выражающее сохранение кинетической энергии:

mvl/2 = mu'i/2 + mv'2*/2, D)
или

r2 r2

v\ = v\ + v\ . E)

Но из закона сохранения количества движения мы получили связь C). Под-
Подставляя C) в E), имеем

или

v[ —v1v[=v[(v[—ух) = 0.

Поэтому v[=vx или v[ = 0.

В первом случае v[=v± из C) следует, что v2
= 0. Но это попросту означает,

что столкновения Еообще не произошло; тх каким-то образом миновала т2 *),

и мы можем этим случаем пренебречь. Другое решение v[ — 0 дает на основании

C) v%~ va первый шар останавливается, а второй принимает начальную скорость

первого.
Учащиеся должны заметить, что решение было получено без использования

какого бы то ни было закона для силы взаимодействия между т1 и т2. Необхо-

Необходимо только, чтобы столкновение было

^
упругим **).

(В Приложении 8 на стр. 423 рас-

рассмотрен случай нецентрального столк-

столкновения двух равных масс.)

k Существует хорошая стандартная
демонстрация, иллюстрирующая един-

единственность решения этого типа задач.

Несколько бильярдных шаров или мя-

мячей для гольфа (лапты) подвешиваются в один ряд на нитях, прикрепленных к го-

горизонтальному стержню, так что они висят, касаясь друг друга, как показано

на рис. 52.

Отклоните один шар, и предложите классу угадать, что последует, если от-

отпустить его. Если один шар имеет при ударе скорость у, что произойдет на другом

конце? На основании одного только закона сохранения количества движения

можно ожидать, что отскочит либо один шар со скоростью у, либо два шара
— со

скоростью у/2, либо три шара — со скоростью у/3, и т. д. Применяя же закон

Рис. 52.

*) Или прошла сквозь нее без взаимодействия. (Прим. перев.)
**) Т. е. чтобы эта сила зависела только от расстояния между и т2

(Прим. перев.)
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сохранения кинетической энергии, мы находим, что реализуется случай с одним

шаром. Если бы шары были идеально упругими, именно отскакивание одного

шара до той же высоты, до которой был отклонен ударяющий шар, наблюдалось

бы экспериментально. Подобным же образом, если первоначально отклонить два

шара вместе, единственно возможное решение состоит в отскакивании с другого

конца также двух шаров, и т. д.

Ваши учащиеся могут недоумевать, каким образом можно использовать эти

два закона сохранения для анализа столкновений, которые не являются лобо-

лобовыми. Можно наметить метод подхода к этой проблеме, как указано ниже. Именно

такой формальный анализ следует выполнить после проведения лабораторной
работы ШЛО.

Мы можем выбрать ось х в направлении движения налетающей частицы. Тогда

сумма ^-компонент количеств движения обеих частиц после столкновения должна

равняться начальному количеству движения:

m1vlx+ m2v'2X= m1v1. A)
После столкновения обе частицы должны двигаться в той же плоскости, в которой
лежит ось х, поскольку сумма проекций их количеств движения на любое направ-

направление, оаличное от оси х, должна быть равна нулю в силу сохранения импульса

(два вектора, не лежащие в этой плоскости, не обладают этим свойством) *).

Назовем плоскость, в которой движутся частицы после столкновения, плоскостью

ху. Тогда

[
а Есе скорости, перпендикулярные плоскости ху, равны нулю:

Уравнения A) и B) выражают сохранение количества движения. Сохранение
энергии может быть выражено в виде

mvf/2 = mxv\ /2 + m2v2 /2 = m1{ v'lx+v'iy)/2 + m2 ( v2x + vZ])]2. C)
Эта система трех уравнений позволяет найти три неизвестных, если три другие

величины, входящие в уравнения, определены путем измерений. Например, если

известно, что налетающая частица — нейтрон (следовательно, известна /%),
а ударяемая

—

протон, причем соударение происходит в камере Вильсона, то

можно по измерениям треков протона измерить компоненты его скорости после

удара v2x и v2y. Тогда из написанных уравнений мы можем вычислить начальную
и конечную скорости невидимого в камере Вильсона нейтрона vlt v'lx и vly.

Упражнения
A. 10-килограммовая масса, движущаяся со скоростью 5 м/с, испытывает

лобовое столкновение с неподвижной массой 10 кг. Столкновение упругое. Чему
равна конечная скорость каждой массы? @,5 м/с.)

Б. 2-килограммовая масса, движущаяся со скоростью 20 м/с, испытывает

лобовое упругое соударение с массой 5 кг, находившейся до удара в покое. Найти
конечные скорости и направления движения обеих масс. B кг : (—60/7) м/с:
5 кг : (+80/7) м/с.)

B. Масса 10 кг, двигавшаяся направо со скоростью 5 м/с, сталкивается упруго
и центрально с такой же массой 10 кг, двигавшейся до этого налево со скоростью

*) Это рассуждение не является вполне строгим. Для доказательства того,
что при ударе плоскость движения не изменяется, приходится пользоваться еще

одним законом сохранения — момента количества движения. (Прим, перев,)



10 м/с. Чему равна конечная скорость каждой массы? A0 м/с, налево; 5 м/с, на-

направо.)
Г. Масса 5 кг, движущаяся со скоростью 4 м/с, износит иелобозой удар по

неподвижной массе в 5 кг. Соударение упругое. После столкновения одна из

масс отлетает под углом 45° к первоначальному направлению удара. Чему равна

конечная скорость каждой массы по величине и по направлению? B]/~2 м/с под

углом +45°, 2]/ 2 м/с под углом —45°.)

23.9. Изменение кинетической энергии тела при действии на него несколь-

нескольким сил

Цель. Показать, что кинетическая энергия, передаваемая телу или отни-

отнимаемая от него при действии нескольких сил, будет той же самой, что и энергия,

которая передавалась бы в том случае, если бы на тело действовала результирую-

результирующая этих сил на том же участке пути.

Содержание. Сформулированное выше утверждение базируется на рас-

рассмотрении действия компонент сил в направлении движения.

Методические указания. Этот раздел является непосредственным

обобщением рассуждений предыдущих разделов и выводов, полученных для

случая действия одной силы.

23.10. Работа сил трения и потеря кинетической энергии

Цель. Показать, что если на тело действуют силы трения, то часть передан-

переданной ему энергии может перейти в тепло, а не в кинетическую энергию.

Содержание. Для этого раздела тщательно отобраны два примера. Эту

тему хуже излагать несколькими способами, чем одним, так что дополнительные

примеры надо выбирать тщательно, избегая опасности втянуть себя в длительные

и преждевременные объяснения. (Этот раздел является введением в содержание

следующей главы.) В первом примере рассмотрен брусок, скользящий по поверх-
поверхности стола. Стол не движется, но брусок действует на него с некоторой силой
и замедляет свое движение. Куда переходит кинетическая энергия, «потерянная»

бруском? — В кинетическую энергию молекул стола, т. е. в теплоту. Заметим,

что «столкновение» бруска со столом отличается от упругого соударения; сила

взаимодействия зависит от скорости бруска, а не от его положения по отношению

к столу. Во втором примере рассматривается отскакивание от пола шарика из за-

замазки. Здесь шарик деформируется при ударе таким образом, что сила, дейст-

действующая при его удалении от пола, ведет себя иначе, чем сила, действующая при
его приближении. Результирующая кинетическая энергия шарика изменяется

вследствие соударения, и шарик нагревается
— кинетическая энергия переходит

в тепло.

Столкновения этого типа называются неупругими; они характеризуются
в общем случае потерей кинетической энергии движения тел, как целого, и при-

приращением кинетической энергии внутреннего движения молекул.

Методические указания. Задачи 23, 28 и 31 относятся к неупругим
столкновениям. В качестве проверочной можно предложить следующую задачу.

Масса в 20 кг, движущаяся со скоростью 3 м/с, неупруго сталкивается с не-

неподвижной массой в 10 кг. После удара массы сцепляются друг с другом и дви-

движутся с одной и той же скоростью.

а) Чему равна конечная скорость совместного движения этих масс?

б) Сколько кинетической энергии «теряется» при ударе?
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Решение, a) m1=20 кг, m2= 10 кг, ух=3 м/с.

— (тг + т2) v2 (сохранение импульса),

! + т2)]»! = B0/30) -3 = 2 м/с.v2 =

б) ?к1=20-32/2 = 90 Дж, ?к2=30-23/2=60 Дж. Следовательно, 30 Дж

энергии «теряется» при этом ударе.

Будет нелишним убедиться, что учащиеся не смешивают остаточную потерю

кинетической энергии при неупругом соударении с временным «исчезновением»

кинетической энергии при упругом ударе. Они узнают из следующей главы, что

при упругом столкновении «исчезнувшая» кинетическая энергия переходит в

потенциальную энергию, из которой она может быть получена вновь. Кинети-

Кинетическая энергия, перешедшая в теплоту, может быть возвращена лишь частично.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

В табл. 16 задачи распределены по разделам, к которым они относятся, и рас-

расклассифицированы по их примерному уровню трудности. В отдельном столбце

указаны те из них, которые следует обсудить в классе. Особенно рекомендуемые
задачи отмечены значком $.

ТАБЛИЦА 16

Разделы

23.1—23.3

23.4

23.5, 23.6

23.7

23.8

23.9—23.10

Со звез-

звездочкой

4

6—8

14

16—18

19 21,

Легкие

11, 12

23,26, 27$
29, 34

Средние

1, 2fl, 3

9#, Ю|, 13

15ft

20, 24, 28

30, Щ

Трудные

22,

32,

25

33

Классные

1, 2* 4,5$
9#. 10*

25, 26, 28

31»

Краткие ответы
4*. Да; если сила действует на движущееся тело под прямым углом к направ-

направлению его движения, никакой передачи энергии не происходит.

6*. 200 Дж.
7*. Кинетическая энергия увеличивается в 4 раза.
8*. Они равны, поскольку зависят только от силы и кинетической энергии.
14*. Отталкивание.
16*. Когда сила, действующая между двумя сталкивающимися телами, за-

зависит только от расстояния между ними.
17*. Приближаясь к стене, шарик из оконной замазки испытывает на малом

расстоянии от нее силу отталкивания, замедляющую его движение; после дости-
достижения им стены отталкивание внезапно сменяется притяжением, так что дейст-

действующая затем сила отличается от действовавшей при сближении. Следовательно,
сила взаимодействия зависит не от одного лишь расстояния между телами.

18*. Да. Поскольку кинетическая энергия сохраняется, мы вправе пред-
предположить, что при этом столкновении сила взаимодействия зависит только от

расстояния между телами.

19*. Масса т1 меньше, чем масса т2.
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Ответы с указаниями и решениями
1. 1) Химическая энергия угля превращается в тепловую энергию пламени.

2) Энергия пламени переходит к воде, которая превращается в пар. С мик-

микроскопической точки зрения тепловая энергия пара состоит из кинетической

энергии его молекул. Они, в свою очередь, сообщают кинетическую энергию

ротору турбины, сталкиваясь с его лопатками. Вращение оси турбины передается

ротору генератора, таким образом превращая некоторую часть химической энер-
энергии топлива в электрическую энергию.

3) Электрическая энергия превращается в кинетическую в электромоторе,
который приводит в действие насос. Эта кинетическая энергия переходит затем
к воде, в результате чего вода движется вверх по трубам.

4) Когда вода поднимается по трубам водонапорной башни, она движется

вверх против силы тяжести, приобретая потенциальную энергию. Потенциальная

энергия воды на башне может быть превращена в кинетическую, когда она течет

вниз по трубам и вытекает из кранов.
2. а) По пути на вершину горы фуникулер проходит 5 мин- F0 с/мин)• 5 м/с =

= 1 500 м. Произведенная работа равна действующей силе, умноженной на рас-
расстояние, на котором она действовала: D« 103 Н)- 1500 м= 6* 106 Н-м = 6- 106 Дж.

б) Если для того чтобы втащить фуникулер на гору с меньшей скоростью
нужна такая же сила, то как сила, так и пройденное расстояние будут одинако-
одинаковыми для обоих случаев. Следовательно, работа, необходимая для поднятия фу-
фуникулера на гору с меньшей скоростью, была бы такой же, как и в случае дви-

движения с большей скоростью, т. е. снова 6* 106 Дж. (Силы трения в опорных балках,
подшипниках и т. п. обычно оказывают меньшее сопротивление движению при
малых скоростях, чем при больших. Следовательно, хотя величина работы,
затраченной на поднятие фуникулера вверх по склону, будет одной и той же

независимо от скорости, количество энергии, перешедшей в тепло благодаря
трению в подшипниках, блоках и т. п., будет зависеть от скорости.)

3. Мы знаем мощность Р и скорость v. Из определений мощности и работы,
а также скорости, имеем Р= W/t= Fd/t= Fv, т. е. F = P/v. P = 3 000 Дж/с,
так что и должна быть выражена в той же системе единиц:

1ЛЧ м 1ч
п г

10325/

Таким образом, ,Р = C000 Дж/с)/2,5 м/с = 1200 Н.
5. а) Если поднимать линейку, держа ее горизонтально, то придется преодо-

преодолевать полный ее вес, т. е. прилагать к ней силу 0,2 кг*9,8 Н/кг, или 2 Н. Эта

сила, при перемещении линейки на 10 см в направлении действия силы, совершит
2 Н-0,1 м=0,2 Дж работы.

б) Если поднимать разные концы линейки по очереди и снова класть их на

те же кубики, то мы совершим то же самое количество работы, но только в два

приема. Совершая первый шаг, мы поднимаем только половину полного веса

линейки, а ее вторая половина действует на стол, на который он опирается; при

этом мы совершаем 1/2-2 Н-0,1 м=0,1 Дж. Когда затем мы поднимаем второй
конец линейки, мы снова преодолеваем половину веса,поскольку другая половина

действует на кубик, на котором лежит другой конец. При этом мы также произ-

производим 0,1 Дж работы, а полная работа равна 0,2 Дж, как и прежде. (Хотя
передача энергии осуществлялась в два этапа, перешло то же самое количество

ее, поскольку в обоих случаях достигается один и тот же результат.)
9. а) Произведенная работа равна 10 Н-3 м=30 Дж.

б) Энергия, переданная ролику, равна 30 Дж.

в) Конечная скорость ролика определяется из условия, что его кинетическая

энергия mt>3/2 равна полученной им энергии: ти2/2=30 Дж, v= |Л2-30/2=5,48 м/с.
10. а) Поскольку кинетическая энергия равна тФ12, А обладает в 22, т. е.

в 4 раза большей кинетической энергией, чем В.

б) Кинетическая энергия является скалярной величиной, не зависящей от

направления движения; следовательно, кинетическая энергия А равна кинетиче-

кинетической энергии В,
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в) Как и в случае б), кинетические энергии обоих тел равны между собой,
поскольку их скорости одинаковы по величине.

г) Снова, как и в случае б), кинетические энергии равны, поскольку величины

скоростей обоих тел одинаковы. (Разумеется, в этом случае кинетические энергии
тел не будут равны между собой в следующий момент времени, поскольку кине-
кинетическая энергия тела А растет, а тела В — уменьшается.)

д) Поскольку масса А вдвое больше, чем В, кинетическая энергия А вдвое
больше, чем В.

11. а) Кинетическая энергия тела равна энергии, переданной ему резуль-
результирующей силой, действующей на это тело. Переданная телу энергия равна
работе, совершенной над ним действующей силой: 30 Н«3 м-р 15 Н-2 м = 120 Дж.

б) Скорость тела можно определить с помощью выражения для кинетической

энергии EK=mv2/2: v = У 2Ек/т = j/^. 120/2= 11 м/с.
12. Цель этой задачи состоит в том, чтобы позволить учащимся связать джо-

джоуль с чем-либо уже знакомым им. Пусть каждый из них произведет свою собст-

собственную оценку. Разумный ответ в округленных числах выглядит следующим

образом: масса ученика с велосипедом 102 кг. Скорость ^10—15 км/ч, или округ-
округленно 5 м/с. Следовательно, кинетическая энергия имеет порядок 103 Дж.

13. а) Чтобы найти кинетическую энергию камня, нам надо знать как его

скорость, так и его массу. Скорость тела, движущегося по окружности радиуса R
с периодом 7\ равна v = 2nR/T— 2nRft где / — частота вращения. Следова-
Следовательно, кинетическая энергия равна

?к = ти2/2==тBяЯ/J/2:=2.2 кг-C,14-0,5 м-2 об/сJ = 39 Дж.

б) Центростремительная сила равна F = mv2/R = 2EK/R=2 C9 Дж)/0,5м=
= 160Н.

в) Никакой работы центростремительная сила не производит, поскольку она

всегда действует под прямым углом к направлению движения, т. е. не имеет со-

составляющей в направлении движения. Это подтверждается тем обстоятельством,
что скорость камня не увеличивается; его кинетическая энергия не изменяется.

15. Энергия, теряемая 10-килограммовой массой, измеряется работой, кото-

которую она производит. Работа, производимая массой и идущая на преодоление

тормозящей силы, которая изменяется с расстоянием, определяется площадью

под графиком зависимости силы от расстояния. Между значениями 0 и 2 эта пло-

площадь равна EK=W=42'2fi7 Н-2 м=2,67 Н-м=2,67 Дж.
20. Полное изменение кинетической энергии равно полной работе, произве-

произведенной над телами. Поскольку силы носят характер отталкивания, кинетическая

энергия увеличивается при увеличении расстояния между телами:

&ЕК = F1As1 + F2ks2 = ЗН • (—0,05 м) +1Н. @,05 м) =— 0,1 Дж.

Знак минус говорит нам о том, что происходит потеря кинетической энергии.
21. Снаряд и товарный вагон имеют одно и то же количество движения, рав-

равное 104 кг»м/с. Снаряд обладает кинетической энергией 10-106/2= 5-106 Дж,
а вагон — A04* 12)/2= 5« 103 Дж. Когда что-либо разрушается, производится
работа против сил, удерживающих вместе различные части объекта разрушения.
Этим объясняется, что снаряд, обладающий в 1000 раз большей кинетической

энергией, производит гораздо большие разрушения.
Эта задача представляет собой практическую иллюстрацию общего соот-

соотношения между количеством движения и кинетической энергией Ек
= р2/2т.

(Его легко получить, если подставить в выражение для кинетической энергии

EK—mv2/2 выражение скорости через импульс в виде i>= p/m.) Очевидно, что

для двух тел с одинаковым количеством движения энергия обратно пропорцио-
пропорциональна массе. С другой стороны, р= У 2тЕк\ следовательно, для тел с одина-
одинаковой кинетической энергией количество движения прямо пропорционально
квадратному корню из массы.

22. За короткий промежуток времени А^ первое тело смещается на расстояние
А#1=у1Д/, а второе

— на расстояние Ax2—v2At. Сила отталкивания действует
на первое тело в направлении, противоположном направлению его движения,

но на второе тело сила отталкивания действует в том же направлении, в котором

движется второе тело. Следовательно, в течение заданного интервала времени
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кинетическая энергия первого тела изменяется на величину
— Fhxlt а второго

Тела на величину Fkx2 (где F— абсолютная величина силы отталкивания).
Поэтому результирующее изменение полной кинетической энергии равно АЕК =
= рдЛ-о F&xlt и скорость, с которой изменяется кинетическая энергия, равна

FAx2
д

: —0,5 м/с)==

= —0,02 Дж/с.

Знак минус говорит нг.м о тем, что полная кинетическая энергия уменьшается со

скоростью 0,02 Дж/с. (Учащиеся могут заинтересоваться, что стало с «потерянной»
энергией. Если столкновение является

упругим, она запасается в виде потен-

потенциальной энергии системы двух тел.

23. Эту задачу можно решить, не-

непосредственно используя подход, опи-

описанный в разделе 23.8. Для тех уча-

учащихся, которые не прорабатывали его

подробно, она служит упражнением на

применение уравнений, выведенных в

этом разделе.

а) Выберем в качестве положи-

положительного направление движения тела с

массой 0,5 кг. Обозначая через т1 налетающее тело с массой 0,5 кг и через т2
—

ударяемое тело с массой 1,5 кг, имеем

Vi=[2m1/(m1+ mi)]v1 = 2 @,5 кг/2 кг).0,2 м/с = 0,1 м/с;
аналогично

f

кг] 0,2 м/с = —0,1 м/с.

Рис. 53.

б) Положительный знак, который получился в ответе для v2, означает, что

второе (ударяемое) тело т2 движется в том же направлении, в котором двигалось

налетающее тело перед столкновением. Отрицательный знак в ответе для v± оз-

означает, что налетающее тело тг (которое легче) отскакивает назад в результате

столкновения, так что его конечная скорость имеет направление, противополож-

противоположное направлению его скорости перед столкновением.

24. С помощью уравнений для центрального соударения мы выражаем конеч-

конечную кинетическую энергию т2 через начальную кинетическую энергию mv Ки-

Кинетическая энергия т2 после столкновения равна

m2v2/2 = m2 [2m1/(m1 + m2)]2 v\/2 = mxv\ [4m1ma/(m1+ m2J]/2 =
= m1oj[Dm1/m1)/(l+m1/m1)«l/2 = m1ti; [4r/(l + rJj/2,

где mivl/2 есть просто начальная кинетическая энергия /%, равная 1 Дж в нашем

случае, а г—т2/т1 — отношение масс.

а) г= 0,01/2= 0,005; 4г/A + гJ =0,02/1,01 = 0,0198^ 0,02,

Е'к2 = 0,02-1 Дж= 0,02 Дж.

б) г= 2/2=1, ^=4/4=1. ?'к2=1 Дж.

В) /-==400/2== 200, 4/7A+/f=800/40201= 0,02. Е'к2 = 0,02-1 Дж= 0,02 Дж.

г) График функции Ек2/Ек1 = 4г/A+ гJ представлен на рис. 53. Из этого

графика видно, что отношение Ек2/ЕкХ достигает максимума при г= т2/т1~ 1,

д) Рассматриваемая функция принимает очень малые значения как для очень
малых, так и для очень больших г. (Нулевое значение этой функции при
/¦=0 легко видеть аналитически. В стремлении ее к нулю при очень боль-

больших г можно убедиться следующим образом: когда г очень велико, 1 + г^г,
и функция превращается в 4/7A + л)9-^ 4г/г2= 4/г, а 4/г стремится к нулю при г\
стремящемся к бесконечности.)
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25, а) ?к1=т^|/2= 1С@,2J/2= 0,2 Дж. ?к2=т2у|/2=0 Дж.

б) ЕК2
= EKl'4r/(l-\-r)'2 (см. решение задачи 24).

г = 5/10= 1/2; 4г/A+гJ = 8/9; ?"'к2 = (8/9)-0,2Дж = 0,18Дж.

Поскольку кинетическая энергия должна быть одной и той же в начальном и

конечном состояниях (когда сила взаимодействия равна нулю), имеем

?k!=?ki —?к2 = 0,2 — 0,18 = 0,02 Дж.

в) В течение времени взаимодействия кинетическая энергия не сохраняется.

(Энергия временно запасается в виде потенциальной энергии.) Однако количество

движения сохраняется, поскольку не действуют никакие внешние силы. Когда
расстояние между телами минимально, их скорости равны. Обозначим эту общую
скорость через v". Тогда количество движения системы равно (/%+ m2)v" и со-

согласно закону сохранения количества движения должно быть равно т^. Следо-
Следовательно, v" — [т1/(т1-{- m2)]v1. Кинетическая энергия 10-килограммовой массы
в этот момент равна

= 0,2-100/225 = 0,089 Дж.

Кинетическая энергия 5-килограммовой массы равна соответственно

m2v /2= (m^l/2) т^т^Кт^ + m2J = 0,2 • 50/225 = 0,044 Дж.

Полная кинетическая энергия системы равна 0,089 + 0,044 = 0,133 Дж, что

меньше, чем первоначальная кинетическая энергия, по причине, отмеченной

выше. Поскольку первоначальная кинетическая энергия равнялась 0,2 Дж,
результирующая убыль кинетической энергии составляет 0,07 Дж.

г) Результирующая убыль кинетической энергии равна работе, произведен-
произведенной против силы взаимодействия: (A?'K)ne3 = /7-As, поэтому As= (&EK)QeJF =
=-.0,07 Дж/4Н = —0,02 м.

Величина АЕК отрицательна, поскольку имела место убыль кинетической

энергии; отрицательный знак величины As означает, что расстояние между тела?/и

уменьшается на 0,02 м. Следовательно, минимальное расстояние между телами

равно 0,1—0,02=0,08 м.
28. а) Поскольку на снаряд не действовали никакие внешние силы, полное

количество движения снаряда должно остаться неизменным при взрыве. Поэтому
векторная сумма количеств движения всех осколков должна равняться количе-

количеству движения, которым обладал снаряд непосредственно перед тем, как он

взорвался.
б) Полная кинетическая энергия осколков должна равняться кинетической

энергии снаряда плюс работа (энергия, превратившаяся в кинетическую энергию
осколков), совершенная при взрыве, и, таким образом, она больше, чем первона-
первоначальная кинетическая энергия снаряда до взрыва.

27. а) В этой задаче мы имеем дело со случаем центрального столкновения

одного тела с другим, имеющим такую же массу и первоначально находившимся
в состоянии покоя. Кинетическая энергия снаряда в этом случае целиком пере-
передается мишени. Снаряд останавливается. Аналитически:

v2 = V2 = 3,3-107 м/с. v'1
б) /п2= 14 щ; v2=[2m1/(m1+ m2)K= [2m1/(m1+ 14m1)]u1= B/15)-3,3-107 =

= 4,4-106 м/с.
в) Согласно п. а) после центрального столкновения с протоном скорость

нейтрона будет равна нулю. После центрального столкновения с атомом азота

нейтрон будет иметь скорость

v'i = {(m1 — 14т!)/(т1+Hmx)].3,3-107==— 2,9-107 м/с.

(После столкновения с атомом азота нейтрон отскакивает в обратную сторону.)
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28. ^=2 м/с, m1=2,5-104 кг; i>2=0, m2=5-104 кг.

а) p1=m1u1=5« 104 кг-м/с.
б) Из закона сохранения количества движения имеем (mx+ m2)v' — т^ръ т. е.

.104) = 0,67 м/с.

Ек (после) =(щ+^]
V'*
= 1,7.104 Дж.

Поскольку 3,3» 10* Дж были превращены при столкновении в другие формы
энергии, столкновение должно быть неупругим.

29. Эта задача является иллюстрацией утверждения о том, что совершенная
работа равна произведению пройденного расстояния на компоненту результирую-

результирующей силы, взятую в направлении движения. В этом случае, поскольку ползун

начинает двигаться из состояния покоя и сила постоянна, результирующая сила

имеет то же направление, в котором происходит движение.

а) w=Fxs= ЮН-2 м=20 Дж.
б) W=F2s= 10Н-2_м=20 Дж.

в) W= Fve3s = 10 У2 Н-2 м= 28 Дж.
30. а) На движение ползуна оказывает влияние только горизонтальная ком-

компонента силы F: Ap = /7*A/ = 50 Н-cos 60°-2 с = 50 кг-м/с. Поскольку верти-
вертикальная компонента F меньше, чем вес:

Fy = 50H.sin60° = 43H < т^= 5кг-9,8 Н/кг = 49 Н,

никакая результирующая сила в вертикальном направлении не действует, и дви-
движение происходит только по горизонтали.

б) W=?\-?K=E0 кг.м/сJ/B.5 кг)—0=250 Дж.
в) Ползун соскользнул бы со стола и двигался бы ускоренно в направлении

результирующей F и mg.
31. Направленная вниз сила тяжести производит работу, величина которой

равна силе, умноженной на расстояние, пройденное лампочкой в ее падении:

W = ^л; = mgx= 0,1 кг-9,8 Н/кг-100 м = 98 Дж.

Однако после того, как лампочка пролетела 100 м, ее кинетическая энергия ока-
оказалась равной EK = mv2/2 = 0,l кг-B0м/сJ/2= 20 Дж. Разность между работой,
совершенной над лампочкой, и ее кинетической энергией представляет работу,
которую совершила лампочка против силы трения о воздух. Ее величина со-
составляет 78 Дж и идет она на нагревание воздуха и лампочки.

32. Вы можете поступить следующим образом: начав с неподвижного состоя-

состояния, проехать вниз по уклону некоторое измеренное расстояние d±. Нажать
на тормоз и измерить дополнительное расстояние d2, которое велосипед пройдет
до остановки. Если суммарный вес велосипеда с вами равен W, угол наклона
к горизонту а, а сила торможения В, то скатываясь под уклон, вы с велосипедом

приобрели количество энергии, равное

AEKl = Fx-x= W sin а-йг.

Сила торможения действует вверх вдоль склона, а вес действует вертикально
вниз. Следовательно, когда вы тормозили, результирующее изменение кинети-
кинетической энергии было равно А?к2 = —B-d2+ W sin a-d2. Поскольку вы оста-

остановились, A?Ki Должно быть равно —&Ек2, т. е.

Wsma'd1= B'd2— W sma-d2, B = W sin a-(dx + d2)/d2.

Если бы учащийся действительно произвел соответствующие измерения, он

скорее всего обнаружил бы, что d2<^.dv С учетом этого получим, что выражение

В « W sin a djd2

дает достаточно хорошее приближение. Если тормоз действует на ось, как это
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имеет место в действительности у дорожных велосипедов с тормозной за гей

втулкой, сила действует на расстоянии d2(r1/r2)t где гх и г2— радиусы оси и обода
колеса соответственно.

33. Это задача на упругое столкновение, хотя учащиеся могут не сразу при-
признать в этом взаимодействии столкновение. Кроме того, это столкновение отли-

отличается от рассмотренных ранее тем, что теперь сила взаимодействия представляет
собой притяжение. Только благодаря тому, что он может проскочить между «ног»

у магнита, шарик может после столкновения укатиться прочь, в противном случае
он бы пристал к магниту. Почему столкновение является упругим? Потому что

сила взаимодействия между телами зависит только от расстояния между ними.

Как на магнит, так и на шарик действует магнитная сила, так что оба они

испытывают ускорение по направлению друг к другу; при этом магнит ускоряется
из состояния покоя, а шарик испытывает ускорение, обладая некоторой началь-

начальной скоростью. По мере сближения шарика с магнитом сила (и ускорение) не-

непрерывно возрастает до тех пор, пока шарик не войдет внутрь магнита. Там сила

быстро проходит через нуль и затем меняет знак. По мере удаления шарика от

магнита сила оказывает замедляющее действие как на шарик, так и на магнит.

Для любого значения расстояния между ними замедляющая сила равна по ве-

величине, но противоположна по направлению той ускоряющей силе, которая
действовала на том же расстоянии, когда шарик и магнит сближались. Когда
тела разойдутся достаточно далеко друг от друга, движение магнита прекратится.
Чтобы удовлетворить законам сохранения количества движения и энергии, шарик
должен к этому времени замедлиться до своей первоначальной скорости.

В продолжение этого взаимодействия, если шарик начинает свое движение

в точке А и проходит сквозь магнит в точке В, магнит сначала ускоряется по

направлению к точке Л, а затем останавливается. В процессе этого столкновения,

в соответствии с законом сохранения количества движения, шарик должен ус-
ускоряться по направлению к точке В до скорости, превышающей его начальную
скорость f0, а затем замедляться до тех пор, пока на очень большом удалении от

магнита его скорость снова не сделается равной v0. В целом влияние магнита

сводится к уменьшению времени, которое затрачивает шарик на прохождение
из Л в В. Это достигается тем, что магнит используется как «ракетное топливо»

временной природы *). Шарик отталкивает магнит назад и таким образом нара-
наращивает свою скорость. Затем он «тянет обратно» и останавливает магнит, таким

образом теряя свое приращение скорости. Движение центра масс системы про-

происходит все время с постоянной скоростью
— направленное назад количество

движения магнита уравновешивается избыточным количеством движения, при-
приобретаемым шариком и направленным вперед.

Кинетическая энергия в результате также сохраняется, т. е. начальная Ек
равна конечной Ек\ однако в течение взаимодействия кинетическая энергия не

сохраняется. В этой задаче (сила притяжения) кинетическая энергия будет наи-

наибольшей, когда шарик проходит под самым магнитом, поскольку в этот момент

как шарик, так и магнит движутся с максимальными скоростями.

34. Цель этой задачи — обратить внимание учащихся на возможность запа-

запасать кинетическую энергию в теле без рассеивания ее.

а) Ек= mv2/2, где v — мгновенная скорость шара,

?к = тBл/гJ/2=2B кг) [C,14) E/с) A м)]2 = 9,9.102 Дж.

б) Кинетическая энергия пропорциональна массе, так что если бы шар был

разделен на четыре части, каждая часть обладала бы одной четвертью его энергии.
Полная энергия по-прежнему была бы равна 990 Дж.

в) Аналогично, кинетическая энергия кольца была бы равна также 990 Дж.

*) Движение шарика происходит, как у ракеты, которая сначала выбрасы-
выбрасывает газы, как обычно, а затем «всасывает» их обратно, так что ее масса остается

неизменной. (Прим. перев.)



ГЛАВА

24 ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Краткое содержание главы 24

В этой главе понятие энергии расширяется таким образом, чтобы оно вклю-

включало потенциальную энергию. Изучается переход энергии из одной формы в

другую — из потенциальной в кинетическую и обратно; формулируется закон

сохранения механической энергии для «консервативных» сил.

Разделы 24.1, 24.2. Снова исследуется упругое столкновение, причем
указывается, что «исчезновение» кинетической энергии во время взаимодействия

можно представлять себе как ее «накопление» в сталкивающихся телах. Выво-

Выводится выражение для потенциальной энергии растянутой или сжатой пружины.

Эти новые понятия обобщаются на случай произвольного взаимодействия двух тел.

Разделы 24.3—24.5. Результаты разделов 24.1, 24.2 распространяются
на случай потенциальной энергии в гравитационном поле. Рассматриваются

потенциальные энергии тел, находящихся вблизи земной поверхности. Выводятся

критерии «свободного» и «связанного» состояний по отношению к гравитацион-

гравитационному притяжению.

Раздел 24.6. Предыдущие заключения обобщаются с помощью представ-
представления о полной механической энергии — величине, которая остается постоянной

во многих сложных системах, если только действие сил трения очень мало.

План изучения главы 24

В табл. 17 предлагаются возможные варианты планирования материала этой

главы, согласованные с общим планом части III, приведенным во Введении на

стр. 219.

таблица 17

Глава 24

Разделы

24.1, 24.2

24.3—24.5
24.6

9-недельный план изучения

части III

В классе,

часы

2

2

0

В лабо-
лаборатории,

часы

0

1

0

Опыты

111.11

15-недельный план изучения
части III

В классе,

часы

3

3

1

В лабо-
лаборатории,

часы

0

2

0

Опыты

III.11, III.12

Дополнительные материалы к главе 24

Лаборатория. В лабораторной работе III.11 (Изменение потенциальной
энергии) с помощью массы, подвешенной на спиральной пружине, исследуется
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превращение энергии из гравитационной потенциальной энергии в потенциаль-

потенциальную энергию растянутой пружины. Эту работу лучше всего провести после того,

как будет обсужден материал раздела 24.3.

В лабораторной работе III. 12 (Энергия математического маятника) ис-

используется математический маятник и отметчик времени с бумажной лентой,
позволяющий определять кинетическую и потенциальную энергии маятника

в различных точках его колебания. Суммирование кривых, изображающих по-

тенипальную и кинетическую энергии, показывает примерное постоянство полной

энергии системы. Эта работа имеет несколько меньшее значение в курсе, нежели

III 11. Ее можно провести после обсуждения раздела 24.3.

Домашние, классные и лабораторные задания. На стр. 359

припедены ответы, решения и таблица, в которой задачи классифицируются по

их примерному уровню трудности.

24.1. Пружинный амортизатор

Цель. Ввести понятие о потенциальной энергии и ее использовании;

подготовить почву для случаев более общих сил путем подробного рассмотрения

уже знакомого примера
— пружины.

Содержание, а) Механическая энергия сохраняется во всех случаях,

когда сила взаимодействия двух тел зависит только от расстояния между ними.

б) У хорошей (упругой) пружины сила, необходимая для удержания ее в

состоянии сжатия на данную величину, будет всегда одной и той же, независимо

от того, каким способом достигнуто это состояние сжатия, или от того, сколько

раз сжимается пружина. В этом случае как работа, необходимая для сжатия

пружины, так и энергия, которую можно получить, если освободить пружину,

также будут всегда одними и теми же, независимо от того, каким образом пружина
достигла данного сжатия.

в) Потенциальная энергия пружины U определяется площадью под графиком
зависимости силы от величины деформации.

г) /тЯ/2+(/=?"= const при упругом взаимодействии.

д) Когда сила пропорциональна смещению: F= kx, потенциальная энергия

равна V—kx2J2 и rmP/2~\- kxV2 — E. Это соотношение позволяет нам определить

скорость в любой точке при упругом взаимодействии.

Методические указания. Усвоение этого раздела является основой

для понимания остального содержания главы.

Детали поведения неупругой пружины не следует подчеркивать, однако стоит

убедиться, что учащиеся понимают, какое ее свойство является решающим. Чтобы

пружина была упругой, она должна быть способной произвести при ее освобож-

освобождении ровно столько же работы, сколько было затрачено на ее сжатие. Учащиеся
должны знать, что они могут вычислить потенциальную энергию пружины,

определив площадь под графиком зависимости силы от величины сжатия. Они,

вероятно, запомнят выражение U—kx2/2 автоматически, однако важно пони-

понимать, откуда это выражение получается. Основная цель состоит в том, чтобы

выработать у учащихся привычку свободно пользоваться сохранением и пре-

превращением энергии. Этого можно добиться, разобрав несколько примеров, в

которых могут быть прослежены разные формы энергии (кинетическая и потен-

потенциальная) и отмечены признаки ее превращений. В этом разделе постарайтесь
избежать употребления абстрактной гравитационной потенциальной энергии,

349



равно как и энергии, связанной с другими «дальнодействующими» силовыми

полями.

Можно обсудить много различных случаев взаимодействия между массой

и пружиной. Например, пусть масса ударяется о пружину, но пружина застопо-

застопоривается с помощью храпового механизма в момент ее максимального сжатия.

Тогда масса остается в покое. Если затем медленно освобождать пружину, она

производит работу за счет своей потенциальной энергии, передавая энергию
вашей руке. (Какова работа, производимая вашей рукой при освобождении пру-

пружины, по отношению к первоначальной кинетической энергии налетающей массы?
Сна как раз отрицательна, поскольку вы поглощаете потенциальную энергию

пружины; знак минус получается за счет того, что при освобождении пружины
ваша рука движется в направлении, противоположном направлению той силы,

с которой она действует на пружину.)
Можно рассмотреть, далее, случай, когда одна масса ударяет и сжимает

пружину, а затем, после того как пружина стопорится аналогично только что

рассмотренному примеру, заменяется другой, отличной от первой, массой. Про-
Проследите подробно ускорение этой второй массы и покажите, что конечная кине-

кинетическая энергия будет по-прежнему той же самой.

Другой вариант: предположим, что масса ударяется о пружину и отскаки-

отскакивает, но пружина приходит в колебание. Какова будет кинетическая энергия

массы по сравнению с ее значением перед столкновением? Она меньше как раз

на величину энергии, оставшейся у пружины. Можно задать вопрос в классе,

какая энергия осталась у пружины
— потенциальная или кинетическая. Она

переходит из одной формы в другую, точно так же, как энергия массы, совер-

совершающей колебания на невесомой пружине, переходит из формы кинетической

энергии (когда пружина не деформирована, а масса имеет максимальную ско-

скорость) в форму потенциальной энергии (в момент, когда масса останавливается,

чтобы двигаться обратно, а пружина либо сжата, либо растянута на максималь-

максимальную величину) и обратно,
В связи с рис. 24.6 можно провести весьма полезную беседу. На нем пред-

представлены все энергии, встречающиеся при движении массы т, прикрепленной
к концу пружины и совершающей колебания, допустим, на абсолютно гладкой

горизонтальной поверхности. Рисунок относится к идеальной пружине, для ко-

которой сила равна F = kx к потенциальная энергия U = kx2j2. Таким образом,

график потенциальной энергии похож на рис. 24.4, за исключением того, что

здесь представлена энергия как для сжатия, так и для растяжения пружины.

Полная энергия Е= mv2/2-{- U должна быть постоянной, поскольку пружина
—

«упругая».

Когда U=0 (при х=0), то E—mv\\2, где v0
— начальная скорость, кото-

которой обладала масса, когда она в первый раз проходила через положение рав-

равновесия. Горизонтальная прямая линия, изображающая Я, проведена на

уровне, соответствующем значению кинетической энергии при равном нулю
сжатии или растяжении пружины. Кинетическая энергия в любой другой точке

движения дается разностью между горизонтальной прямой, изображающей Е,
и кривой, изображающей U : /шЯ/2 = Е — U. Поскольку отрицательные зна-

значения mv2/2 не имеют смысла, мы провели прямую, представляющую Е, только

до пересечения с графиком U. В точке пересечения этих графиков mv2/2=0 и

поэтому и=0.
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24.2. Потенциальная энергия двух взаимодействующих тел

Цель. Обобщить предыдущий раздел; рассмотреть различного рода силы,
подготавливая введение гравитационной потенциальной энергии.

Содержание, а) В случае сил, зависящих только от расстояния между

телами, кинетическая энергия, «исчезающая» в процессе столкновения, накап-

накапливается в виде потенциальной энергии и может быть получена опять.

б) Потенциальная энергия зависит только от расстояния между телами, но

не от деталей столкновения.

в) Потенциальная энергия накапливается «в силовом поле» — воображаемой
пружине.

Методические указания. Этот раздел надо проходить в тесной связи

с разделом 24.1, все время ссылаясь на него. Может оказаться полезным несколько

забежать вперед и сделать некоторые ссылки на разделы 24.3 и 24 4, поскольку

гравитационные силы представляют собой единственный конкретный пример

дальнодействующих сил, рассмотренный подробно до сих пор.

Дано рассмотрение потенциальной энергии системы двух тел, взаимодей-

взаимодействующих на расстоянии. Математическая сторона проблемы разработана в

гл. 23, где было подробно прослежено поведение кинетической энергии в про-

процессе столкновения. Для дальнодействующих сил, в кажущемся противоречии

со случаем пружины, не существует такого видимого места, где могла бы запа-

запасаться потенциальная энергия. Это может смущать некоторых учащихся. Все,

что требуется для введения понятия потенциальной энергии, сводится к факту,

что некоторая кинетическая энергия исчезает на определенном этапе столкно-

столкновения, а затем появляется снова.

Предоставляется возможность выбора двух способов выражения: «кинети-

«кинетическая энергия исчезает, но затем равное ее количество создается вновь» либо

«кинетическая энергия превращается в потенциальную энергию, а потенциаль-

потенциальная энергия затем снова превращается в кинетическую». Вторая точка зрения
несколько предпочтительнее *), поскольку она подчеркивает тот факт, что пол-

полная работа, которую могут совершить частицы, остается одной и той же в любой

момент в течение столкновения, независимо от того, позволим ли мы проявиться

ей непосредственно в виде кинетической энергии, или поймаем частицы и будем
их медленно разводить (в этом случае энергия проявляется в виде работы,
производимой против нас).

Где помещается потенциальная энергия? Для столкновения, рассмотренного

в разделе 24.1, мы говорим: «в пружине». Мы можем считать, что сила между

двумя телами, взаимодействующими на расстоянии, имеет своим источником «во-

«воображаемую пружину», как это предлагается в Учебни ке. В действительности нет

никакой нужды «локализовывать» потен циальную энергию, каким бы естест-

естественным ни казалось такое желание. Все, что необходимо для того, чтобы понятие

потенциальной энергии было полезным,— это чтобы мы были в состоянии исполь-

использовать его для предсказания работы, которую мы можем получить (или должны

совершить), когда расстояние между телами изменяется на некоторую величину.

*) Вторая точка зрения не просто «предпочтительна», а оказывается един-

единственно верной, если привлечь философские соображения. С точки зрения диа-

диалектического материализма сохранение энергии является выражением принци-

принципиальной неуничтожимости движения материи. (Прим. перев.)
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Действительно, расстояние между телами дает нам такое же ясное представление

о потенциальной энергии системы, как и растяжение пружины. Как объясняется

в Учебнике, даже реальная пружина должна рассматриваться на атомном уровне,

в терминах дальнодействующих сил, «воображаемых пружин».
Можно впасть в противоречие, если попытаться слишком жестко локализо-

локализовать потенциальную энергию, например, связав ее с одним или с другим из двух

тел. Она должна рассматриваться как свойство единой системы, состоящей из

обоих тел, Работа необходимая для того, чтобы перенести тело В, удерживая
тело Л на месте, тождественна работе, необходимой для перенесения тела Л и

удержания тела В, если только мы разносим их на одно и то же конечное рас-

расстояние в обоих случаях.

Несколько абзацев со стр. 149, начинающихся словами: «Чтобы яснее пред-

представить себе», дают анонс следующей главы, посвященной теплоте и кинетиче-

кинетической теории, и содержат начальные сведения об атомной картине потерь меха-

механической энергии.

Изложение здесь проводится вполне кратко, учитывая его предваритель-

предварительный характер. Полное изложение затронутых вопросов будет дано в разделе

25.3. К утверждениям этих абзацев следует подходить просто как к указаниям

на подробности, которые предстоит рассмотреть в дальнейшем.

24.3. Потенциальная энергия тяготения у поверхности Земли

24.4. Потенциальная энергия гравитационного поля Земли в общем случае

24.5. Энергия и скорость выхода спутника за пределы земного притяжения.

Энергия связи с Землей

Цель. Применить понятие энергии к наиболее привычному для человека

силовому полю — к силе тяжести.

Содержание, а) Когда масса т движется в гравитационном поле Земли,
возникающим при этом движением самой Земли можно пренебречь, если т мала

по сравнению с массой Земли.

б) У поверхности Земли, когда изменения высоты малы по сравнению с ра-

радиусом земного шара, потенциальная энергия в некотором положении равна mgd,
где d — вертикальное смещение массы т от некоторого произвольного уровня

нулевой потенциальной энергии.

в) Когда изменения смещения велики по сравнению с радиусом земного

шара, потенциальная энергия массы /л, находящейся на расстоянии г от центра

Земли, равна U(r)= U(со) — GMmlr, где (/(оо) — произвольная величина

(обычно полагаемая равной нулю), которая приписывается потенциальной энер-
энергии на бесконечном удалении.

г) Понятие о потенциальной энергии в гравитационном поле применяется
к движению спутника, позволяя нам сравнить кинетическую энергию, требуемую

для выхода за пределы земного притяжения, с энергией, необходимой для дви-

движения по орбите, и ввести понятие об энергии связи. Полная энергия Е
= mv2/2+ V

остается постоянной при движении спутника.

Методические указания. Эти разделы должны быть проработаны ос-

основательно не только ввиду того интереса, который имеет сама данная проблема,
но также и потому, что хорошее знакомство с потенциальной энергией для си-
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лового поля, зависящего от расстояния обратно пропорционально его квадрату,

снова потребуется в части IV при изучении кулоновского поля и планетарной
модели атома.

Отправной точкой при изложении данной темы служит кинематическое соот-

соотношение у2= 2gd для падающих вблизи земной поверхности тел. Оно было полу-

получено в гл. 5. Надо напомнить учащимся, что g не является строго постоянной

величиной. Оно постоянно только постольку, поскольку постоянна сила тяжести

для данного интервала смещений, а это справедливо, только если расстояние d

пренебрежимо мало по сравнению с радиусом Земли. Умножение обеих частей

приведенного выше равенства на т/2 дает выражение кинетической энергии
падающего тела через высоту, с которой оно упало. Этим оправдывается припи-
приписывание потенциальной энергии массе, находящейся в поле тяжести Земли. Это

должно быть сделано таким образом, чтобы изменение высоты на величину d

приводило к изменению потенциальной энергии на величину mgd. Равенство

U (h)= U (ho)-{-mg(h—h0) удовлетворяет этому требованию. На произвольную

постоянную U (h0) можно смотреть как на средство для упрощения выражения

потенциальной энергии при решении некоторой конкретной задачи. Часто вы-

выбирают U(ho) — O, где h0 есть начало отсчета для высоты в рассматриваемой
задаче.

Выбор U (h0) не влияет на физику задачи, поскольку мы всегда имеем

дело с изменениями потенциальной энергии.

Следующий шаг состоит в переформулировании предмета раздела 23.4 (ра-
(работа и кинетическая энергия) в терминах потенциальной и кинетической энергии.

Приращение кинетической энергии при падении тела равно уменьшению его

потенциальной энергии. Результаты экспериментальных наблюдений, которые

до сих пор излагались на языке закона Ньютона, теперь могут быть заново ис-

истолкованы в смысле сохранения механической энергии. Закон сохранения при-
применим к полной системе «Земля — масса т».

Не нужно упускать из вида тот факт, что понятие потенциальной энергии

применимо по отношению к системе взаимодействующих тел. Вначале было

показано, что в большинстве случаев при движении массы в поле Земли кинети-

кинетической энергией Земли можно пренебречь. По этой причине можно считать, что

масса обладает потенциальной энергией, но в действительности потенциальная

энергия принадлежит системе, а не отдельно какому-нибудь из членов этой си-

системы. Можно думать, что потенциальная энергия в гравитационном поле связана

с растяжением воображаемой гравитационной пружины. Один конец этой «пру-

«пружины» прикреплен к Земле. Если упустить из вида тот факт, что потенциальная

энергия связана с системой двух тел, можно прийти к ошибочному заключению,

утверждая, например, что, когда человек поднимает какой-нибудь предмет с пола

на стол, над этим предметом не производится никакой работы. На поднимаемое

тело действуют две силы: сила тяги человека и гравитационное притяжение к

Земле. Они равны между собой; ускорение отсутствует, и результирующая ра-

работа, производимая над телом, равна нулю (т. е. отсутствует результирующее
изменение кинетической энергии тела). Работа была совершена, и энергия была

передана от человека к системе «Земля — тело». Эту передачу энергии лучше
всего рассматривать как результат комбинации давления на пол со стороны
ног и силы тяги, приложенной к предмету со стороны рук. Эти усилия совместно

растягивают «гравитационную пружину» и, таким образом, запасают в ней энергию.
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Когда перемещение тела велико по сравнению с радиусом земного шара,

необходимо правильно принять в расчет изменение силы на протяжении этого

перемещения. Мы знаем, что гравитационная сила выражается в виде F = GMm/r.
Нам известно, что при малых перемещениях (постоянной силе) гравитационная
потенциальная энергия тела может быть записана приближенно как U(h) =
= ?/(/го)+ tng(h—h0). Каково ючное выражение для потенциальной энергии,

пригодное для любого расстояния г от цент-

центра Земли (превышающего земной радиус)?
Эта проблема может быть решена точно с

помощью интегрального исчисления. В Учеб-

Учебнике справедливость выбранной функции по-

потенциальной энергии проверяется путем по-

показа того> что из нее может быть выведен закон

обратной пропорциональности квадрату рас-
расстояния для силовой функции.

Другой полезный подход состоит в ис-

использовании техники масштабных измерений
на графиках. Рассмотрим график зависимо-

зависимости силы от расстояния до центра Земли,

представленный на рис. 54, а, где F± — сила

притяжения на расстоянии rlt a F2 — сила

притяжения на расстоянии г2. Пусть длина

отрезка оси ординат, соответствующего Flt
измеренной в ньютонах, равна у м, а длина

отрезка оси абсцисс, соответствующего гъ из-

измеренному в метрах, пусть равна х м. Тогда

площадь ху м2 соответствует F±r± Дж.

Теперь нарисуем второй график в та-

таком масштабе, чтобы на нем сила F2 изо-

изображалась отрезком оси ординат длиной у м, а расстояние г2 изображалось
отрезком оси абсцисс длиной х м. Такой график представлен на рис. 54, б.
На этом втором графике работа, необходимая для того, чтобы передвинуть дан-

данную массу от значения г, равного г2, до бесконечно большого значения г = оо,

представлена заштрихованной площадью А:

Рис. 54.

На первом графике (рис. 54, а) работа, необходимая для того, чтобы перенести

ту же массу от г=г1 до г=оо, изображается площадью между кривой и осью

абсцисс справа от точки гх. В результате специального выбора масштаба эта

площадь также равна А м2, и поэтому Wx= (Alxy)F1r1 Дж. Разность потенциаль-
потенциальной энергии системы в состояниях с массой, находящейся в точке г=оо, и с

массой, находящейся в точке г=гъ равна работе, совершенной при перемещении
этой массы от г= гх до r—оо. Таким образом,

аналогично
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чем доказывается, что ?/«>—Ur пропорциональна Mr.
Чтобы определить коэффициент пропорциональности, можно применить

метод, использованный в Учебнике. Несколько иной способ можно использовать

для того, чтобы выяснить в то же время связь

между этим точным выражением для потенци-

потенциальной энергии и приближенным, которым мы

пользовались вблизи земной поверхности, когда

мы пренебрегали изменением силы тяжести с

удалением от центра Земли.

Увеличение потенциальной энергии при дви-

движении тела массы т от поверхности Земли

(r= R3) до высоты h над поверхностью Земли

(/"!= R3 + h) равно

U (ri)-U (R3) = (U (cc)-C/ri)-(U (oo)-
- C/R3) = С//?3 - С/(Яз + h) =

= Ch/[R3(R3 + h)].

В разделе 24.3 мы нашли, что

U (гО - U (R3) = mgh = (GMm/Rl) h.

Мы видим, что эти два результата согласу-

согласуются, если: 1) h очень мало по сравне-

сравнению с радиусом Земли R3, так что R3+ R3h& R3; 2) С имеет значение, рав-

равное GMm. Первое требование вытекает из того, что в разделе 24.3 мы пренебрегали
изменением силы GMmjr2 с г и пользовались приближением GMtnlr^-^GMmlR3

=

= mg.
Невозможно сделать слишком сильное ударение на том, что изменение вы-

выражения для потенциальной энергии путем добавления или опускания постоян-

постоянной величины не может изменить каких бы то ни было физических следствий

теории. Например, в разделе 24.4 сделан выбор ?/(оо) = 0, в то время как в

разделе 24.3 выбрано U(R3)~0. Последнее эквивалентно тому, что мы считаем

?/(оо) = + CMmIR3. Вероятно, стоит начертить графики, изображающие эти

два возможных выбора, и показать, что смещение кривых на этих графиках
несущественно (рис. 55).

Увеличение потенциальной энергии при переходе из точки гх в точку г2 будет
одним и тем же в обоих случаях. Заметим между прочим, что в приближенном
выражении, используемом в разделе 24.3, мы заменили кривую

U = (GMm/R3)—(GMm/r),
касательной к этой кривой в точке R3:

U = (GMmlR%)(r-R3).
Продолжение этого рассмотрения связи между потенциальной энергией и

силовым полем см. в Приложении 9 на стр. 424. Там обсуждается случай сжатой
пружины.
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Используя понятие энергии, мы пренебрегаем многими деталями движения,

поскольку мы не касаемся при этом ни сил взаимодействия, ни ускорений раз-
различных частей системы друг относительно друга. Однако, упуская эти детали,

мы выигрываем в простоте и в понимании основ движения. Использование за-

законов сохранения часто называют интегральным подходом к проблемам меха-

механики. Он связывает конечные состояния с начальными состояниями, независимо

от того, какое взаимодействие имеет место. Так, например, не имея точных знаний

о законе ядерных сил, мы все же можем сделать большое число точных выводов

относительно результатов данного взаимодействия.

Когда горизонтальная компонента скорости постоянна, как, например, при
движении тела, брошенного горизонтально или под углом к горизонту, суще-

существует большой соблазн рассматривать энергию, связанную с одной компонентой,

как нечто отличное от энергии, связанной с другой. Например, полная энергия

равна

При движении под углом к горизонту vx постоянна, так что мы можем написать

mvl/2 + mgy= E—mvl/2 = ?',

где Е' — новая постоянная. Максимальная высота, которой достигает брошенное

тело, определяется из условия, что в верхней точке траектории vy
= Q, так что

Правильно говорить о вкладе горизонтальной компоненты скорости в кине-

кинетическую энергию, но неверно считать эту часть энергии «горизонтальной ком-

компонентой энергии». Энергия является скаляром, и для нее нельзя выбрать ника-

никакого определенного направления. Она сохраняется в целом, но ее «части», свя-

связанные с горизонтальной или вертикальной компонентами движения, не сохра-

сохраняются по отдельности. Чтобы это увидеть, рассмотрим пример с шаром, который
скатывается по наклонной плоскости из состояния покоя. Хотя начальная по-

полезная потенциальная энергия целиком обусловлена вертикальным удалением
шара от поверхности Земли, mv\j2 не остается постоянной.

Чтобы дать почувствовать всю ценность информации, получаемой из закона

сохранения энергии, надо задать вопрос: «Зависит ли скорость, необходимая

для выхода спутника за пределы земного притяжения, от направления, в котором

выпущена ракета?» С помощью закона сохранения энергии мы» сразу же убеж-
убеждаемся, что для случая гравитационного взаимодействия не зависит. Попытайся

мы ответить на этот вопрос с помощью непосредственного использования закона

Ньютона, проблему разрешить было бы гораздо труднее. Мы нашли бы в конеч-

конечном счете, что возможны орбиты трех типов: эллиптические (включающие круго-
круговые как частный случай), параболические и гиперболические. (Движение по

прямой является частным случаем параболического или гиперболического дви-

движения.) Эллиптические орбиты соответствуют ракетам, которые не покидают

Землю (спутникам), параболические орбиты — ракетам, которые едва покидают

область земного притяжения, а гиперболические орбиты — ракетам, которые

выходят из сферы земного притяжения с запасом энергии. Энергетическая аргу-

аргументация позволяет полностью обойти довольно запутанное рассмотрение. Ес-

Естественно, мы не получаем такого же объема сведений, если пользуемся одним

лишь законом сохранения энергии; мы знаем скорость спутника на большом

удалении, но мы ничего не знаем о его подлинной орбите. (В проведенном выше
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рассуждении, как и в Учебнике, рассматриваемые скорости выхода за пределы

земного притяжения подразумеваются взятыми относительно центра Земли, а не

относительно ее поверхности. Мы можем воспользоваться вращением Земли

вокруг ее оси в направлении на запад, происходящим со скоростью я^ 0,5 км/с
на экваторе, чтобы сэкономить топливо при разгоне ракеты.)

Энергия выхода, вычисленная в Учебнике, дает кинетическую энергию, ко-

которую должна иметь ракета (вне атмосферы), чтобы она могла навсегда покинуть

Землю. Потребности в топливе будут, конечно, гораздо больше; в типичной ракете
большая часть работы, совершаемой ее двигателем, тратится на кинетическую

энергию вылетающих газов.

Понятие энергии связи — одно из тех, которые часто используют при рас-

рассмотрении атомов (см. раздел 34.6). Приведенный здесь пример, где мы вычис-

вычисляем энергию, которую надо добавить спутнику, вращающемуся по круговой
орбите вокруг Солнца, чтобы он мог преодолеть притяжение, имеет очень тесный

аналог в атоме водорода, в котором электрон движется по круговой орбите вокруг
протона.

Приложение 10 на стр. 425 содержит дополнительное рассмотрение ско-

скоростей выхода и энергий связи, которые упомянуты в разделе 24.5 Учебника.

24.6. Полная механическая энергия

Цель. Указать, что понятия потенциальной и кинетической энергии могут

быть распространены на более сложные механические системы, включая и те,

в которых мы не имеем подробных сведений о природе сил взаимодействия. Кроме
того, мы считаем, что механическая энергия всегда сохраняется для систем, в

которых другие формы энергии не играют роли.

Содержание, а) Сохранение энергии обсуждается на примере простой

игрушки, которая, тем не менее, является более сложной системой, чем любая

из рассмотренных ранее.

б) Обсуждается правомерность идеи о сохранении механической энергии
и указываются пределы ее справедливости.

Методические указания. Этот раздел представляет собой сводку и

обобщение тех идей, которые уже были представлены. Достаточно будет краткого

изучения. Понятие энергии будет далее обобщено в следующей главе, где рас-

рассматривается теплота.

В начале этого раздела Учебника сила взаимодействия между двумя мас-

массами определяется как ньютоновская, если: 1) массы можно считать точечными;

2) сила, приложенная к одной массе, равна и противоположна силе, приложенной
к другой; 3) сила направлена вдоль линии, соединяющей материальные точки.

Затем задается вопрос: «Можно ли пользоваться понятиями кинетической

и потенциальной энергии в системах, в которых массы нельзя считать сосредото-
сосредоточенными в определенных точках и (или) силы взаимодействия являются ненью-

тоновскими?» и приводится пример сложной системы (игрушечная карусель).

Правдоподобное рассуждение показывает, что сохранение механической энергии

(за исключением влияния трения) по-прежнему оказывается применимой кон-

концепцией.

Можно указать учащимся, что опускающаяся масса действует ньютоновской

силой на веревку, и можно считать, что эта сила передается без уменьшения

через шкив поверхности вала. Но масса карусели не является сосредоточенной
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на оси вращения, потому что инертные свойства вращающейся массы существенно

зависят от того, где располагается эта масса относительно оси вращения. Уча-

Учащиеся, вероятно, имели некоторое знакомство с этим эффектом (вращение фигу-
фигуриста на коньках, убыстряющееся, когда он прижимает руки к телу, представ-

представляющему ось вращения; тяжелые колеса в гироскопических и инерционных

игрушках), однако они, вероятно, не имели возможности сравнить инерцию при

вращении двух колес одинаковой массы, но с различным распределением массы.

Чтобы сравнить два колеса, имеющих одну и ту же массу, можно произвести

следующий простой расчет. Рассмотрим велосипедное колесо, которое идеализи-

идеализировано таким образом, будто вся его масса сосредоточена на ободе. Заменим

карусель этим колесом и предположим, что оно вращается с частотой N оборотов
в секунду в определенный момент. Масса колеса М равномерно распределена по

ободу на расстоянии R метров от оси вращения. Скорость точки на ободе состав-

составляет 2nRN м/с, поскольку за одну секунду точка N раз описывает окружность,
т. е. 2kR m за один оборот или 2nRN м каждую секунду. Теперь предположим,
что масса обода состоит из 1000 кусков (или любого числа, какое пожелаете).

Тогда масса каждого куска равна М/1000, а каждый кусок настолько мал, что

практически представляет собой материальную точку. Тогда кинетическая энер-

энергия каждого куска равна

масса -(скоростьJ/2 = (М/Ю00) BnRNJ/2.

Поскольку кинетическая энергия есть скалярная величина, полная кинетическая

энергия колеса равна сумме кинетических энергий каждого из его кусков. Эти

энергии все равны между собой, и поскольку всего у нас 1000 кусков, полная

кинетическая энергия колеса равна

М BnRNJ/2 или MR2 BnN)*/2.

Это выражение показывает, что два колеса, каждое одной и той же массы М и

вращающиеся с одной и той же частотой N об/с, могут иметь существенно раз-

различные кинетические энергии в зависимости от того, расположены ли их массы

близко или далеко от оси вращения.

Когда масса опускается на данное расстояние, гравитационная сила взаи-

взаимодействия имеет возможность производить над системой работу (потенциальная
энергия системы поэтому уменьшается), и кинетическая энергия возрастает на

данную величину. Эта величина будет одной и той же, если только опускающаяся

масса прошла одно и то же расстояние по вертикали из состояния покоя. Данная

кинетическая энергия вращения колеса может быть реализована двумя проти-
противоположными способами. Если R колеса велико, то N должно быть мало; а если

R мало, то N должно быть велико. Но N представляет собой скорость, с которой
вращается колесо, и эта же величина определяет (через радиус вала г) скорость,
с которой опускается масса; эта скорость равна 2nrN м/с. Это означает, что,

опустившись на данное расстояние, масса будет двигаться более или менее быстро
в соответствии с тем, велико или мало R. Колесо данной массы будет ускорять-
ускоряться более медленно, если R велико, чем оно ускорялось бы, если бы R было малым.

Колесо с большим R труднее раскрутить, чем колесо такой же массы, но с малым Я,

Интересный эксперимент, который можно проделать в классе в виде демон-

демонстрации, наглядно показывает превращение потенциальной энергии в кинетичес-

кинетическую и включает в себя довольно тонкие, простые технические приемы. Эта демон-

демонстрация представляет собой видоизменение опыта III. 12 (Энергия математи-

358



ческого маятника). Если учащиеся проделали эту лабораторную работу, демон-

демонстрацию либо не надо проводить, либо ее следует показать после выполнения

лабораторной работы, используя ее для повторения основных понятий главы.

Измеримое количество потенциальной энергии сообщается грузику маятника

путем отклонения его на известное расстояние от его положения равновесия.

Грузик освобождают. В нижней

точке его качаний первоначально
накопленная потенциальная энергия

целиком перейдет в кинетическую

энергию /лу2/2. В этот момент вся

его скорость направлена горизон-
горизонтально. Если мы сможем измерить

эту горизонтальную скорость, мы

сможем подсчитать его кинетическую

энергию и проверить энергетиче-

Ah
гЛезвие бритвы

\ Листок
\ бумагина
\копиробив

Рис 56>

ский баланс. Чтобы измерить эту

скорость, можно подвесить грузик

на легкой нити, а на его пути укре-

пить тщательно и прочно лезвие

бритвы таким образом, чтобы оно перерезало нить как раз в тот момент, когда она

займет вертикальное положение (рис. 56). Тогда скорость можно вычислить,

измерив горизонтальное расстояние, которое пролетит грузик до удара о пол. Это

расстояние надо разделить на время полета, которое определяется (путем расчета)
по известной высоте грузика над полом, когда он занимает положение равновесия.

Советуем потренироваться в выполнении этого опыта, прежде чем показывать

его в классе. Основной источник ошибок заключается в энергии, рассеиваемой при
перерезании нити. Удостоверьтесь, что лезвие бритвы закреплено жестко, и

пользуйтесь как можно более тяжелым грузиком. В классе можно провести не-

несколько измерений, используя различные значения отклонения А/г (см. рис. 56),

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

В табл. 18 задачи расклассифицированы по их примерному уровню труд-
трудности и по разделам, к которым они относятся. Отдельно указаны те из них,

которые наиболее подходят для классного обсуждения. Особенно рекомендуемые
задачи отмечены значком #.

ТАБЛИЦА 18

Разделы

24.1

24.2

24.3

24.4

24.5

24.6

Со звездоч-
звездочкой

1, 2

9

17

24—26

31

Легкие

4

12, 15

18

23

29

32

Средние

3,5#, 7, 8

10, 11, 14, 16

20

22

27, 28

Трудные

6

13

190, 21-

30

33

Классные

6

10, 11, 16

18, 19#
23

32
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Краткие ответы

1*. На рис. 24.1, г, где сила — наибольшая.

2*. Наклон графика равен k.

9*. Каждое тело будет двигаться прямолинейно в направлении действующей
на него силы.

17*. На 3,4-103 Дж.
24*. Дополнительно Ек.
25*. GMm(\Q r3).
26*. Они равны.
31* F=0,2 H.

Ответы с указаниями и решениями
3. Мы можем сделать простой чертеж, показывающий зависимость силы,

с которой действует амортизатор, от величины его сжатия (рис. 57).
а) Столкновение можно считать упругим, поскольку сила зависит только

от расстояния. Ступенчатая функция является простейшей формой зависимости

силы от расстояния, но это не та форма, .„

которая обычно встречается. Какая бы '

40

120
20

10

Рис. 57.

0,1 0,2 0,3

Рис. 58.

ОЛ

работа ни была произведена над пружиной приближающимся телом, точно такая

же работа F&x совершается пружиной, когда тело удаляется. Таким образом,
не происходит потерь кинетической энергии, поскольку в течение полного столк-

столкновения пружине не передается никакой энергии.
б) Кинетическая энергия в начале взаимодействия равна

(mi;2/2)H = 4 кг-C м/сJ/2=18 Дж.

в) Сжатие пружины будет продолжаться до тех пор, пока не будет больше
энергии движения, т. е. не будет больше кинетической энергии. Кинетическая
энергия убывает до нуля, когда скорость массы равна нулю. Первоначальная
кинетическая энергия массы оказывается переданной при этом пружине в виде

потенциальной энергии. Работа, произведенная при сжатии этой пружины,

равна постоянной силе F, умноженной на величину сжатия Д#. Эта работа, про-
произведенная над пружиной, запасается в виде ее потенциальной энергии, так что

в тот момент, когда масса прекращает движение, начальная кинетическая энер-
энергия, вычисленная в п. б), равна запасенной потенциальной энергии:

18Дж=120Н.Дл; м, Дл:= 18/120 = 0,15 м.

г) Когда пружина сжимается на 10 см, ее потенциальная энергия возрастает
от 0 до величины 120-0,1 = 12 Дж. Это увеличение происходит за счет кинетиче-
кинетической энергии движения (масса замедляется), и масса теряет 12 Дж кинетической

энергии. Она еще обладает при этом 18—12=6 Дж кинетической энергии. От-
Отношение кинетической энергии к потенциальной составляет 6 : 12, т. е. в этот

момент взаимодействия половина кинетической энергии перешла в потенциальную.
4. Эта задача аналогична задаче 3. Закон сохранения энергии используется

для нахождения кинетической и потенциальной энергий на промежуточной
стадии взаимодействия.

а) График F от х приведен на рис. 58.

б) Работа, произведенная внешним телом при сжатии пружины на расстояние

0,1 м, численно равна заштрихованной площади под графиком зависимости силы
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от величины сжатия, приведенным на рис. 58. Работа, совершаемая массой при
ее движении от #=0 до #=0,1 м, равна поэтому

r=10H-0,l м/2 = 0,5 Дж.

Потенциальная энергия, накопленная в пружине, будет такой же, как и величина

произведенной над ней работы, т. е. равна 0,5 Дж.
Начальная кинетическая энергия движущейся массы была

?к = 3 кг-B м/сJ/2 = 6 Дж.

Увеличение потенциальной энергии происходит за счет кинетической энергии
массы. Поэтому кинетическая энергия должна уменьшиться на те же 0,5 Дж,
на которые возросла потенциальная энергия. Следовательно, при #=0,1 м кине-

кинетическая энергия массы составляет 6—0,5=5,5 Дж.

в) Работа, производимая при сжатии пружины на 0,1 м, будет одной и той

же независимо от того, производится ли она движущейся массой или рукой:

W = ЮН- 0,1 м/2 = 0,5Дж.
В этой точке потенциальная энергия пружины возросла от 0 до 0,5 Дж. Эта энер-
энергия идет на ускорение массы, когда убирают руку. Поскольку результирующее
ускорение вызывается непостоянной силой, решение проблемы движения облег-
облегчается использованием закона сохранения энергии. Когда пружина возвращается
к своему нормальному состоянию, взаимодействие заканчивается, и переход
потенциальной энергии в кинетическую завершается. Следовательно, в этот

момент кинетическая энергия равна /т>2/2=0,5 Дж.
5. Эта задача — идейно такая же, как и задача 4, но содержит нелинейную

зависимость силы от расстояния.
а) Работа, производимая при сжатии пружины, численно равна площади

под графиком зависимости силы от сжатия. В этом случае полная площадь под

кривой между 0 и 0,3 м равна сумме площадей треугольника и трапеции, по-

поскольку эти фигуры представляют собой две части полной площади, на которые
она распадается, если ее пересечь вертикальной прямой, соответствующей рас-
расстоянию 0,2 м:

площадь треугольника = 2 Н» 0,2 м/2=0,2 Н«м = 0,2 Дж,
площадь трапеции=BН+4 Н)-0,1 м/2 = 0,3 Н-м = 0,3 Дж,
сумма площадей = 0,5 Дж= работе сжатия.

б) Потенциальная энергия пружины равна работе, произведенной приложен-
приложенной силой, т. е. равна 0,5 Дж (см. выше).

в) Приобретение кинетической энергии равно потере потенциальной энергии
и определяется площадью под кривой зависимости силы от расстояния, заклю-

заключенной между вертикалями, соответствующими #=0,3 и #=0,2 м. Эта площадь

как раз и есть площадь трапеции, которая, как было найдено в п. а), составляет

0,3 Дж. Поэтому ту2/2=0,3 Дж= приращению кинетической энергии.
6. Эта задача служит для привития учащимся вкуса к придумыванию меха-

механических устройств
Для того чтобы получилось изменение наклона (излом) у кривой зависимости

сила — сжатие в точке 0,2 м, должно существовать соответствующее изменение

коэффициента жесткости пружины при сжатии, равном 0,2 м. Этого можно до-
достигнуть большим числом способов. Например, можно расположить две пружины
таким образом, чтобы подвижный конец одной из них выступал на 0,2 м по от-

отношению к подвижному концу другой. Если пружины имеют разные диаметры,
их можно поместить одну внутри другой, как показано на рис. 59.

Когда тело приближается справа, оно сперва приходит в соприкосновение
с пружиной /. При этом оно подвергается действию силы F1z=klx до тех пор,
пока оно сжимает пружину 1 на расстоянии в 0,2 м. Из графика рис. 24.16 мы

видим, что когда Fx=2 Н, то #=0,2 м, поэтому ^= 10 Н/м. В точке #=0,2 м

тело приходит в соприкосновение с пружиной 2. Начиная с этого момента, на

него действует сила

где А# представляет величину сжатия после точки, соответствующей #=0,2 м.
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Из графика на рис. 24.16 видно, что наклон прямолинейного участка для
х> 0,2 м равен

Поэтому k2 также должно иметь значение 10 Н/м.
7. а) (?к)н=ти2/2= 1 кг-A0 м/сJ/2=50 Дж,

(EK)K = mi?/2=l кг-(8 м/сJ/2 = 32 Дж, ДЕк = 50 —32 = 18 Дж.

б) Когда масса приводится в состояние покоя, она сжимает пружину, произ-
производя работу, равную ее потере кинетической энергии E0 Дж). На обратном пути
пружина возвращает массе только 32 Дж. Поскольку мы не можем сказать оп-

определенно, что произошло с «потерянной» энергией, одна из возможностей со-

состоит в том, что механическая энергия была преобразована в тепловую при сжатии
и распрямлении пружины. Другая возможность состоит в выделении теплоты

при трении массы о какую-либо поверхность, по которой она скользит.

Пружина7 Пружина2

Закрепленные
ненцы

Рис. 59.

в) График а) на рис. 24.17 качественно объясняет полученные результаты;

площадь под верхней кривой (сжатие изменяется от 0 до 0,2 м) больше, чем пло-

площадь под нижней кривой (сжатие изменяется от 0,2 до 0 м). Первая площадь
равна работе, произведенной над пружиной при ее сжатии, вторая площадь

равна работе, возвращаемой пружиной при ее распрямлении до нормальной длины.

Площадь под верхней кривой должна равняться работе E0 Дж), необходимой
для остановки массы, первоначально двигавшейся со скоростью 10 м/с, а площадь

под нижней кривой должна равняться работе C2 Дж), необходимой для ускорения
массы из состояния покоя до скорости в 8 м/с. На графике а) первая площадь

составляет около 50 Дж, а вторая — около 30 Дж. Кривая б) представляет слу-
случай, когда затраченная работа равна полученной затем энергии. Кривая в) пред-
представляет случай, когда больше энергии получается, нежели затрачивается. Ни

один из этих случаев не соответствует условиям задачи.

8. а) Пружина линейна и упруга. Поэтому величина силы связана с вели-

величиной сжатия соотношением F— kx. Переписывая его, мы получаем k= Fix, в

частности, 6=20 Н/0,2 м = 100 Н/м.

б) Если изобразить это соотношение графически (рис. 60), то из /^=A00 Н/м)'*
мы видим, что площадь треугольника с основанием х0 равна

A = *0- 100 H/m-xo/2 = 5O Н/м-Хо-

Эта площадь равна работе, которая должна быть затрачена для того, чтобы сжать

пружину до значения х, равного х0, и является поэтому потенциальной энер-
энергией. Следовательно, в общем случае

?/ = 50 Н/м.х2.
Если х измерено в метрах, U окажется выраженной в джоулях.

10. При решении этой задачи мы будем предполагать, что все движения

происходят без трения и что система как целое покоится в тот момент, когда от-

отпускают оттянутую массу.
Поскольку никаких внешних сил на систему «конек — масса» не действует,

закон сохранения количества движения говорит нам о том, что центр масс должен

все время оставаться в покое. Движение системы будет состоять из колебаний

взад и вперед ее верхней и нижней половин, причем одна из них всегда будет
двигаться в направлении, противоположном направлению дзижения другой.
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Первоначальная потенциальная энергия, запасенная в изогнутых ножовочных

полотнах, переходит в кинетическую энергию движения частей системы. Когда
ножовочные полотна вертикальны, потенциальная энергия равна нулю, и вся

энергия заключена в равных скоростях двух масс. Когда полотна максимально

изогнуты, движение масс равно нулю, и вся энергия системы пребывает теперь
в форме потенциальной энергии.

Если мы описываем движение более точно, мы можем принять во внимание

вертикальные перемещения верхней массы, поскольку полотна вынуждают ее

двигаться по дуге окружности. Это движение по вертикали «напрягает» и «рас-

«расслабляет» «пружину» гравитационного поля. Однако в том положении, когда

ножовочные полотна не изогнуты и кинетическая энергия максимальна, грави-
гравитационная потенциальная энергия также максимальна. Таким образом, преобра-
преобразующаяся энергия системы никогда не бывает целиком кинетической. Всегда
имеется некоторое количество способной превращаться потенциальной энергии,
запасенной либо в пружинах, либо в гравитационном поле.

Если мы принимаем во внимание трение, энергия будет постепенно пре-
превращаться в тепло и движение прекратится. Поскольку трение в данном случае
является трением качения о поверхность, на которой находится конек, на систему
«конек — масса» будет действовать внешняя сила, и ее центр масс будет в свою

очередь совершать постепенно затухающие колебания взад и вперед, вместо того
чтобы оставаться неподвижным, как это было описано выше.

11. Если масса прикреплена к пружине, она будет двигаться взад и вперед,
совершая гармонические колебания.

Мы можем получить амплитуду этих колебаний, применяя закон сохранения
энергии. В тот момент, когда масса достигает пружины (и зацепляется за нее),
ее энергия является просто кинетической:

= 3 кг-B м/сJ/2==6 Дж.

При максимальном сжатии (или растяжении) пружины энергия целиком потен-

потенциальна:

U = kx2/2 = 6 Дж.

Поскольку k— 100 Н/м, мы получаем

= 0,12м2, *= ±

Масса колеблется взад и вперед от 0,35 м вправо до 0,35 м влево от положения

равновесия. Мы можем также получить период колебаний. Используя результат
раздела 24.1, имеем

Т=2п У"т]Ъ= 2к УЗ кг/100 Н/м =1,1 с.

12. Сила, действующая на большой шар со стороны клетки, в точности равна

и противоположна силе, действующей на него со стороны малого шара. Следо-
Следовательно, результирующая сила "на большой шар равна нулю, и он не приобретает
кинетической" энергии.

13. В тот момент, когда производится выстрел, полная энергия равна сумме

потенциальной энергии сжатия пружины и кинетической энергии поршня и

шарика. Поршень и шарик достигают своей максимальной скорости, когда пру-
пружина достигает своей естественной длины. В этой точке полная энергия является

кинетической энергией поршня и шарика. После прохождения этой точки пружина
растягивается, увеличивая свою потенциальную энергию и уменьшая кинетиче-

кинетическую энергию и скорость поршня. Шарик продолжает двигаться с постоянной

скоростью и отрывается от поршня.

В точке, где начинается отделение шарика от поршня,

где k — коэффициент жесткости пружины. Затем шарик уносит кинетическую

энергию

Ек= Mv*/2 = 1М/(т+М)] М*/2 = [М/(т+М)} ?/пруж.
Строго говоря, мы должны учесть и массу пружины, которая распределена

по всей ее длине. В этой задаче мы сделали упрощающее предположение, заменив
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массу пружины массой т на ее конце. Это предположение является хорошим

приближением к действительности, если т составляет одну треть от массы

пружины.
14. В этой задаче нет чисел. Мы предлагаем обсудить ее в общем виде, а затем

рассмотреть частные случаи т1= m2, rn1<^m2i m2^>m2i вместо того чтобы поль-

пользоваться числовыми примерами.

а) Полная кинетическая энергия после пережигания нити равна энергии

U=kx2l2t первоначально запасенной в пружине.
б) Если мы обозначим скорости v± и v2t количества движения будут связаны

соотношением

—m2v2, или Р1 =—р2-

в) Кинетическая энергия первого ползуна равна

Ек1= mxv\l2 = тх (PiMJ^= р\12щ.к1

Аналогично (см. п. б))

г) После пережигания нити полная энергия будет целиком кинетической, так

что

Е = Ек1+ Ек2 = pJ/2/щ + pl/2m2 = р\ (щ
Поэтому

EKJE = ( р?/2тх)/ [pi (тг
аналогично

Ек2/Е =

Отношение этих двух долей равно

(Ек1/Е)/(ЕК2/Е) = Ек1/Ек2 = т2/ть

Это отношение может быть также получено непосредственно из п. в). Если массы

равны, каждый ползун забирает половину энергии. Если масса одного ползуна
много меньше массы другого, он заберет почти всю энергию. Во всех случаях

количества движения равны и противоположны.

15. а) В точке максимального сжатия х=х0 вся энергия находится в форме
потенциальной: Е= U=kxl/2. Когда пружина освобождается, масса ускоряется

до тех пор, пока пружина не достигнет равновесного положения. В этой точке

вся энергия является кинетической, и масса отрывается от пружины. Тогда
Е — Ек0 — mv\j2. Поскольку полная энергия постоянна, mvl/2= kxl/2, v0

—

=х0 Y^lm. Для данной пружины ?=200 Н/м. Количество движения 5-килограм-
5-килограммовой массы равно тогда

г
mvo

= xo \гШ= 0>1 м-1^200 Н/м-0,5 кг=1 кг-м/с.

б) Для массы 0,125 кг

o Q
= 0,l /200-0,125 = 0,5 кг-М/с;

для массы 2 кг

mvo
= xo V~kin = 0tl ^200-2 = 2 кг-м/с;

для массы 8 кг

mvo = xQ УТт= 0Л У 200-8 = 4 кг-м/с.

в) Поскольку первоначальная потенциальная энергия одинакова, какая
бы масса ни приводилась в движение пружиной, кинетическая энергия будет
одной и той же для каждой из масс:

Як0=?*о/2 = 200.@,1J/2=1 Дж.

Таким образом, когда фиксированное количество энергии передается телам раз-
различной массы, результирующие количества движения не будут одинаковыми, но

будут изменяться пропорционально корню квадратному из масс.
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16. Чтобы найти различные кинетические энергии, мы можем измерить по

кривой зависимости перемещения от времени скорости (наклоны) в соответствую-
соответствующие моменты времени. Для этого проводим касательные к кривым зависимости

перемещения от времени и вычисляем отношение Ad/А/ для касательной.

а) Начальная скорость массы тх равна

1^ = Ad/A/= @,2—0)м/@,2—0)с=1 м/с при /=0с.

Начальная кинетическая энергия тх равна при этом

?Kl = m1r;i/2==3 кг -A м/сJ/2 = 1,5 Дж.

б) Конечная скорость т1

i>i = Ad/A/= @,16—0,04)м/@,23—0)с = 0,52 м/с при / > 0,17 с.

Конечная кинетическая энергия т1

Е'к1 = тг (v[)*/2 = 3 кг • @,52 м/сJ/2 = 0,4 Дж.

в) Конечная скорость т2

t>2 = Ad/A/= @,23—0,04) м/@,17 —0,04) с = 1,5 м/с при / > 0,17с.

Конечная кинетическая энергия т2

1>1 Дж.

Мы замечаем, что энергия сохраняется при этом взаимодействии. Перед тем как
столкновение началось,

Е = Ек1+ Ек2 = 1,5 +0= 1,5 Дж..

После того как взаимодействие закончено,
''

=0,4+1,1 = 1,5 Дж.

г) Кинетическая энергия минимальна, а потенциальная максимальна на рас-
расстоянии наибольшего сближения. Перемещая листок бумаги вдоль двух кривых,
можно убедиться, что расстояние d2—dx будет наименьшим при /= 0,085 с. В этот

момент относительная скорость равна нулю, т. е. обе массы имеют одну и ту же

скорость. Для проверки можно измерить наклоны двух графиков:

a,=Ad/A/ = @,16— 0,01) м/@,2—0)с = 0,75 м/с при /=0,085 с,

u2 = Ad/A/ = @,22— 0,07) м/@,2—0) с = 0,75 м/с при / = 0,085с.

Кинетическая энергия в этот момент равна

mj.fli/2 + m2vt/2 = {тх + т2) v2/2 = C +1) @,75J/2 = 1,1 Дж.

д) Полная энергия равна начальной (или конечной) кинетической энергии,
если мы положим потенциальную энергию равной нулю на расстояниях, пре-

превышающих радиус взаимодействия d. Полная энергия равна в силу этого 1,5 Дж.
При /=0,085 с кинетическая энергия равнялась 1,1 Дж. Таким образом, потен-

потенциальная энергия в этот момент должна быть равна

U =E—?к=1,5Дж—1,1 Дж= 0,4 Дж.

(Две кривые, аналогичные изображенным на рис. 24.20, можно получить, исполь-

используя мягкие пружинные амортизаторы у тележек в установке, описанной в

опыте III.13.)
18. а) Начальная кинетическая энергия равна

mv2/2 = 0,25 кг • B м/сJ/2 = 0,5 Дж.

Шарик приобретает кинегическую энергию (и теряет потенцильную) по мере того,
как он спускается в долину, но затем он теряет кинетическую энергию, поднимаясь
по противоположному склону, до тех пор, пока в момент достижения им перво-
первоначальной высоты он не будет иметь снова 0,5 Дне кинетической энергии. Он
продолжает подниматься на дополнительную высоту по вертикали /г, такую, что
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mgh=Otb Дж. Таким образом,

/1=?к/т?=0,5Дж/@,25 кг.9,8Н/кг) = 0,2м.

Дополнительное расстояние, которое он проходит вдоль склона, равно /z/sln45°=
= 0,29 м.

Движение шарика можно представлять себе как отскакивание при столк-

столкновении: он подходит слева, спускается, вкатывается вверх по склону, а затем

возвращается, проделывая в обратной последовательности весь свой путь и уходя
налево с той же самой скоростью, которую он имел вначале.

б) Движение будет колебательным. Шарик поднимается справа на такую же

высоту, на какой он находился первоначально слева. Чтобы покинуть долину,

ему потребовалась бы дополнительная энергия величины mgh> где h — дополни-
дополнительная высота, на которую он должен подняться, равная 0,5 м (см. рис. 24.21).
Энергия связи равна, следовательно, 0,25*9,8-0,5= 1,2 Дж.

в) Энергия связи в случае а) отрицательна, потому что частица обладает
свободной кинетической энергией, когда находится вне долины. Нужно отобрать
у шарика 0,5 Дж энергии, чтобы он едва мог выкатиться из ямы (не имея кине-

кинетической энергии на горизонтальной поверхности). Таким образом, энергия
связи в случае а) равна 0,5 Дж.

19. Эта задача довольно проста, если заметить, что постоянная сила тяжести

(направленная вниз и равная mg) не оказывает иного влияния на подвешенную

массу, кроме того, что смещает ее положение равновесия. Это легко видеть, если

мы рассмотрим сперва силы, действующие на массу, когда она находится в по-

положении равновесия. Результирующая сила равна нулю; направленное вниз

гравитационное притяжение уравновешивается направленным вверх натяжением

пружины, имеющим ту же величину. Чему равна результирующая сила, дей-
действующая на массу в других положениях? Сила тяжести не изменяется, но сила

пружины изменяется. Если масса находится выше равновесного положения,

растяжение пружины меньше, меньше и сила действия пружины, так что резуль-
результирующая сила направлена вниз, назад к положению равновесия. Аналогично,
если масса находится ниже положения равновесия, растяжение пружины больше,
направленное вверх натяжение пружины тоже больше, и результирующая сила

направлена вверх — снова обратно к положению равновесия. Результирующая
сила как раз равна —kd (где d — смещение из равновесного положения).

Мы можем убедиться в этом математически, если обозначим через л:0 величину
растяжения пружины в положении равновесия. Тогда если пружина смещается
из положения равновесия на расстояние d, полное смещение пружины относи-
относительно ее нерастянутого положения равно х— хо-{- d. Следовательно, пружина
действует на массу с силой, равной —kx=—k(xo+d). Если в качестве положи-

положительного выбрано направление вниз, результирующая сила, действующая на

массу, будет равна F=mg—k(xo+d).
Теперь в равновесии (d=Q) F=0, так что mg= kx0. Из этого равенства

видно, что х0 положительно; в соответствии с выбранным нами правилом знаков

это означает, что пружина смещается вниз от своего нерастянутого положения,

когда к ней подвешивается масса. Следовательно, F=—kd. Если мы примем

потенциальную энергию в равновесии за нуль, то ?/=Ы2/2, в точности как если

бы мы пренебрегли силой тяжести с самого начала.

Эта задача аналогична опыту III.И. Дальнейшие комментарии содержатся в

разделе ЛР Руководства, в связи с рекомендациями по проведению этого экс-

эксперимента. После этих предварительных указаний можно без труда ответить на
поставленные вопросы.

а) Поскольку сила линейно зависит от перемещения, мы имеем дело с гармо-
гармоническими колебаниями, причем крайние точки этого движения находятся на

равных расстояниях над и под положением равновесия*. Поэтому масса поднимется

на 0,15 м над положением равновесия (на 0,3 м над той точкой, где ее отпустили).
б) Когда масса проходит через положение равновесия (d=0), потенциальная

энергия будет минимальна (U = Q), а кинетическая будет равна полной:

mv2/2 = Е = kdl/2, где d0 = 0,15 м,

уа = Ыо/т, v = d0 yrk/m = O9\5 м- /"D0 Н/м)/0,8 кг= 1,1 м/с.
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в) Поскольку оба ответа не зависят от напряженности гравитационного поля,

одинаковые ответы получаются на Земле, на Луне и вообще где бы то ни было.
Единственное влияние, которое оказывает изменение g, состоит в изменении рас-

растяжения пружины при равновесии хо= mg/k.
20. Чтобы вычислить полную энергию камня, мы должны сначала догово-

договориться, где считать потенциальную энергию равной нулю. Для удобства выберем
за нулевой уровень поверхность Земли.

а) Начальная кинетическая энергия равна

Начальная потенциальная энергия равна mgA= 0,2» 9,8» 20= 39,2 Дж. Полная
энергия равна сумме кинетической и потенциальной в любой момент: 39,2 Дж+
+ 40 Дж=79,2 Дж.

б) Поскольку полная энергия в этой системе сохраняется (мы пренебрегаем
сопротивлением воздуха), полная энергия равна 79,2 Дж во всех точках траек-
траектории.

в) На высоте 15 м над поверхностью Земли потенциальная энергия равна
mgh— 0,2-9,8* 15= 29,4 Дж. Поэтому с помощью закона сохранения энергий
мы находим, что кинетическая энергия ту2/2 определяется из условия

или

Мы взяли положительный знак, поскольку требовалось определить только

величину скорости.
Заметим, что полученные ответы совершенно не зависят от угла, который

скорость камня составляет с горизонтом. Кинетическая энергия зависит только
от величины скорости; не имеет значения, движется ли тело вверх, вниз или в

сторону.
21. а) Когда пружина сжимается на величину х, накапливаемая энергия

равна работе, производимой при сжатии пружины. Сила F, необходимая для
сжатия пружины, изменяется по линейному закону от 0 до kx. Энергия, запасен-
запасенная в пружине, равна kx2/2. Эта энергия получается в результате иЗхменения по-

потенциальной энергии шара в поле тяжести Земли, равного mg(h-\-x).
Смещение х отсчитывается от первоначального положения верхнего витка

пружины, а в качестве положительного выбрано направление вниз. В точке

максимального сжатия, где кинетическая энергия равна нулю,

kx*/2 = mg(h+x), kx2/2—mgx—mgh= 0, x=mg/k ± V(mg)*+2kmgh/k.
(Знак плюс дает величину максимального сжатия.)

Первый член tnglk представляет собой величину сжатия, которое имела бы

пружина в состоянии равновесия, если бы шар неподвижно лежал на ней (см.
задачу 19). Второй член ± yr(mgJ-{-2kmgh/k представляет собой амплитуду
колебаний относительно положения равновесия, если шар застревает на конце

пружины. (Знак минус дает максимальное растяжение пружины, когда шар
прикреплен к ней.)

б) Подставляя заданные числовые значения, получаем

Подставляя г = /•+ Дг, получаем
ДU = GMm/br/r (г + Дг) = GMmbr/r2 A + Дг/г).

Далее, поскольку GM/r2 = g, имеем

bU = mgto/(l+&r/r).
Если Ar/г очень мало по сравнению с 1, это совпадает с выражением &U= mghr.
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23. Поскольку сила взаимодействия между протонами имеет характер от-

отталкивания, они сопротивляются взаимному сближению, или разлетаются, если

их отпустить в состоянии покоя. Когда они ускоряют друг друга в противополож-
противоположные сторсны, их потенциальная энергия превращается в кинетическую. Поэтому
потенциальная энергия больше, когда они прижаты друг к другу, и меньше, когда

они разойдутся.
Другой путь рассмотрения данной задачи состоит в том, чтобы заметить, что

мы передаем протонам энергию, толкая их друг к другу. Следовательно, их по-

потенциальная энергия увеличивается при взаимном сближении. Ситуация ана-

аналогична случаю сжатой пружины.

27. В разделе 24.4 показано, что потенциальная энергия, соответствующая
силе притяжения GMm/r2, имеет вид U=—GMm/rt если условиться считать ее

равной нулю на бесконечном удалении. Сила притяжения между электроном
и протоном равна k/r2. Соответствующая потенциальная энергия выражается
поэтому в виде U=—k/r. Полная энергия будет при этом

где т — масса электрона, a v — его скорость.

Поскольку масса протона гораздо больше, чем масса электрона, мы можем

(с хорошей степенью точности) пренебречь его движением, точно так же как мы

пренебрегаем движением Солнца, вызванным силами притяжения со стороны
планет. Для равномерного движения по окружности ускорение по направлению
к центру (т. е. ускорение электрона по направлению к протону) равно iP/г. При-,
равнивание произведения та силе тогда дает

mv2/r — k/r2, или mv2 = k/r.

Таким образом, полная энергия равна

Бели бы электрон был едва вырван из-под действия притяжения протона,
полная энергия системы была бы равна нулю (нуль кинетической энергии на

бесконечном удалении, где U также равно нулю). Поэтому, чтобы освободить
электрон, мы должны были бы сообщить ему добавочную энергию, равную

2,3.10-28/B-0,5.10-10) = 2,3.10-18 Дж.

28. а) Если мы предположим, что человек первоначально неподвижен, энер-
энергия связи будет равна

GMm/r3 = F,7- Ю-11).F-1024)• 70/F,4-106) = 4,4-109Дж.

Некоторые учащиеся могут поставить вопрос о елиянии на энергию связи дви-

движения человека на экваторе, вызванного вращением Земли вокруг своей оси.

Однако поскольку видимая сила, с которой Земля притягивает тело на экваторе,
составляет благодаря этому вращению 0,997 ст ее значения на полюсе (см. раздел
20.11), энергия связи будет нечувствительной к такой поправке в пределах при-
принятой точности вычислений (до двух значащих цифр). (В отношении количест-
количественного расчета см. задачу 29.)

б) Луна вращается по круговой орбите вокруг Земли. В случае тела, враща-
вращающегося по круговой орбите, энергия связи составляет по величине половину
потенциальной энергии:

ECB= GMm/2rt

как выведено на стр. 161 Учебника. Из табл. 21.2 на стр. 70 мы берем значения

для т и г, так что

F,7.10-п).F,0.Щ2*). G,3.
2C,8-108)

29. Человек, вращающийся вместе с Землей со скоростью vb на экваторе,
обладает энергией связи GMm/r—mv^/2, где vB=2nr/T. Подсчет показывает, что

гэ = 2яF.106 м)/(9-104) с = 4.102м/с.
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Тогда человек, имеющий массу 70 кг, обладает кинетической энергией mt<|/2 =
= 70* D* 102J/2= 6* 106 Дж. Это составляет всего 10-3 от энергии связи, вычислен-
вычисленной в п. а) задачи 28, так что этой поправкой можно пренебречь при вычислениях

с точностью до двух значащих цифр.
30. а) Спутник уже вращается вокруг Солнца по земной орбите и ему необ-

необходимо лишь покинуть Землю. Когда спутник находится на противоположной
по отношению к Солнцу стороне орбиты, он отстоит от центра Земли на 5« 104
земных радиусов, и его потенциальная энергия в гравитационном поле Земли
составляет всего 2« Ю-5 от ее значения на поверхности Земли.

Это значение энергии гораздо меньше, чем последняя значащая цифра наших

самых точных вычислений энергии спутника на поверхности Земли. Поэтому
мы можем с достаточной точностью считать, что спутник обладает нулевой по-

потенциальной энергией в этой точке. Пусть г3 обозначает радиус Земли; тогда

работа, необходимая для вывода спутника на требуемую орбиту, равна (см.
стр. 160)

?3 &GMm/r3, ? = 6,24.107 Дж.

б) Мы используем массу Солнца и радиус земной орбиты для вычисления

работы, которую должен совершить спутник против сил тяготения, чтобы, выйдя
с земной орбиты, покинуть Солнечную систему. Пусть г0— 1,49-1011 м — радиус
земной орбиты. Поскольку спутник находится на круговой орбите вокруг Солнца,
его энергия связи с Солнцем равна

?с = GMm/r0—mv2/2 = GMm/r0—GMm/2r0 = GMm/2r0 =

= F,67- 10-nHl,98.1030)-1/B-1,49-1011) =4,43-108 Дж.

в) Для того чтобы покинуть Солнечную систему, выйдя с Земли, требуется
энергия, достаточная как для выхода за пределы земного притяжения, так и для

выхода за пределы Солнечной системы:

Е = Е3 +ЕС, ? = 5,05-108 Дж, Е/Е3 = (Е3 + ЕС)/Е3 «8.

Чтобы выйти за пределы Солнечной системы, требуется приблизительно в восемь

раз больше энергии, чем для выхода из области земного притяжения.

32. Покажется поведение шарика удивительным или нет,— несомненно,

зависит от понимания того, что вернувшийся шарик увеличил свою полную энер-

энергию (потенциальная энергия будет той же самой, что и в момент бросания, по-

поскольку он находится снова в том же месте, но его кинетическая энергия стано-

становится больше). Будем надеяться, что учащиеся будут удивлены! Наиболее ве-

вероятное объяснение поведения шарика состоит в том, что кто-то поймал его на

другом конце трубы и бросил обратно.
33. В системе центра масс тележки равных масс имеют равные и противо-

противоположные скорости: уг ——v2. Поскольку относительная скорость vx—у2 Равна уо>

имеем

v1
= — v2 = v0/2.

Кинетическая энергия в системе центра масс перед столкновением равна при этом

Когда тележки находятся ближе всего друг к другу, они покоятся относительно

центра масс: они не движутся ни к нему, ни от него. Следовательно, энергия
системы является целиком потенциальной и равна kx%l2, где х0

— максимальное

сжатие пружины. По закону сохранения полной энергии

т A>0/2J/2 + т (vo/2)*J2 = kx20/2, x0 = v0
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ГЛАВА

25 ТЕПЛОТА, МОЛЕКУЛЯРНОЕ ДВИЖЕНИЕ
И СОХРАНЕНИЕ ЭНЕРГИИ

Краткое содержание главы 25

Эта глава преследует двойную цель. Во-первых, в ней рассматривается важ-

важное звено в цепи превращений энергии. В любом эксперименте, включающем

механические взаимодействия, передача энергии почти всегда сопровождается

превращением некоторого количества механической энергии во внутреннюю

энергию. Развитием понятия внутренней энергии в Учебнике достигается вторая,

не менее важная цель. Гл. 25 обеспечивает естественный переход от проблем меха-

механики к представлениям об атомном строении в части IV. Этот мост перекинут

путем рассмотрения внутренней энергии с точки зрения кинетической теории.

Разделы 25.1, 25.2. Обсуждается движение молекул идеального газа. Вы-

Выводятся соотношения между количеством движения и кинетической энергией
отдельных молекул, с одной стороны, и давлением и температурой газа как целого,

с другой. В этих разделах дано молекулярно-кинетическое истолкование газового

давления, а также указана пропорциональность абсолютной температуры и

средней кинетической энергии движения центров масс молекул. Далее рассмат-

рассматривается понятие тепловой энергии и проводится различие между полной тепловой

энергией и кинетической энергией движения центров масс.

Разделы 25.3—25.7. Обсуждаются механизмы превращения макроскопи-

макроскопической кинетической энергии в кинетическую энергию хаотического молекуляр-

молекулярного движения. Описываются опыты, устанавливающие «механический эквивалент

теплоты». Кратко описаны теплопередача и калориметрия. Глава завершается

сводкой, посвященной всеобщности закона сохранения энергии.

План изучения главы 25

В табл. 19 предлагаются возможные варианты планирования материала этой

главы, увязанные с общим планом изучения части III, содержащимся во Вве-

Введении на стр. 219.

ТАБЛИЦА 19

Глава 25

Разделы

25.1, 25.2

25.3—25.7

9-недельный план изучения
части III

В классе,

часы

2

2

В лаборато-
лаборатории, часы

0

0

Опыты

—

1 5-недельный план изучения
части III

В классе,
часы

4

4

В лаборато-
лаборатории, часы

0

1

Опыты

III.13
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Дополнительные материалы к главе 25

Лаборатория. В лабораторной работе III. 13 (Лобовое столкновение)
роликовые тележки с пружинными амортизаторами и отметчик времени с бумаж-
бумажной лентой используются для анализа изменений энергии при столкновениях.

С помощью менее упругих амортизаторов демонстрируется увеличение потерь

кинетической энергии. Эту лабораторную работу можно провести в любом месте

при прохождении гл. 25.

Домашние, классные и лабораторные задания. Большое число

задач к этой главе посвящено качественному рассмотрению превращений энергии
в различных типах систем. Обсуждение некоторых из этих задач будет эффек-
эффективным способом внедрить в сознание учащихся роль внутренней энергии во

всеобщем сохранении энергии. Если у вас сжатые сроки, на обсуждение таких

задач можно перенести центр тяжести при прохождении этой главы. Наиболее

подходят для этой цели задачи 2, 15, 27, 28 и 30. Если у вас достаточно времени,

интересно разобрать задачи 13 и 22, посвященные поведению идеального газа,

а также задачи 24 и 29, касающиеся количественного превращения механической

энергии во внутреннюю (часто называемого механическим эквивалентом теплоты).
Ответы, решения и таблицу, в которой задачи классифицируются по их

примерному уровню трудности, см. на стр. 376,

25.1. Давление газа

25.2. Температура и кинетическая энергия молекул. Тепловая энергия

Цель, а) Дальнейшее развитие атомной модели вещества путем изучения
кинетической теории.

б) Выработать представления о том, что с хаотическим движением атомов

связана энергия, и отождествить ее с тепловой энергией (теплотой).
Содержание, а) Сила, с которой газ действует на стенки содержащего его

сосуда, может быть понята как усредненный результат большого числа очень

малых ударов газовых молекул.

б) Сила, действующая на единицу площади
— давление, связана со средней

кинетической энергией молекул соотношением P = 2/3EKN/Vf где Р—давление,
N — число молекул в объеме V газа и Ек — средняя кинетическая энергия дви-
движения центра масс отдельной молекулы.

в) Ек прямо пропорциональна абсолютной температуре газа: EK=3/2kT
(*=1,37-10-аз Дж/(молекул.°К)).

г) Один моль любого газа, состоящего из одноатомных молекул (Не, Аг, Ne
и т. д.), повышает свою температуру на 1 °К, если ему сообщить 12,4 Дж энергии.
Газы, состоящие из более сложных молекул (Н2, О2, N2 и т. д.), могут потребовать
подвода большего количества энергии для такого же изменения температуры,

поскольку некоторая часть энергии может идти на вращение и колебание.

д) Тесная связь между кинетической энергией хаотического движения моле-

молекул и температурой (а следовательно, и теплотой) представляет собой еще одно

звено в цепи доказательств сохранения энергии.

Методические указания. Хотя эти разделы и содержат много новых

идей, причем некоторые из них — довольно тонкие, время, которое вы затратите
на прохождение этого материала, можно варьировать таким образом, чтобы при-
привести в соответствие ваш общий план с вашими требованиями к остальной части
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курса. Минимально, учащиеся должны получить некоторые ощущения относи-

относительно возможности превращения «организованной» кинетической энергии в

кинетическую энергию хаотического движения молекул. Некоторые учащиеся

могут обратить внимание на то, что приведенный в Учебнике вывод является сильно

упрощенным. Они могут заметить, что при этом выводе неявно подразумевается,

что все частицы или молекулы движутся с одинаковыми скоростями.

Даже если первоначально все молекулы и имеют одинаковые скорости, в

последующие моменты они будут сталкиваться друг с другом. Даже если эти

столкновения являются упругими, они приводят к'изменениям скорости, так что

в конце концов мы получим широкий разброс скоростей. Когда происходит уп-
упругое столкновение двух тел, центр масс которых покоится относительно лабора-
лабораторной системы, то в результате этого столкновения не происходит никакого

изменения скоростей в лабораторной системе. Если же их центр масс движется

(например при столкновении под прямым углом), то результирующее изменение

скоростей имеет место. Молекула, движущаяся со скоростью Зи, обладала бы

кинетической энергией в девять раз большей, чем молекула, движущаяся со

скоростью у, но ее количество движения было бы всего лишь втрое больше, чем

у более медленной молекулы. Таким образом, соотношение между давлением

и кинетической энергией должно в некоторой степени зависеть от действительного

распределения скоростей различных молекул. Можно дать строгое доказательство

(принимая во внимание действительное распределение скоростей), приводящее
к тем же самым результатам, которые были просто получены в этом разделе.
Можно показать, что действительное распределение скоростей является просто

статистически наиболее вероятным. Оно называется распределением Максвелла.

В этих разделах мы находимся в самом сердце кинетической теории газов —

одного из величайших достижений физики. Мы показываем (или по крайней мере
приводим правдоподобные аргументы вместо более сложных, но строгих доказа-

доказательств), что макроскопические тепловые свойства материи могут быть точно

описаны в терминах динамики движения отдельных молекул, составляющих

вещество. Тем не менее, у некоторых учащихся может возникнуть ощущение, что,

в конце концов, мы определили эквивалентность температуры и кинетической

энергии в нашей теории
— так чему же тут удивляться, что они оказываются

эквивалентными! Ответ состоит в том, что в динамике нет величины, которая
явно соответствовала бы температуре. Параметрами механики являются масса,

сила, скорость, ускорение, количество движения, энергия и т. д. Значительное

достижение кинетической теории состоит в том, что она идентифицирует такое

сложное макроскопическое свойство, как температура, с таким простым микро-
микроскопическим динамическим свойством, как кинетическая энергия движения

центров масс молекул.

Разумеется, кинетическая теория в целом была бы чисто формальной, если

бы мы не имели возможности оправдать построенную модель непосредственными

наблюдениями. Существует несколько легко проверяемых предсказаний, под-

подтверждающих правильность наших построений. Некоторые из них уже обсуж-
обсуждались раньше (в гл. 9), но их можно с пользой повторить в связи с данным кон-

контекстом. Например, из простого соотношения kT= 2/3 mv2/2 мы можем заключить

следующее.

1. Средняя скорость движения молекулы массы т в системе с абсолютной

температурой Т равна v= (З&ТУ/пI/2. Типичный пример: для водорода (Н2,
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10-27кг) при комнатной температуре (Ты 300 СК) v& 2-103 м/с — скорость

порядка скорости пули, которая может быть легко измерена, если заставить

молекулы одну за другой вылетать в вакуумную систему.

2. Для совокупности молекул с различными массами, если все они характе-

характеризуются одной и той же температурой, относительные средние скорости будут
обратно пропорциональны квадратным корням из масс — факт, который прове-
проверяется путем измерения относительных скоростей диффузии через пористую
перегородку (это свойство лежит в основе промышленного способа разделения

изотопов урана с помощью процесса диффузии газов, применяемого на больших

заводах).
Слова «идеальный газ» часто повторяются в кинетической теории. «Идеаль-

«Идеальным» является газ, молекулы которого можно считать геометрическими точками,

взаимодействующими только с помощью очень короткодействующих сил путем

столкновений друг с другом, как абсолютно упругие сферы. Это наша основная

модель для кинетической теории, а ее свойства приближаются к свойствам про-
простых газов при низких давлениях.

Кинетическая теория имеет весьма широкую применимость. Мы не только

можем объяснить тепловые свойства простых газов, но мы можем также понять,

почему «непростые» вещества, такие, как многоатомные газы, а также жидкости

и твердые тела, проявляют иные тепловые свойства. Мы можем объяснить эти

различия количественно для многоатомных газов. Однако для случаев конден-

конденсированных систем мы ограничены степенью наших знаний о реальных силах

взаимодействия между молекулами.

Конечно, если бы в действительности молекулы не взаимодействовали с

помощью дальнодействующих сил, мы бы никогда не наблюдали вещество в

конденсированных жидких и твердых состояниях. Поэтому модель «идеального»

газа пригодна только в качестве первого приближения к действительности. Одним
из наиболее поразительных свидетельств присутствия дальнодействующих сил

взаимодействия между молекулами является падение температуры газа, которому

мгновенно предоставлена возможность свободно расширяться, проходя сквозь

сопло в большую камеру. Это явление обычно называется эффектом Джоуля —

Томпсона и лежит в основе устройства большинства холодильных машин. При
свободном расширении газ не производит никакой работы, и при этом не про-

происходило бы никаких превращений энергии, если бы не существовала некоторая

потенциальная энергия, связанная со средним расстоянием между молекулами.

Таким образом, если бы не было дальнодействующих взаимодействий между

молекулами, расстояние между ними не влияло бы на их среднюю кинетическую

энергию, и со свободным расширением не было бы связано никаких изменений

температуры.

Обсуждение энергии, заключенной в системе многоатомных молекул, при-

приводится в Приложении 11 на стр. 427 (см. также задачу 31).

Упражнения
А. В сосуде находится смесь одного моля кислорода (молекулярный вес 32)

и одного моля аргона (молекулярный вес 40). Чему равно отношение средней
скорости молекул кислорода к средней скорости молекул аргона?

Ответ.

У Vlj= 1,12.
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Б. Если сосуд в задаче А находится при температуре 273 °К и давление газа

равно 1 атм, то:

а) каков объем сосуда?
б) какова средняя кинетическая энергия движения центров масс молекул

кислорода?
в) какова средняя кинетическая энергия движения центров масс молекул

аргона?
Ответ, а) Один моль любого газа, занимая объем 2,24* Ю-2 м3 при темпера-

температуре 273 °К, будет производить давление в 1 атм. Поскольку в данной задаче
рассматривается по одному молю каждого из двух газов, давление в сосуде объе-
объемом 2,24* Ю-2 м3 при температуре 273 °К было бы 2 атм. Чтобы уменьшить его
до 1 атм, объем надо было бы удвоить и довести до 4,48* 10~2 м3.

б) ?"к= 12,4-273= 3,39-103 Дж.
в) ?1К=3,39«Ю3 Дж. Кинетическая энергия центров масс при одной и той

же температуре будет одной и той же для всех молекул. Молекулы кислорода
могут обладать, кроме того, еще энергией вращения, колебаний и т. д.

В. Сосуд фиксированного объема содержит гелий при О °С под давлением в
2 атм. Сосуд опускают в кипящую воду (температура 100 °С). Если сосуд не из-

изменяет своего объема, чему будет равна средняя кинетическая энергия газа на

единицу объема? (Возьмите 1 атм= 105 Н/м2.)
Ответ. P1/P2=T1/T2f 2/Р2= 273/373. Р2= 764/273= 2,7 атм. ?к= 373-

• 12,4= 4,62» 103 Дж/моль. Плотность газа не изменяется во время нагревания,
поскольку объем сосуда и количество газа остаются постоянными. Первона-
Первоначально давление равнялось 2 атм при 273°К. Таким образом, было 2 моля B,24-
• 10~2 м3). При этом кинетическая энергия на единицу объема равна

молей_D,62.103).2_*к объем" 2,24.10-2 -4>1Z*1U- №/M •

Г. В сосуде находятся 4« 1024 молекул газа при температуре 50 °К. Они про-
производят давление в 0,03 атм. Каков объем сосуда?

Ответ. PV=NkT, откуда

v_yVfer_D.1024 мол.) A,37»Ю-23 Н.м/(мол.°К)-50°К_ллп 3
V~—-

0,03-10* Н/м2
-°'U М *

25.3. Механическая энергия перемещения тел в целом и их внутренняя энергия

25.4. Количественное исследование превращения механической энергии во

внутреннюю

25.5. Тепловой поток

25.6. Количественное соотношение между расходом энергии и повышением

температуры

25.7. Сохранение энергии

Цель. В этих разделах расширяется принцип эквивалентности механиче-

механической и внутренней энергии.

Методические указания. Все эти темы непосредственно относятся

к делу и представляют интерес, но основные пункты, связанные с сохранением

энергии, были уже проработаны раньше. Поэтому затраты времени на этот ма-

материал в сильной степени зависят от того, насколько вы укладываетесь в общий
план курса.

Лабораторная работа III. 13 предназначена для того, чтобы дать учащимся

возможность познакомиться с ситуациями, в которых некоторое количество ме-

механической кинетической энергии превращается в тепло.
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Чтобы помочь учащимся хорошенько прочувствовать величину множителя

перехода между механической и внутренней энергией, можно предложить им

проделать несколько простых задач на баланс энергии, например: «Высоко ли

сможет взобраться человек весом 50 кг за счет одного ломтика хлеба?» Пред-

Предположим, что в куске хлеба содержится около 100 килокалорий, или 4,2* 105 Дж.
Тогда человек сможет увеличить свою потенциальную энергию «за счет одного

ломтика хлеба» на величину mgh=4,2' 105 Дж. Разрешая относительно Нл полу-
получаем h = D,2* 105)/E0'9,8) ^850 м — вполне неплохой подъем! (Учащиеся,
страдающие от избытка веса, могут видеть, почему лучше не есть этот «один лом-

ломтик хлеба», нежели пытаться сбросить лишний вес путем физических упраж-
упражнений!)

Учащиеся (по крайней мере те из них, кто не занимается усиленно спортом)

могут недоумевать, куда идут те 2 000 килокалорий, которые мы ежедневно

вводим в организм с пищей. К счастью (для лентяев), большинство из них расхо-

расходуется на поддержание нашей жизни и теплоты нашего тела, обеспечивая движение

нашего сердца и легких и позволяя нам «шевелить мозгами». Для среднего чело-

человека это основное количество энергии доходит примерно до 100 ватт A02 Дж/с,
или около 8,6» 106 Дж в день). Поскольку эта энергия почти в точности равна

поставляемым ежедневно 2 000 килокалорий, мы можем поддерживать свой вес,

не взбираясь на гору по десять раз в день.

Многие крупные предприятия ведут полный учет энергии. На тепловой

электростанции с водяным охлаждением обычно известны температуры входящей

и выходящей охлаждающей воды, температура газов, выбрасываемых трубами,

нагрев генераторов и теплотворная способность топлива.

Разумеется, строгому учету подлежит и электроэнергия, отпускаемая по-

потребителям. Можно посетить местную электростанцию с целью ознакомиться с

«бухгалтерией энергии».

Для большинства профессиональных физиков ни одна другая концепция

этой науки не может сравниться по своему величию с законом сохранения энер-
энергии. Все взаимодействия во Вселенной взаимосвязаны через эту единую количе-

количественную основу. В то же время даже этот закон, как и все физические законы,

в конечном счете опирается на экспериментальные наблюдения. Возможно, что

во Вселенной в целом, лишь ничтожная часть которой доступна нашим точным

наблюдениям, энергия не сохраняется. Поскольку такая возможность не может

быть исключена, надо отдавать себе отчет в том, что убедительное наблюдение

несохранения энергии было бы не просто новой строкой в бесконечной книге

физики.

Наши основные понятия о пространстве и времени внутренне связаны с

нашей верой в сохранение энергии, и изменение этого «закона» вызвало бы потря-

потрясающую революцию в физике (см. Приложения 12, 13 и 14 на стр. 429—431).

Упр ажнения
А. Если энергию, содержащуюся в ломтике хлеба A00 ккал) превратить в

тепло и использовать для нагревания 2 л воды от начальной температуры 10 °С,
то какова будет конечная температура воды?

Ответ. 1 ккал поднимает температуру 1 л воды на 1 °С. Поэтому 100 ккал

поднимут температуру 2 л воды на 50 °С. Конечная температура будет равна 60 °С.
Б. Учащийся старших классов поглощает с пищей 2000 ккал в день. Если

бы он не нуждался в энергии для поддержания своего существования и смог -бы
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превратить все это количество в полезную работу, то на какую высоту он смог

бы поднять массу 100 кг за счет этого количества энергии?
Ответ. 2000 ккал=2-106 кал=8,4-106 Дж=8,4Л06 кг-м2/с2 = 100 кг-

•9,8 м/с2, /t=8,6-103 м.

В. Сколько энергии высвобождается при охлаждении 100 г воды от 90 до

25 °С? Ответ выразите в джоулях.
Ответ. 90 °С—25°С= 65°С; 100 г-65 0С-1 кал/(г-град) = 6,5-103 кал=6,5-

• 103 кал-4,2 Дж/кал=2,73-104 Дж.
Г. Для нагревания 500 г воды произведено 2,1» 103 Дж работы. Если началь-

начальная температура воды была Тн= 10 °С, то какова будет ее конечная температура?
Ответ. 2,Ь 103 Дж= 2,Ь 103/4,2= 5» 102 кал, которые поднимут температуру

500 г воды на 1 °С. Гк = 11 °С.

Д. Масса 20 кг, летящая со скоростью 10 м/с, ударяет массу 5 кг, находив-

находившуюся до этого в покое. После столкновения массы сцепляются друг с другом.

а) Какова конечная скорость тела, получившегося в результате сцепления
масс?

б) Какова была начальная кинетическая энергия системы?

в) Какова конечная полная энергия системы?

г) Сколько калорий теплоты образовалось при столкновении?
Ответ. а)рн=20 кг* 10 м/с =200 кг«м/с, рк=200 кг«м/с=25 кг»ук; vK =

= 8 м/с.

б) (?к)н=20A0J/2=103 Дж.
в) (?)к~ № Дж> по закону сохранения энергии.
г) (?к)к=25(8J/2=800 Дж. Теплота= (Е)к—(?к)к= 200 Дж= 200/4,2 =

= 48 кал.
Е. Сломалась колонка для нагревания воды. Человек хочет повысить тем-

температуру воды в ванне от 25 до 35 °С. Ванна содержит 30 кг воды. Как дол-
долго придется ему нагревать ванну, если он использует для этого весло от

каноэ, двигая его в воде со скоростью 1 м/с и прилагая к нему среднюю силу
в 30 Н? Считайте, что вся работа, которую он производит, идет на нагрева-
нагревание воды *).

Ответ. Работа =C0 Н) A м/с) (Т с) = 30 Т Дж.
Теплота =C5 °С—25 °С) C0-103)= 3-105 кал = 12,6-105 Дж.
12,6-105 Дж= 30 Т Дж. Т= 4,2-104 съ 12 ч.

ДОМАШНИЕ, КЛАССНЫЕ И ЛАБОРАТОРНЫЕ ЗАДАНИЯ

Ответы к задачам

Большое число задач к этой главе посвящено качественному рассмотрению
переходов энергии в таких системах, как двигатели внутреннего сгорания или

пулеметы. Обсуждение некоторых из этих задач явится эффективным способом
подведения учащихся к пониманию концепции внутренней кинетической энергии
молекулярного движения. Особенно подходят для этой цели задачи 2, 6 и 30.

Задачи 13 и 22, посвященные поведению идеального газа, и задачи 24 и 29, свя-

связанные с механическим эквивалентом теплоты, интересны, если у вас достаточно

времени. Учащимся будет легче решить задачу 12, если предварительно они решат

задачу 6.

В табл. 20 задачи классифицируются по их примерному уровню трудности и по

разделам, к которым они относятся. В отдельный столбец выделены те из них,

которые наиболее подходят для обсуждения в классе. Особо рекомендуемые
задачи отмечены значком #.

*) Следует обратить внимание на невозможность нагреть воду в ванне таким

образом. Уже при небольшом повышении температуры скорость рассеяния тепла
сравняется со скоростью поступления энергии от работающего человека, и на-

нагревание прекратится, несмотря на продолжение «гребли». Для наблюдения
этого эффекта принципиально необходим калориметр, как в опыте Джоуля.
(Прим. перев.)
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ТАБЛИЦА 20

Разделы

25.1

25.2

25.3, 25.4

25.5

25.6

25.7

Со звездоч-
звездочкой

1,3—5

7—10

14, 16

18—20

21

26

Легкие

23, 24

27, 28

Средние

15, 17

25

29

Трудные

13

22

30#, 31

Классные

2*. 6#
Щ

Щ

Краткие ответы

1*. Импульс, сообщенный стенке, равен 2mv согласно закону сохранения
количества движения.

3* P=F/A.
4*. Если отношение NIV становится вдвое больше, две молекулы будут уда-

ударяться о площадку, о которую до этого ударялась лишь одна (в среднем).
5*. Полная кинетическая энергия движения центра масс пропорциональна

PVIN.
7*. Р увеличивается в 373/298=1,25 раза.
8*. Ек увеличивается в 373/298=1,25 раза.
9* 45 °С.
10*. Нет.
14*. Нуль, если сосуд не движется.

16*. В этом случае кинетической энергией масс можно пренебречь по срав-
сравнению с изменением гравитационной потенциальной энергии и теплотой, пере-
передаваемой воде.

18*. Внутренняя энергия увеличивается: механическая энергия, доставля.

емая молотком, превращается во внутреннюю, но теплота не поступает извне.

19*. Нет. Энергия передается в виде потока тепла, а не путем совершения

механической работы.
20*. Полная внутренняя энергия остается постоянной в этой замкнутой

системе.

21*. 1000 Дж.
26*. Гравитационная потенциальная энергия превращается только во внут-

внутреннюю энергию тормозного барабана, поскольку автомобиль не увеличивает
свою скорость.

Ответы с указаниями и решениями
2. а) Каждая пуля теряет количество движения mv~ Ю-2 кг» 300 м/с=3кг« м/с.

Изменение количества движения очереди пуль за секунду составит (напомним, что
400 пуль/мин = 6,67 пуль/с)

Ap/At = 6,67/c-3 кг-м/с = 20 кг-м/с2.

Средняя сила дается непосредственно этой скоростью изменения количества

движения:
F= Ap/At = 20 кг-м/с2 = 20 Н.

б) Кинетическая энергия каждой пули равна

/тш2/2 = 10-2.3002/2 = 450 Дж.

За одну минуту в стенку ударяет 400 пуль. Их общая кинетическая энергия равна
400-450 Дж=1,8-105 Дж.

в) Двигаясь со скоростью 300 м/с, каждая пуля может пройти 300 м в течение

одной секунды. Следовательно, 6,67 пуль, выпускаемых каждую секунду из
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пулемета, распределятся в пространстве на интервале в 300 м, и число пуль,

приходящихся на один метр, должно равняться

6,67 пуль/300 м = 2,22-10-2 пуль/м.

Поскольку каждая пуля обладает энергией в 450 Дж, кинетическая энергия,
приходящаяся на один метр длины очереди, равна

B,22- Ю-2 пуль/м) D50 Дж/пуль)= 10 Дж/м.

Удвоив эту величину, мы получим 20 Дж/м=20 Н, поскольку 1 Н»м равен 1 Дж.
Это иллюстрирует соотношение, приведенное на стр. 70: P = mvzAN/V. Как
мы нашли в п. a), /7=20Н. Правая часть этого равенства может быть пере-
переписана в виде

mv*AN/V= (mv2) NA/LA = 2 (mv2/2) NjL,

где L — длина отрезка пути, на котором находится N частиц. Это выражение

представляет собой как раз удвоенное значение кинетической энергии, приходя-
приходящейся на метр очереди.

6. Сила F, действующая на поршень, равна РЛ, где А — площадь поршня.
Когда поршень перемещается наружу на расстояние Ах, произведенная работа
равна FAx (произведение силы на перемещение, вызванное этой силой). Таким

образом, FAx— РААх, и из геометрических соображений ясно, что ААх равно
объему, заметаемому основанием поршня; это и есть увеличение объема газа.

Огедовательно,

(Откуда поступает энергия? Это зависит от того, что еще происходит с газом

во время движения поршня. Если цилиндр был полностью изолирован от внешних

источников теплоты (т. е. энергии), то энергия должна поступать из самого газа,

т. е. из кинетической энергии отдельных молекул. Каков точный механизм пере-

передачи энергии? Когда молекулы сталкиваются со стенками цилиндра или с непод-

неподвижным поршнем, перпендикулярные компоненты их количеств движения просто
изменяют знак, а другие компоненты не меняются, и, следовательно, их кинети-

кинетические энергии не изменяются. Когда молекулы сталкиваются с поршнем, дви-

движущимся наружу, перпендикулярная компонента количества движения каждой
из них относительно поршня изменяет направление на противоположное, но

кинетическая энергия их движения относительно цилиндра в среднем умень-

уменьшается. Это происходит так же, как при отскакивании мяча от стенки платформы.
Если платформа неподвижна, то мяч, брошенный к ней со скоростью 5 м/с, от-

отскочит с той же самой скоростью. Однако если платформа удаляется со скоростью
1 м/с, то мяч, летящий со скоростью 5 м/с, ударяется о нее, имея скорость всего
4 м/с относительно стенки. Эта скорость при ударе изменяет направление на

обратное. Мяч удаляется от платформы со скоростью 4 м/с, поэтому его конечная

скорость относительно земли составляет всего 3 м/с. С точки зрения наблюдателя,
находящегося на земле, кинетическая энергия мяча значительно уменьшается
в результате такого столкновения.)

11. а) Температура является мерой только средней кинетической энергии
центров масс молекул. Вычисляя, получаем

?"к = 3/2^^ = 3/2 A,37• 10-23) • 300 = 6,1Ы0-21 Дж.

б) Нам сказано, что полученный в п. а) ответ составляет только 3/5 от дей-
действительной кинетической энергии. Остальные 2/5 существуют в форме враща-
вращательной кинетической энергии. Когда мы повышаем температуру газа на 1°,
кинетическая энергия центра масс и кинетическая энергия движения относительно

центра масс возрастают совместно *). Для центра масс ?к=3/2 kT, и при повы-

повышении температуры на AT А?к=3/2 kAT. Полная кинетическая энергия одной

*) Это утверждение требует доказательства, основанного на рассмотрении
распределения энергии по степеням свободы. Иногда оно оказывается неверным,

например, при высоких и низких температурах. Однако такой анализ выходит

за рамки курса. (Прим. перев.)
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молекулы возрастет поэтому на величину

Чтобы поднять температуру на 1° в системе из 6,02» 1023 молекул, составляю-

составляющих моль газа, потребуется увеличить энергию на

F,02-1023).A,37. Ю-** Дж/°К)-1 °К = 20,6 Дж.

12. а) Величина работы, необходимой для того, чтобы вдавить поршень в

цилиндр на небольшое расстояние, дается выражением PAF, где AV — умень-
уменьшение объема:

РАК=A,02.10б Н/м2).B,45.10-4 м3) = 25 Дж.

(Рассмотрение такое же, как в задаче 6, за исключением того, что эта работа
должна производиться каким-нибудь внешним устройством, а не над ним.)

б) Если цилиндр полностью изолирован от окружающей среды, то вся ра-

работа, произведенная над газом при сжатии B5 Дж), должна перейти в кинетиче-

кинетическую энергию газовых молекул. Рассматриваемые молекулы представляют собой

одиночные атомы и не обладают вращательной кинетической энергией, так что

энергия, необходимая для повышения температуры одного моля газа на 1°, со-

составляет 12,4 Дж. Наши 25 Дж поднимут его температуру на B5/12,4) °К, т. е.

чуть больше, чем на 2 °К. Конечная температура будет равна 273+ 2= 275 °К-

в) В п. б) мы нашли, что температура должна измениться на 2 °К. Уравнение
состояния идеального газа имеет вид PV=NkT. Поскольку N

— одно и то же

в начальном и конечном состояниях, мы можем написать

PtVt/Ti, или

Подставляя значения объема и температуры, получаем

/УЛ = B,24-10-2/2,22. Ю-2) B75/273)= 1,02.

Следовательно, давление возрастает примерно на 2% от своего первоначального
значения.

13. а) В разделе 25.1 было получено следующее равенство, связывающее
Р, N, V и молекулярные скорости:

Р = 1/з mv2N/V.

В этой задаче перед нами 32 г, или один моль, кислорода; поэтому ТУ равно числу

Авогадро. Предыдущее соотношение может быть разрешено относительно и,

что дает

v = CPV/NmI/*.
Нам дано, что Р= 1 атм= 1,02-105 Н/м2 и V= 2,4» 10~2 м*. Остальные величины
в этом выражении можно получить, если мы заметим, что Ntn — число молекул
в моле газа, умноженное на массу одной молекулы — как раз и есть масса моля

газа. Согласно данным задачи она равна 32 г =3,2» Ю-2 кг. Средняя скорость
оказывается при этом равной

б) Для одного моля водорода при тех же условиях мы можем проделать ту
же процедуру. Однако проще воспользоваться несколько иными соображениями.
При той же самой температуре средняя кинетическая энергия движения центров
масс у молекул водорода будет такой же, как и у молекул кислорода:

Поэтому

V=z /32/2= 4, vH = 4уо= 1,9-103 м/с.



в) Масса моля азота равна 28 г. Используя рассуждение п. б), получаем

i;N/i>o= У32/28= 1,07.

Таким образом, с точностью до 10% они одинаковы.

г) Воздух состоит в основном из кислорода и азота (в отношении 20% к 80%).
Поскольку скорости их молекул одинаковы с точностью 10%, средняя скорость
молекул воздуха будет, в том же приближении, совпадать с найденной в п. а):

1>ср = 4,8.1О2м/с.

д) В п. а) мы нашли скорость молекул кислорода при комнатной температуре
и давлении в одну атмосферу. Кинетическая энергия молекул воздуха зависит

только от Т, так что средняя скорость будет той оке самой, даже если давление

удвоится, если только Т останется той же самой (как это имеет место в данном

случае). В выражении, использованном в п. а), Р удвоится, так что (вследствие
уравнения состояния) V уменьшится вдвое, a PV останется прежним.

15. а) Основные звенья цепи превращений энергии следующие: 1) Кинети-
Кинетическая энергия пули идет на: 2а) нагревание пули и песка, окружающего ее,
после того, как она останавливается, и 26) кинетическую энергию мешка плюс

пуля. Мешок качается, и мы имеем циклический процесс перехода кинетической

энергии в гравитационную потенциальную энергию и наоборот. Очень медленно,
вследствие трения о воздух, этот процесс прекратится, и энергия перейдет в

3) тепловую энергию мешка, его содержимого и окружающего воздуха.

б) 1) Первоначально кинетическая энергия пули равна mv2/2 = 0,0Ь3002/2 =
= 450 Дж. 2) При столкновении пули с мешком количество движения сохраняется.
(Так же как и энергия, пока мы включаем тепловую энергию, однако механи-
механическая энергия макроскопического движения отдельно не сохраняется.) Если
после столкновения пуля и мешок движутся со скоростью v', то

v' = mv/(m-\~M).

Кинетическая энергия мешка с пулей равна

(т+ М) v'z/2 = {m+M) [mv/(m+ M)]2/2={mv2/2) [т/(т+ М)] =
= 450 Дж.(Ю/2000) = 2,25 Дж.

3) Перед столкновением пуля обладает кинетической энергией поступательного
движения, равной 450 Дж. После столкновения только 2,25 Дж остается в форме
кинетической энергии макроскопического движения. 448 Дж исчезают из вида.

Эта энергия идет главным образом на нагревание пули и песка, непосредственно

окружающего ее. Небольшая часть переходит в потенциальную энергию пес-

песчинок, связанную с расстояниями между ними, так как они смещаются друг
относительно друга при прохождении пули. Ничтожное количество энергии идет
на возникновение звука, который быстро затухает, а его энергия рассеивается
в виде теплоты.

в) Если мы предположим, что вся «потерянная» энергия переходит в тепло,

то сможем оценить, какую часть от первоначальной энергии это составляет:

448/450=99,5%.
17. При каждом опускании потери потенциальной энергии двух грузов

составляют 2 mgh= 2* 14*9,8-2=550 Дж. Процесс повторяется двадцать раз,
так что полная убыль потенциальной энергии равна 20'550= 1,1- 104Дж. Пред-
Предположим, что вся она превращается в тепловую энергию воды. Количество энер-
энергии, необходимое для нагревания 7 кг воды на Г, равно 7-103«4,2=2,9» 104 Дж.
Следовательно, 1,Ы04 Дж, сообщаемых воде опускающимися грузами, под-

поднимут ее температуру на [A,Ь 104)/B,9- Ю4)]-1°=0>38°. (Откуда поступает энергия
в этом опыте? Она поступает от несчастного лаборанта, который должен подни-
поднимать грузы после каждого их опускания.)

22. а) Мы предполагаем, что водяной пар ведет себя как идеальный газ, т. е.

удовлетворяет уравнению состояния PV—NkT. При нормальных условиях (ат-
(атмосферном давлении и температуре 0 °С) моль идеального газа занимает объем

2,24» 10~2 м3. Поскольку 18 г воды эквивалентны молю водяных молекул, объем,
занимаемый 18 г водяного пара при атмосферном давлении и температуре 100 °С,
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можно найти из P1V1/T1=

V2 =,V1T2/T1 = B,24.10~2).C73/273), F2 = 3,06-10-2 м3.

б) Работа выталкивания поршня на небольшой объем АV, как было показано

в задаче б, равна ЯДУ. В рассматриваемом случае Р постоянно в течение всего

процесса расширения, так что полная работа, произведенная при этом, равна Р-

•(полное изменение объема). Поскольку первоначальный объем равен приблизи-
приблизительно 18 см3 (мы имеем 18 г воды с плотностью 1 г/см3), или 1,8- Ю-5 м3, мы можем

пренебречь начальным объемом по сравнению с конечным. Таким образом, полная

произведенная работа равна
РДК= A,02.10б)Н/м2-C,06.10-2) м3 = 3,12.103 Дж.

в) Каждый грамм воды требует 540 кал, или 540*4,2= 2,27 • 103 Дж, для того,
чтобы превратиться в пар. Полная энергия, необходимая для испарения 18 г

воды, равна
18-2,27.103 Дж= 4,Ы04 Дж.

Полные затраты энергии, включающие работу, производимую при расширении
пара, составляют, таким образом,

D,Ы04) + C,Ы03) = 4,4.104 Дж.

г) Та часть от общего количества теплоты, поступившей к системе, которая

превращается в работу, составляет

C,12-103) • D,4 -104) = 0,071.

Остальная энергия необходима для того, чтобы оторвать молекулы воды друг от

друга и позволить им двигаться независимо, т. е. для преодоления весьма силь-

сильного притяжения между водяными молекулами в жидком состоянии.

23. Один моль одноатомного газа, такого, как гелий, требует 12,4 Дж энергии
для повышения своей температуры на 1°. Следовательно, гелий должен получить
от воды 12,4 Дж энергии. Вода остывает на 1°. Поскольку при понижении тем-

температуры 1 г воды на 1° выделяется 4,2 Дж, количество воды, дающее 12,4 Дж
при остывании на 1°, равно

12,4 Дж/4,2 Дж/г = 3 г.

Масса воды составляет примерно 3/4 от массы гелия. (Один моль гелия состав-

составляет 4 г.)
24. а) Если средняя сила, препятствующая движению пловца в воде, равна F,

то, проплывая 50 м, он совершает работу против этой силы, равную Fx
— F-50 м.

Он потребляет 120 000 Дж, из которых только четверть, т. е. 30 000 Дж, пере-
переходит в полезную механическую работу. Следовательно, средняя сила сопро-
сопротивления его движению равна

F = 30 000 Дж/50 м = 600 Н.

б) Химическая энергия пищи превращается мускулами в механическую
энергию. Кинетическая и потенциальная энергии пловца остаются, конечно,
постоянными, поскольку его скорость, грубо говоря, постоянна, и он плывет по

поверхности воды; однако энергия, теряемая в виде тепла, растет. Следовательно,
вся работа, которую он производит, превращается в бесполезное тепло. Неко-

Некоторая энергия сначала превращается в кинетическую энергию турбулентного
движения воды, сквозь которую он плывет, и по мере того, как завихрения по-

постепенно успокаиваются, температура воды слегка повышается.

в) Ответ на этот вопрос уже был дан в п. б): затрачиваемая энергия вызывает

нагревание воды в бассейне. Для бассейна обычных размеров B5x15x3 м),
содержащего около 10б кг воды, повышение температуры благодаря сообщению
120 000 Дж энергии, составило бы

120 000/D,2-103-106) = 3-10-5 °К.

25. а) Как гелий, так и аргон являются одноатомными газами; поэтому каж-

каждый из них требует 12,4 Дж энергии, чтобы повысить температуру одного моля
на Г. Таким образом, один из газов остынет ровно на столько же градусов, на
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сколько нагреется другой. Поскольку оба они имеют одну и ту же конечную

температуру, эта температура должна находиться ровно посередине между их

начальными температурами, т. е. составлять 35 °С.

б) В равновесии двойной сосуд будет содержать смесь двух газов (оба они

«благородные» и химически с другими веществами не соединяются), имеющую
однородную температуру по всему объему. Это означает, что все молекулы (гелия
и аргона) имеют в среднем одну и ту же* кинетическую энергию поступательного
движения. Энергия не поступает в систему извне и не теряется из нее, так что

кинетическая энергия, которую получает аргон, нагреваясь до конечной темпе-

температуры Ту должна быть в точности равна кинетической энергии, теряемой гелием

при остывании до той же температуры Т. Поскольку речь идет об изменениях

температуры, ситуация аналогична рассмотренной в п. а). Поэтому конечная

температура смеси газов в этом случае снова будет равна 35 °С.

в) По сравнению с гелием или аргоном, азот требует большего количества

энергии на моль, чтобы температура газа повысилась на 1° (см. стр. 175). Таким

образом, когда гелий остывает до 35 °С, температура азота будет меньше 35 °С,
и температура, которая установится при равновесии, будет ниже, чем в п. б).

г) Азот — двухатомный газ, в то время как гелий и аргон
— оба одноатомные.

Когда двухатомный газ получает энергию, только часть ее идет на движение

центров масс молекул, и, следовательно, на повышение температуры газа. Ос-
Остальная энергия идет на увеличение колебаний и вращения каждой молекулы
относительно ее центра масс.

27. Температура ваших рук будет повышаться до тех пор, пока энергия,

поступающая к ним в единицу времени за счет производимой над ними работы
(т. е." благодаря их трению друг о друга), будет превышать энергию, уходящую
от них в единицу времени в виде потока тепла. По мере повышения температуры
ваших рук скорость тепловых потерь растет, поскольку она пропорциональна
разности температур между вашими руками и окружающей средой. Вы достигнете
точки, в которой отток тепла будет происходить с той же скоростью, с какой

поступает к вашим рукам энергия, и их температура больше уж не будет по-

повышаться.

28. Нет. Через несколько секунд после включения вентилятора скорость

вращения его лопастей становится постоянной. После этого вся энергия, посту-

поступающая к нему из электрической сети, рассеивается вокруг в виде теплоты, по-

поскольку лопасти увеличивают кинетическую энергию молекул воздуха, которые
сталкиваются с ними, и сам вентилятор нагревается благодаря трению.

Ощущение прохлады при работе вентилятора вызывается местным испарением

влаги с поверхности кожи. Температура же воздуха, однако, повышается, когда

вентилятор работает в закрытом помещении.
29. а) Запять часов увеличение высоты составит 5*500 м=2,5-103м. Если

его масса равна, скажем, 80 кг, увеличение его потенциальной энергии будет равно
mgh= 80-9,8.B,5-103) Дж=2-106 Дж.

б) Найденная выше энергия составляет только четвертую часть от всей энер-

энергии, затрачиваемой альпинистом. Поэтому потребляемая химическая энергия

равна 4-B-106)=8-106 Дж.
в) Эта химическая энергия составляет (8-106)/4,2= 2-106 калорий. Эта ве-

величина примерно равна нормальной суточной потребности альпиниста в кало-

калориях, так что в дни восхождений на горы он должен получать приблизительно
4' 106 калорий.

г) Единственным видом энергии, который усваивает человек, является хи-

химическая энергия пищи. Невозможно увеличить энергетическое содержание
нашего тела, производя работу над ним (как это можно сделать с механической

игрушкой, заведя ее пружину). Когда вы встаете утром и чувствуете, что вам

нужна энергия, чтобы работать в течение дня, вы не можете присоединиться к

розетке электрической сети (как вы поступили бы, если бы вы запасали энергию
подобно электроаккумулятору). Не можете вы и присоединиться к какому-либо
механическому устройству с движущимися деталями, чтобы получить энергию

с помощью работы, производимой над вами этой машиной. Вместо этого вы за-

завтракаете. Пища содержит химическую энергию, которую ваше тело, с помощью

сложных процессов, способно превращать в работу.
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Можно указать на различия и сходство между человеческим «двигателем» и

другими типами машин: даже в режиме «безделья» тело должно поддерживать
свою температуру строго постоянной, перекачивать по сосудам кровь и т. д. В не-

некотором отношении человеческий организм можно сравнить с электронной вы-
вычислительной машиной, которая потребляет на холостом ходу почти столько же

энергии, как и при решении длинных задач. При «работе» энергия должна тра-
тратиться на все движения, и даже когда «работа» в механическом смысле не произ-
производится, тело тратит энергию внутри себя. (Попробуйте постоять, вытянув руки
и ни на что не опираясь, в течение нескольких минут!)

Дальнейшее обсуждение этого вопроса может завести вас в такие дебри, что

оно станет уже не слишком плодотворным. Поэтому, как только отмечены основ-

основные моменты, разумно двигаться дальше.

30. а) Полное количество движения всей системы, состоящей из ракеты,

запасенного в баке и выброшенного из сопла газа, сохраняется. Ракета приобре-
приобретает направленное вперед количество движения с помощью испускания массы

в обратном направлении. Это справедливо для любого типа ракет. В рассматри-
рассматриваемой газонаполненной ракете «топливная» камера содержит множество молекул,
двигающихся с большими скоростями во всех направлениях, но сопло выпускает
из ракеты только те из них, которые движутся в направлении «назад». Количество

движения отдельной молекулы внутри ракеты не постоянно (происходит непре-
непрерывный обмен импульсами между молекулами и между молекулами и внутрен-
внутренними стенками ракеты), так что хотя первоначально только некоторые молекулы
будут двигаться как раз в нужном для выхода из сопла направлении, очень

скоро и другие молекулы также приобретут правильное количество движения.

Этим объясняется непрерывный выход газовой струи из сопла. Это объясняет

также, каким образом из начального состояния, в котором ракета покоится и

количества движения молекул распределены хаотически, возможен переход в

конечное состояние, в котором ракета движется с большой скоростью вперед,
а молекулы газа движутся, в среднем, в противоположном направлении.

б) Никакого изменения полной энергии системы не произошло. (Мы предпо-
предполагаем, что ракета находится в космическом пространстве, где не будет трения
о воздух или гравитационного притяжения.) Кинетическая энергия ракеты плюс
кинетическая энергия двигающихся назад молекул должны быть в точности

равны первоначальной тепловой энергии газовых молекул.
в) Кинетическая энергия, приобретаемая ракетой, поступает от газа. Высво-

Высвобождая эту энергию, газ охлаждается.

Чтобы понять с микроскопической точки зрения, как это происходит, рас-

рассмотрим бильярдные шары, ударяющие с обеих сторон легкую подвижную пере-

перегородку. Пусть пять шаров налетают на нее справа налево, а шесть — слева

направо. Пусть все шары имеют строго одинаковую скорость и пусть все они

ударяют перегородку точно в один и тот же момент. После соударения перего-
перегородка отскочит направо. В результате этого группа из пяти шаров отскочит

направо с несколько увеличенной скоростью, а группа из шести шаров отскочит
налево с несколько уменьшенной скоростью. В случае ракеты передняя и задняя
стенки цилиндра с газом играют роли правой и левой сторон перегородки, опи-
описанной выше. Передняя и задняя стенки цилиндра с газом жестко связаны между
собой. Отверстие в задней стенке вызывает неравенство числа столкновений.
Ракета ускоряется вперед, поэтому молекулы, движущиеся в цилиндре по на-

направлению назад, имеют, в среднем, меньшую энергию. А это как раз те, которые
выходят через отверстие.

31. а) Поскольку при вдавливании поршня в цилиндр была произведена
работа против давления газа, то же самое количество энергии должно выделиться
где-либо в другом месте. Эта энергия может появиться только в виде увеличения
внутренней энергии газа, т. е. в виде повышения его температуры.

Более подробно, когда поршень неподвижен, атомы газа непрерывно сталки-
сталкиваются с ним и отскакивают с той же самой кинетической энергией, которой они

обладали перед столкновением. (Компоненты количества движения, перпендику-

перпендикулярные к поршню, изменяют знак, а другие компоненты остаются неизменными.)
Когда поршень движется внутрь газа, атомы соударяются с поверхностью, дви-

движущейся им навстречу. Они отскакивают с увеличенной кинетической энергией
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(как бейсбольный мяч от движущейся биты). Таким образом, в среднем, про.ис-

ходит увеличение кинетической энергии молекул, т. е. температура повышается.

б) Объяснение аналогично приведенному в п. а). По существу, агомы стал-

сталкиваются с поршнем, который удаляется от них. Поскольку их количество дви-

движения относительно поршня изменяет направление на обратное при столкно-

столкновении, их количество движения относительно сосуда уменьшается. Таким образом,
тепловая энергия газовых молекул убывает. С другой стороны, газ производит

работу над механизмом, связанным с поршнем. Можно показать, что убыль внут-
внутренней энергии в точности равна работе, произведенной расширяющимся газом.

в) Этот процесс называется «свободным расширением». Очень важное различие
между ним и изменением объема при движении поршня состоит в том, что теперь
атомы совершенно не испытывают столкновений с движущейся стенкой, которые
могли бы привести к изменению их кинетической энергии. Атомы будут вылетать

из отверстия в резервуаре и продолжать двигаться до тех пор, пока не встретят

неподвижную стенку сосуда. Их кинетические энергии не будут изменяться,
и следовательно, температура газа также останется неизменной.

г) В наших предыдущих рассуждениях мы пренебрегали потенциальной

энергией. Для гелия это оправдано, поскольку два атома гелия очень сильно
напоминают бильярдные шары; они взаимодействуют только тогда, когда почти
касаются друг друга. (Сила притяжения между ними не достаточна для того,
чтобы образовать молекулу.) Однако существуют другие газы, в которых моле-

молекулы, хотя и отталкиваются очень сильно при очень тесном сближении, в то же

время испытывают слабое взаимное притяжение, находясь сравнительно далеко

друг от друга. Для разреженных газов «идеальные» соотношения являются хоро-
хорошим приближением к действительности. Для уплотненных газов при их расши-

расширении среднее расстояние между молекулами увеличивается, ввиду чего увели-
увеличивается и их потенциальная энергия. Это приводит к сопровождающему умень-
уменьшению кинетической энергии, в добавление к тем ее изменениям, которые обус-
обусловлены причинами, вскрытыми в п. б). Таким образом, даже при «свободном

расширении» потенциальная энергия молекул некоторых газов увеличивается,
а кинетическая уменьшается, т. е. такой газ будет охлаждаться.



ЛАБОРАТОРНЫЕ РАБОТЫ

В этой части курса, так же как и при прохождении части II, очень важно

спланировать выполнение опытов в связи с соответствующими разделами

Учебника (табл. 21).

ТАБЛИЦА 21

Номер

III.1

III.2

Ш.З

Ш.4

Ш.5

Ш.6

III.7

Ш.8

Ш.9

ШЛО

III.11

111.12

III.13

Опыт

Изменение скорости под дей-
действием постоянной силы

Зависимость ускорения от

силы и массы

Инертная и гравитационная
массы

Силы, действующие на бро-
брошенный шарик
Центростремительная сила

Закон равных площадей
Изменения количеств дви-

движения при взрыве

Опыт с тележкой и кирпи-

кирпичом

Столкновение при движении

в двух измерениях

Моделирование процесса
столкновения ядер

Изменение потенциальной
энергии

Энергия математического
маятника

Лобовое столкновение

Наиболее удобное время
выполнения

Перед изучением раздела
19.3

Перед изучением раздела
19.3
После изучения разделов
19.5, 19.6
После изучения раздела 20.4

Перед изучением раздела
20.5

Во время изучения гл. 21

Во время изучения раздела
22.2

Во время изучения раздела
22.4

После изучения раздела 22.4

Во время изучения раздела
23.8

После изучения раздела 24.3

После изучения раздела 24.3

Во время изучения гл. 25

Очеред-
Очередность

***

***

**

***

*

##*

**

***

**

##*

**

*

*** Необходимо
** Желательно
* Необязательно

13 Физика, ч. Ill



111.1. Изменение скорости под действием постоянной силы

Эта лабораторная работа, так же как и следующая (III.2. Зависимость уско-

ускорения от силы и массы), очень важна, и ее нельзя опускать. Поскольку эти ра*

боты подводят учащихся к открытию закона Ньютона, их надо выполнить перед

изучением раздела 19.3.

В результате проведенного опыта учащиеся выяснят, что (в пределах ошибок
их измерений) постоянная сила, действующая на тело, изменяет скорость этого

тела с постоянной скоростью, т. е. ускорение этого тела постоянно. Единица силы

в этом опыте воспроизводится резиновой петлей, растянутой на постоянную

величину, а скорость выражается в метрах, пройденных между двумя отметками

времени. Заметим, что использование тех или иных единиц не имеет значения

при установлении или формулировании основного закона.

Мы не пользуемся притяжением Земли в качестве силы, которая может тянуть

тележку, ввиду того, что при этом возникает слишком много вопросов, на которые

невозможно ответить на этой стадии обучения. Учащиеся еще по-настоящему
не знают, что тяжесть действует с постоянной силой на движущееся тело; а в

следующем опыте, где должны измеряться массы, им трудно будет понять, что

масса опускающегося груза должна быть включена в полную массу, испытываю-

испытывающую ускорение. Кроме того, резиновая петля дает учащимся представление о том,

какова в действительности постоянная сила.

Работу лучше всего проводить на гладком горизонтальном столе около двух

метров длиной. Если стол не горизонтален, это будет заметно при исследовании

лент, связанных со свободно'1 движущейся тележкой. Расстояния, пройденные
между двумя последовательными отметками времени (в начале и в конце ленты),
можно сравнить, располагая рядом два конца ленты. Здесь нет нужды в точных

количественных измерениях. Достаточно убедиться, что движущаяся свободная
тележка катится с практически постоянной скоростью по горизонтальной по-

поверхности.

Бумажная лента должна свободно проходить сквозь отметчик времени, при-

прикрепленный к столу с помощью струбцины. Полное сопротивление движению

тележки благодаря трению составляет около 0,3 Н, что представляет собой малую

силу по сравнению с натяжением резиновой петли. На лентах надо делать соот-

соответствующие надписи, чтобы при последующей обработке можно было установить,

к какому случаю они относятся. Если в лаборатории мало времени, анализ лент

можно проделать в виде домашней работы.

Прежде чем производить какие-либо опыты с целью получения количествен-

количественных данных, необходимо попрактиковаться в использовании приборов и принад-

принадлежностей. Нелегко поддерживать растяжение резиновой петли на одном и том

же уровне в начале и в конце пробега, когда тележка ускоряется до значительной

скорасти. Начиная двигать тележку, важно приступать к буксированию в момент

ее отпускания.

Ответы на вопросы

Скорость свободно движущейся тележки более постоянна при быстром дви-

движении. Причину этого можно объяснить следующим образом: легкий уклон

стола, например, равный 1 мм на много сантиметров пути, неразличимый на глаз

и едва определяемый с помощью хорошего пузырькового жидкостного уровня,
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Ду = (V—vQ) = 2gd/(v+ у0).
= gd/v0, и относительное изменение скорости составит

/ 2

t,

изменит скорость тележки, начинающей двигаться из состояния покоя, на

v = V2gd=V2' 9,8-10-3 = 0,14 м/с.

Пусть тележка имеет начальную скорость v0, тогда

Если v^>2gdt то

что быстро убывает при возрастании v0.

Удостоверьтесь, однако, что учащиеся анализируют не самый конец ленты,

соответствующий наивысшим скоростям, когда они, вероятно, были не в состоянии

поддерживать приложенную силу постоянной. jr>
В пределах экспериментальных ошибок по- >

лученные данные, будучи нанесены на график, /О

покажут, что постоянная сила создает постоян- §
ное ускорение (рис. 61). Отклонения от прямо- §| б

линейности вызваны в первую очередь тем, что §

трудно поддерживать растяжение резиновой пет- ^ ^

ли на постоянном уровне. ^

Натяжение резиновой петли не является

единственной силой, действующей на тележку. о

Сопротивление бумажной ленты и трение между

колесами и столом вызывают силы, противопо-

противоположные движению. Эти силы приводят к пренеб-
пренебрежимо малым изменениям скорости в сравнении

с теми, которые создает сила тяги, как мы можем заключить на основании сво-

свободных пробегов тележки.

Ускорение большей массы меньше, чем у меньшей, при одной и той же силе,

действующей на тележку. Количественное измерение влияния массы на ускорение

будет проделано в следующем опыте.

Приборы и принадлежности: тележка; резиновая петля; 4 кирпича; отметчик

времени; бумажная лента; 2—3 струбцины; сухой элемент на 1,5 В; лист милли-

миллиметровой бумаги; метровая линейка; упор настольный; целлофан или оберточная
бумага.

II 1.2. Зависимость ускорения от силы и массы

Цель этой работы состоит в раскрытии соотношения между силой, ускоре-
ускорением и массой (закона Ньютона). Ее лучше всего провести перед изучением раз-

раздела 19.3.

Техника эксперимента
— такая же, как в предыдущей работе, и здесь можно

принять те же самые меры предосторожности. Особого внимания требует выпол-

выполнение первой части работы, где действуют большие силы. (Нельзя допускать,
чтобы метровая линейка превращалась в стрелу, пущенную из лука, пролетаю-

пролетающую через весь класс и причудливо блуждающую в полете! Удостоверьтесь, что

учащиеся осторожно останавливают тележку в конце пробега, чтобы предохра*
нить ее от опасности, а ноги учащихся

— от падающих кирпичей.)
Анализируя движение, учащиеся имеют право считать (проделав лаборатор-

лабораторную работу III. 1), что ускорение постоянно в течение каждого пробега. Они

Рис. 61.
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могут выбрать отметку времени в центральной части пробега, отсчитать равное

число интервалов времени (скажем, 10 или 20) в обоих направлениях и отметить

крайние точки. Пусть расстояния от центральной отметки до двух крайних точек

Рис. 62.

будут dx и d2 соответственно (рис. 62). Тогда средние скорости в течение этих двух

равных интервалов времени будут равны Vx — djt и v2
= a\lt.

Изменение средней скорости Au=t>2—0* происходит в течение промежутка

времени /. Следовательно, ускорение a— (v2—vj/t. Время t может быть выражено

в интервалах отметчика времени или совокупности нескольких отметок.

Ответы на вопросы

График зависимости ускорения от силы приближается к прямой линии и

показывает, что сила и ускорение пропорциональны (рис. 63). На основании этого

графика мы можем сказать, что в тече-

течение этого опыта отношение силы к уско-
F/9
/2

/> число резинок

Рис. 03.

/ 2 3 4 5
т, число кирпичей

Рис. 64.

рению постоянно. В отсутствие трения кривая пройдет через начало координат.

При наличии трения из графика будет видно, что ускорение равно нулю при по-

положительном значении силы, пока приложенная сила равна и противоположна
силе трения и результирующая сила равна нулю. В данном опыте трение на-

настолько мало по сравнению с натяжением резиновых петель, что погрешности
в поддержании постоянства натяжения могут замаскировать силу трения. В ре-

результате кривая может пересечь ось силы несколько правее или левее начала

координат и не может быть использована для измерения силы трения (см. рис. 63).
График зависимости отношения силы к ускорению от числа кирпичей при-

приближается к прямой линии. Если на графике нанесено только три точки, этот

результат будет неубедительным (рис. 64).
Пересечение полученной прямой с осью «число кирпичей» дает массу тележки,

если за единицу принята масса кирпича. Это верно лишь приблизительно, по-

поскольку колеса тележки совершают вращательное движение, и их вращательная
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инерция может выглядеть на графике как эквивалентная масса около 0,2 кг.

Экспериментальные данные не обладают достаточной точностью, чтобы позволить

это заметить.

Отметим, что на данной стадии мы еще не обсуждаем соотношения между

инертной и гравитационной массами. Если вы не планируете проводить лабора-

лабораторную работу II 1.3, то можно использовать этот опыт как введение к обсуждению
связи между инертной и гравитационной массами, попросив учащихся сравнить

отношение гравитационных масс тележки и кирпича с отношением их инертных

масс, найденным из графика на рис. 64.

Чтобы найти инертную массу свинцовой чушки или тяжелого камня, поме-

поместите неизвестную массу на тележку и протяните ее с помощью одной резиновой
петли. По отношению силы к ускорению эта масса может быть определена путем

интерполяции (или экстраполяции) графика зависимости F/a от т.

Лабораторные работы III. 1 и III.2 приводят к заключению, что уравнение,

связывающее силу, массу и ускорение, имеет вид F=kma. Значение k зависит

от выбора единиц. Ответ F=ma верен только при условии, что учащиеся поль-

пользуются правильно связанными единицами, такими, как кг для массы, м/(п от-

отметокJ для ускорения и, следовательно, кг«м/(л отметокK для силы. (Мы обо-

обозначаем через п число отметок, укладывающихся в фиксированном интервале

времени, которым мы пользуемся при анализе и при построении графиков.)
Отметчик времени можно проградуировать в секундах на отметку времени,

и тогда ускорение выражается в м/с2. Если между двумя отметками времени

проходит 0,02 с, а в качестве основного интервала взято 80 отметок, то ускорение
в 0,4 м/(80 отметокJ равно а =0,4 м/(80-0,02 сJ = 0,16 м/с2. Ускоряющая сила

в ньютонах получается при умножении этого ускорения на величину ускоряемой
массы в килограммах.

Приборы и принадлежности: роликовая лабораторная тележка; отметчик

времени; бумажная лента; 4—5 кирпичей; метровая линейка; 4 резиновых петли;

миллиметровая бумага; 2—3 струбцины; сухой элемент на 1,5 В.

II 1.3. Инертная и гравитационная массы

Этот опыт дает вполне точные результаты и поможет выяснить связь между

инертной и гравитационной массами. Его лучше всего провести после изучения

разделов 19.5 и 19.6.

Данный опыт показывает, что гравитационная и инертная массы — прин-

принципиально различные вещи. Это видно из способов их измерения. Тем не менее,

для двух данных тел отношение их инертных масс равно отношению их масс гра-

гравитационных.

Установка, используемая в этом опыте, позволяет получить результаты с

точностью до 1%. Такая малая величина ошибок оправдывает тщательное рас-

рассмотрение их источников и оценку их величины, выражающейся долями процента

2-дюймовые струбцины могут служить удобными единицами массы; они легко

прикрепляются к платформе инерционных весов. Это дает приемлемые резуль-

результаты, поскольку струбцины достаточно однородны. Если позволяет время, можно

подобрать одинаковые по весу струбцины с точностью до 1%. Чтобы это сделать,
возьмите самую легкую из них в качестве эталона, и, подпиливая или подшли-

фовывая остальные, подгоните их вес.
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В качестве стандартной единицы массы можно использовать и другие тела

одинаковых размеров, формы и строения.

Кусок наждачной бумаги, подклеенный к платформе инерционных весов,

предотвращает проскальзывание этих масс при колебаниях весов. Если они

проскальзывают, весы остановятся прежде, чем мы успеем произвести необхо-

необходимый отсчет их показаний.

Выполняя этот эксперимент, учащийся узнает, что стандартная единица

инертной массы может быть полностью независима от единицы гравитационной
массы. Поэтому не следует выбирать единицу инертной массы равной в точно-

точности 100 г.

Любое тело, сделанное из другого материала, нежели эталонные массы,

может быть использовано в качестве неизвестной массы. Однако для того чтобы

мы могли произвести точную интерполяцию, его масса не должна быть слишком

j-q
близка ни к одному из концов того диапазона,

0,5

0Л

W

0,2

в котором проводилась градуировка весов (от
100 до 600 г). Неизвестную массу можно прикре-
прикрепить к платформе весов с помощью струбцины.

При определении периода колебаний нена-

груженных весов может оказаться невозможным

'л—i—i i—i i—J— подсчитать достаточное число колебаний, чтобы
U 1 6 € Ч- О О ^«

/77, число струбция получить величину периода с ошибкой, не пре-

Рис. 65. вышающей 2%. Эту менее точную величину все

же стоит отметить на графике, но ей не следует

придавать слишком большого значения после того, как будет построена кривая.

Когда груз на весах слишком велик (превышает приблизительно 750 г), то

наряду с горизонтальным движением происходит заметное движение вверх-вниз.
Это приводит к тому, что получающееся на графике соотношение между Тит

отличается от соотношения Т=2п V^m/k> которое выполняется для гармониче-

гармонических колебаний. (Не обсуждайте это соотношение в классе на этой стадии, так

как оно появится позднее, в гл. 20.) Более сложный график (рис. 65), который
получается в действительности, по-прежнему является вполне хорошей градуи-
ровочной кривой.

В противоположность математическому маятнику, частота не зависит от

амплитуды в очень широком диапазоне амплитуд.

Ответы на вопросы

Качественное исследование ускорения при данной амплитуде у различных
масс показывает, что несмотря на то, что ускорение не постоянно для данной

массы, оно больше в каждой точке колебаний у меньших масс. Это означает, что

изменение периода колебаний весов происхо ит благодаря инерционному влия-

влиянию массы — тому же влиянию, которое входит в закон Ньютона.

Если колебания весов измеряются в течение 100 с, то считая, что мы можем

измерить время с точностью до одной секунды, мы получим ошибку этого изме-

измерения, равную 1/100= 1%. Если измерено 100 полных колебаний, то ошибка

в их подсчете также составит 1 %, так как число колебаний может быть определено

с точностью до одного цикла. Тогда, если за 100 с весы совершают более чем 100

колебаний, то отношение «число колебаний/100 с» будет измерено с точностью

в пределах 2%. Если, с другой стороны, весы совершают 100 колебаний менее
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чем за 100 с, необходимо сосчитать 100 колебаний, чтобы получить это отношение

с точностью в пределах 2%.

Гравитационная масса mg камня находится по его инертной массе т^.

(m/)K
~

К-)стр
*

В нашем опыте (т/)стр= 1 по определению.

Инертная и гравитационная массы пропорциональны в пределах ошибок

эксперимента. Они не равны, поскольку использовались различные единицы

для их измерения (струбцины и граммы). Они, конечно, равны в большинстве

физических работ, поскольку один и тот же стандартный кусок вещества — эта-

эталонный килограмм
— используется в обеих шкалах.

На Луне мы бы получили те же самые результаты: ни гравитационная, ни

инертная массы не меняются при переходе с Земли на Луну.
Если используется установка, показанная на рис. II 1.6, весы будут иметь

меньший период колебаний для данной массы, поскольку сила тяжести действует

теперь как возвращающая сила в до-

* „ Приклеитьбавление к возвращающей силе изог-
"

\
нутых ножовочных полотен, когда весы s > ^^=

оттянуты в сторону. (Эта часть опыта

является необязательной.)
Описанное приспособление можно

использовать в качестве акселеромет-

акселерометра
— прибора для измерения ускоре-

ускорений. Для этого к подвижной плат-

платформе надо приклеить соломинку

или какой-нибудь другой указатель,
а к основанию весов — шкалу сил (рис. 66). Затем можно прикрепить ве-

весы к столу и, оттягивая их в сторону с помощью динамометра, програ-

дуировать шкалу сил в ньютонах. При известной массе (масса тела плюс масса

платформы) это приспособление можно проградуировать в единицах ускорения
с помощью закона Ньютона (а= F/M). (Ответ на этот вопрос, так же как и реа-

реальное выполнение градуировки и использование прибора в качестве акселеро-

акселерометра, надо предусмотреть только для особенно интересующихся учащихся. Мы

не имеем в виду, что на него должны ответить все.)
Акселерометр можно держать или установить в автомобиле так, чтобы он

располагался горизонтально, а ножовочные полотна — под прямым углом к

направлению движения. При ускорении машины акселерометр покажет откло-

отклонение, но при этом могут возникнуть колебания взад и вперед, если ускорение
было резким. Чтобы предотвратить это, надо демпфировать весы, прикрепляя
к ним несколько струбцин. (Внимание водителя должно быть сосредоточено на

дороге, а не на акселерометре!).

Приборы и принадлежности: инерционные весы; 6 2-дюймовых струбцин
(их можно разделить между учащимися, так что на каждого может приходиться

и меньшее их число); 3-дюймовая струбцина; металлический стержень; нить; шта-

штатив с зажимом и перекладиной; лист миллиметровой бумаги; секундомер или

часы с секундной стрелкой; весы с чашками; несколько неизвестных масс (с массой
от 2 до 4 единиц).
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Рис. 67.

111.4. Силы, действующие на брошенный шарик
Учащимся столь часто предлагается «пренебречь трением или сопротивле-

сопротивлением воздуха», что у них может сложиться представление, будто только простые

идеализированные движения поддаются анализу. На этом опыте учащиеся могут

убедиться, как, применяя знание о простейшем движении брошенных тел, можно

прийти к пониманию более сложного движения. В этом и состоит самое важное

из того, что он должен почерпнуть из

данного эксперимента. Анализируя рис.
II 1.7, он узнает, что сопротивление

воздуха действует в направлении, про-
противоположном направлению движения,

и что оно возрастает с увеличением

скорости.
Эта работа, хотя и важная, не

требует никаких экспериментальных

приспособлений и может быть прове-

проведена в виде домашнего задания после

изучения движения брошенных тел в

разделе 20.4.

Для вычерчивания удобно иметь

миллиметровую бумагу, хотя для этого

досгаточно, вообще говоря, кальки. На

рис. 67 приведен пример анализа рис.

III.7. Учащиеся могут испытывать затруднения при переводе изменения скорости

Avg, вызванного ускорением свободного падения, в такой вектор, который они могли

бы построить на своих диаграммах. Первый шаг состоит в вычислении &vg= gA/=
== 9,8*0,1 = 0,98 м/с. Это должно быть затем переведено в метры на десятую

долю секунды, что дает 0,98*0,1 = 0,098 м/0,1 с. Это эквивалентно тому, что мы

выразили ускорение силы тяжести не в м/с2, а в «метрах на десятую долю секунды

в квадрате»:

9,8 м/с2 = 9,8/100 = 0,098 м/@,1 сK.

Это значение соответствует масштабу рис. II 1.7. Поскольку масштаб фотоснимка
1 : 10, длина вектора изменения скорости благодаря силе тяжести Дг^, который
мы должны вычесть, будет составлять 0,098/10 = 0,0098 м. Это изменение проис-

происходит, конечно, в вертикальном направлении, и чтобы вычесть его из полного

изменения скорости Аи, его нужно прибавить со знаком минус (т. е. прибавить
вектор такой же длины, но противоположного направления), как показано на

рис. III.8, б.

Если учащиеся заинтересуются анализом рис. II 1.9 и III. 10, они должны

проверить масштабное уменьшение, измерив расстояние между делениями ли-

линейки на фотоснимке.

Ответы на вопросы

Качественное исследование фотографий показывает, что горизонтальная

скорость уменьшается слева направо. Отсюда следует, что кроме тяжести здесь

действует сила, имеющая горизонтальную составляющую.

Полное изменение скорости, определяемое с помощью последовательного

вычитания векторов скорости на диаграмме, изменяется от интервала к интервалу
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Рис. 68.

как по направлению, так и по величине. Величина Av уменьшается по мере дви-

движения, а направление медленно приближается к горизонтальному. Поскольку

изменения скорости происходят в направлении сил, вызывающих эти изменения,

результирующая сила, действующая на шарик, во всяком случае имеет горизон-

горизонтальную компоненту. Без дальнейшего анализа невозможно сказать, какие из-

изменения вызывает неизвестная сила.

Изменение скорости шарика за 0,1 с, вызванное силой тяжести, равно 0,98 м/с
и направлено вертикально вниз. В метрах на десятую долю секунды это состав-

составляет 0,098 м/ОД с.

После вычитания влияния силы тяжести оставшееся изменение скорости,

вызванное остальными силами, имеет как вертикальную, так и горизонтальную

компоненты и направлено противоположно Без учета
движению. Чем больше скорость, тем больше

противодействующая сила. Эта тормозящая
сила есть результат сопротивления воздуха.
Она пропорциональна квадрату скорости в

условиях нашего эксперимента. Полное из-

изменение скорости, однако, недостаточно ве-

велико, чтобы мы могли видеть из графика про-

пропорциональность силы и и2, особенно если

учесть ограниченную точность, с которой мож-

можно измерить силу при анализе этих данных.

Шарик должен иметь очень большое

отношение площади сечения к массе (очень
малую плотность), чтобы сопротивление воздуха оказало столь сильное

влияние на его движение при относительно низких скоростях. Если бы шарик

имел те же размеры, но больший вес, его траектория больше походила бы на

параболы, приведенные на рис. Ш.7, III.9, ШЛО. Шарик, использованный для

получения фотографий, представлял собой сферу диаметром 1,5 см и весом 0,05 г

из полистирола.
Если бы тяготение было единственной силой, действующей на шарик, его

траектория выглядела бы, как на рис. 68, где средняя скорость в течение первого

интервала взята в качестве начальной скорости.

Шарик на рис. III.7 был брошен рукой почти без вращения. Рис. III.9 и

ШЛО были сделаны с той же самой частотой вспышек, что и рис. III.7, но шарику
в момент бросания придавалось вращение. На рис. Ш.9 шарику придавалось

вращение против часовой стрелки относительно оси, перпендикулярной к пло-

плоскости фотографии. На рис. ШЛО это вращение происходило по часовой стрелке.

Анализ рис. Ш.9 и ШЛО показан на рис. 69 и 70.

Анализ фотографий с вращением и построение траектории в отсутствие со-

сопротивления воздуха надо рассматривать как дополнительный материал к ос-

основному эксперименту и задавать только особенно интересующимся учащимся.
На рис. 69 сила, которая остается после вычитания тяжести, больше не проти-

противоположна направлению движения, но имеет составляющую, перпендикулярную

траектории. Эта компонента становится меньше, так как скорость вращения

уменьшается по мере движения. На рис. 70 видна аналогичная компонента,

перпендикулярная к траектории, но направленная противоположно действующей
на рис. 69.
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Полное математическое описание движения с вращением (или даже движения

при наличии сопротивления воздуха без вращения) представляет собой непри-

неприступную задачу, которую нечего и пытаться решить.

На всех трех фотографиях скорость шарика вблизи конца его траектории

почти постоянна. Шарик приближается к своей предельней скорости. Когда

Рис. 69. Ряс. 70.

шарик достигает своей предельной скорости, сила тяжести, действующая на него,

становится равной сопротивлению воздуха, результирующая сила при этом равна

нулю и он движется с постоянной скоростью.

Учащиеся могут выразить желание попробовать бросить шарик от пинг-

понга, придав ему вращение. Для этой цели подходит картонная почтовая от-

открытка, свернутая в трубку. Положите шарик в трубку и взмахните ею по вос-

восходящей или нисходящей дуге, в зависимости от желаемого направления враще-
вращения. Этот метод был использован при получении фотографий на рис. Ш.9 и ШЛО.

Приборы и принадлежности: прозрачная миллиметровая бумага или калька;

линейка.

Советы по получению импульсных фотоснимков. Фотоаппарат, изображенный
на рис. 1.6 в описании лабораторной работы 1.1 (в части I), фиксирует на пленке

положение тела каждый раз, когда щель стробоскопического диска, вращаемого
мотором, проходит перед объективом. Эта техника позволяет анализировать

двумерное движение, которое невозможно исследовать с помощью отметчика

времени с лентой.
В большинстве случаев достаточна частота от 5 до 30 экспозиций в секунду.

Низкоскоростной мотор вроде синхронного двигателя на 300 об/мин для часов

и приборов является наиболее универсальным, поскольку большие частоты экс-

экспозиций можно получить, сделав несколько равноотстоящих щелей на диске.

Синхронный мотор наиболее подходит для приведения диска во вращение, по-

поскольку скорость его вращения, а поэтому и частота экспозиций, известна. Однако
во многих случаях единица времени произвольна, и поэтому можно использовать

более дешевый двигатель.
У асинхронного мотора можно измерить скорость вращения и проверить ее

постоянсгво, если сфотографировать сквозь вращаемый им стробоскоп диск про-

проигрывателя, рассчитанного на воспроизведение пластинок со стандартной ча-

частотой 78 или 33 об/мин., на который нанесено белое пятно. Если синхронный
мотор перегружен, он не будет вращаться со своей стандартной скоростью. По-
Поэтому надо удостовериться, что диск не настолько велик, чтобы сопротивление
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воздуха, действующее по его поверхности, могло его замедлить. Когда синхрон-
синхронный мотор перегружен, неоновая лампочка, включенная в цепь переменного

тока с частотой 50 Гц, будет мигать при наблюдении сквозь вращающийся стробо-
стробоскопический диск.

Вращающийся диск должен быть расположен как можно ближе к объективу
фотоаппарата, не касаясь его. Как фотоаппарат, так и стробоскоп должны быть

жестко закреплены.
Отдельные выдержки при съемке движущегося тела можно варьировать, из-

изменяя ширину щели и тем самым как бы диафрагмируя объектив. Откройте ос-

основную диафрагму объектива так, чтобы его относительное отверстие было мак-

максимальным. Тогда объектив будет частично прикрыт диском, так что форма его

рабочего отверстия будет определяться формой щели, а ширина будет равна или

несколько меньше ширины прорези в диске. Более резкие изображения полу-
получаются путем уменьшения ширины щели.

Полное время экспозиции лучше всего регулировать с помощью включения

ламп, а не с помощью затвора фотоаппарата. Если используется спусковой тросик,
вместо руки, для приведения в действие затвора, то будет меньше шансов качнуть

фотоаппарат.
Для съемки подходит пленка с чувствительностью от 160 ед. ASA и выше.

В некоторых случаях лучшие изображения можно получить путем перепрояв-

перепроявления (или печати на особо контрастной фотобумаге).
Плоскость пленки в фотоаппарате должна быть параллельна плоскости дви-

движения, чтобы предотвратить неодинаковое увеличение различных частей фото-
фотоснимка. Если для выполнения последующих абсолютных измерений фотографи-
фотографируются некоторый масштаб, то он должен быть расположен в той же плоскости,

в которой происходит движение, чтобы перспективные искажения были мини-

минимальны.

Для получения лучших результатов съемку следует производить на темном

фоне, изготовив для этого щит, покрытый тканью, бумагой или другим материалом

площадью 2 квадратных метра. Если необходимо окрасить его поверхность,

лучше пользоваться матовыми красками во избежание бликов. Фотографируемое
тело надо заставить двигаться параллельно щиту, примерно в метре от его

поверхности. Фотоаппарат и стробоскоп располагаются при этом примерно в

полутора метрах от тела.

Движущееся тело может нести свой собственный источник света (лампочку
от карманного фонаря, питаемую от двух сухих элементов) или освещаться двумя

импульсными лампами-вспышками A50 Вт, нематовые, с экранами). Для тел,

движущихся горизонтально, расположите лампы по обе стороны от фотоаппарата
примерно в метре от него и направьте их внутрь под углом приблизительно 40°

к плоскости движения. Чтобы сфотографировать тело, движущееся вертикально,
установите одну из ламп на полу, направив ее вверх под углом 80° к плоскости

тела, а другую поместите в двух метрах прямо над ней, направив ее вниз под

углом 80°.
Если желательно показать масштаб на окончательном отпечатке, располо-

расположите линейку в плоскости тела.

Детали и материалы: любая камера с ламповой или обычной выдержкой;

мотор (предпочтительно синхронный) на 300 и 1800 об/мин (закрепленный); диск

(от 6 до 10 дюймов) из плотной бумаги, металлической фольги, пластика или ана-

аналогичного материала; несколько высоковаттных ламп с патронами, шнурами
и подставками.

II 1.5. Центростремительная сила

Целью этого эксперимента является определение зависимости центростреми-
центростремительной силы от частоты вращения, массы и радиуса для тела, движущегося по

окружности. Работу лучше провести до того, как соответствующее соотношение

будет выведено при изучении Учебника (в разделе 20.5).
В результате выполнения первой части опыта учащиеся придут к заклю-

заключению, что центростремительная сила пропорциональна квадрату частоты. Если

395



время позволяет и некоторые учащиеся выражают желание продвинуться дальше,

они придут к выводу на основании эксперимента, что центростремительная сила

пропорциональна массе и радиусу окружности.

Как и в большинстве лабораторных работ, относящихся к этой части, следует

подчеркнуть, что открытие фундаментальных законов не требует использования

стандартных единиц измерения.

Здесь мы пользуемся произвольными единицами силы и массы: в качестве

единицы для измерения центростремительной силы используется сила тяжести,

действующая на железную шайбу; единицей массы служит масса резиновой
пробки.

Учащиеся могут делать опыт в одиночку в лаборатории или дома, но лучше

его проводить вдвоем или втроем
— один крутит пробку, другой считает число

оборотов, а третий засекает время. Если лаборатория слишком мала, чтобы в ней

можно было одновременно вращать много пробок по окружности радиусом в

один метр, можно провести эксперимент на открытом воздухе или в физкультур-

физкультурном зале.

Размеры стеклянной трубки не критичны, но поверхность верхнего конца,

по которой скользит нить, должна быть тщательно оплавлена, так чтобы она

была гладкой и без бугорков, что позволит свести к минимуму трение. Силы здесь

таковы, что трубка не сломается, если она не надтреснута и не надбита. Чтобы

не пораниться, мы обертываем трубку лентой, иначе мы можем пострадать от

острых осколков стекла, если нечаянно разобьем ее.

Выбор нити имеет значение, если трение должно быть сделано малым. Лучше
всего подходит плетеная рыболовная леска из прочного нейлона, выдерживающая
нагрузку в 12 фунтов.

Размеры пробки, радиус окружности и размер и минимальное число шайб

должны быть тщательно подобраны, чтобы получились хорошие результаты.
Большие отклонения от рекомендованных значений могут привести к тому, что

график зависимости силы от скорости будет иметь вид прямой линии.

Чтобы обеспечить вращение пробки с постоянной частотой, вершинка трубки

должна двигаться по окружности малого радиуса. Это дает малую составляющую
силы в направлении движения, необходимую для уравновешивания трения. Од-

Однако эта окружность не должна превышать сантиметр или два в диаметре, иначе

радиус окружности, по которой движется пробка, не может быть точно измерен
по длине нити. Радиус окружности, которую описывает пробка, должен изме-

измеряться от середины пробки, где лежит ее центр масс. Поскольку размеры пробки
малы по сравнению с радиусом окружности, при измерении от этой точки мы

получим значение радиуса, очень близкое к действительному, правильному.
В разделе ЛР Учебника указано минимальное число шайб, обеспечивающее

горизонтальность нити, достаточную для того, чтобы позволить нам использовать

ее длину как довольно точное значение радиуса окружности. В действительности
использование «искаженного» значения радиуса, равного длине нити, приводит

к правильному результату независимо от величины угла, который нить состав-

составляет с горизонталью. Это можно проверить, рассматривая рис. 71. Сила тяжести

/иш?> действующая на шайбы, передается вдоль нити и действует на пробку вдоль

направления L. Горизонтальная составляющая этой силы играет роль центро-

центростремительной силы Fu и направлена вдоль R. Мы видим, что R= L cos6, и /7Ц =
0
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Записывая выражение центростремительной силы в виде

Fn= 4n*mnPR = 4я2тп#/Г2,
после подстановки получаем

mmg cos Q = 4n2mnL cos 0/Г2,

Это означает, что сила, действующая на шайбы, обратно пропорциональна квад-

квадрату периода при постоянной длине нити L. Поскольку учащийся считает, что R

лежит весьма близко к L, он измеряет период вращения и полагает его обратно
пропорциональным скорости v. При этом не получается ошибки, связанной с из-

изменением угла 8, так как 6 сокращается при вычислениях. Как видно из рис. 71,

Рис. 71.

Цисло шайб

Рис. 72.

О определяется только весом шайб, поскольку sin 0 = tnnqlmmg. Поэтому ис-

использование меньшего, чем рекомендовано, числа шайб приведет к увеличению

угла 6.

Ответы на вопросы

Чем быстрее вращается пробка, тем сильнее надо тянуть нить вниз. Если

отпустить ее, пробка перестает двигаться по окружности и вытягивает за собой

нить вверх сквозь трубку. Чувствуя эту силу сам, учащийся убеждается в том,

что для того, чтобы заставить тело двигаться по окружности, необходима сила,

направленная под прямым углом к движению.

График зависимости частоты вращения пробки от числа шайб имеет вид,

представленный на рис. 72. Конечно, неясно, какую функцию представляет этот

график, однако можно подозревать, что это парабола. Учащийся может подумать

(если его внимание несколько рассеяно), что эта кривая представляет собой пря-

прямую линию, которая не проходит через начало координат, однако если его спро-

спросить, какая частота соответствовала бы нулевой силе, он должен убедиться, что

она была бы равна нулю, т. е. что пробка должна быть неподвижной. Следова-

Следовательно, эта кривая должна проходить через начало координат, отклоняясь от

предположенной им прямой линии.

График зависимости f2 от числа шайб будет иметь вид прямой, проходящей
через начало координат и показывающей, что центростремительная сила изме-

изменяется как /2.
Учащийся должен заключить на основании закона Ньютона F = та, что

увеличение вдвое массы, вращающейся по данной окружности с данным центро-

центростремительным ускорением, потребует удвоения силы, поддерживающей ее
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движение с той же скоростью по той же окружности. Если у него есть время, он

может это проверить.

Зависимость силы от радиуса непосредственно выяснить трудно, так как

трудно вращать пробку с одной и той же частотой каждый раз, когда изменяется

радиус. Лучший способ получить соотношение между силой и радиусом состоит

в многократном повторении первой ча-

части эксперимента,каждый раз используя
новое значение радиуса и одно и то же

значение центростремительной силы для

8илы

Haffepzy .

трцбни I

10 J5 20
F, число шайб

Рис. 73.

30

каждого радиуса. Тогда можно построить семейство кривых, выражающих за-

зависимость /2 от F, которое имеет вид, представленный на рис. 73. Поскольку нам

известно из первой части опыта, что эти графики представляют собой прямые
линии, для каждого радиуса достаточно иметь одно значение центростремительной

силы, чтобы провести прямую через начало координат и точку, соответствующую

этому значению.

Для постоянного значения f2, представленного на рис. 73 линией АВ, раз-
различные значения силы (Flt F2> F3t F4) лежат на кривых, соответствующих раз-

различным значениям R. Если эти значения F и R нанести на график, они дадут

кривые, похожие на изображенную на рис. 74. (Заметим, что рис. 73 и 74 не от-

отражают действительных данных, полученных на описанной установке. Они

представляют собой просто наброски тех результатов, которые должны были бы

получиться.) Учащиеся, хорошо знакомые с основами радиолюбительства, могут
заметить сходство этого метода анализа семейства кривых с методом определения
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коэффициента усиления электронной лампы по семейству ее характеристик,

представляющих зависимость ее анодного тока от напряжения.

Если для экспериментального исследования влияния массы и радиуса на

центростремительную силу времени недостаточно, можно проделать эту часть

лабораторной работы в виде демонстрации в классе.

На рис. 75 изображены все силы, действующие на установку. F представ-

представляет собой результирующую силу, которую прилагает экспериментатор (в пре-
пренебрежении весом трубки). Отметим, что гравитационная компонента этой силы

(mmif~г~ тл1Г) постоянна по направлению, в то время как горизонтальная компо-

компонента — центростремительная сила F^ — постоянно изменяет свое направление

в горизонтальной плоскости.

Приборы и принадлежности: стеклянная трубка, гладко оплавленная и об-

обмотанная лентой; нить длиной 1,5 м (плетеная рыболовная леска из прочного
нейлона); 20 железных шайб; зажим «крокодил» или другая подходящая метка;
резиновая пробка; канцелярская скрепка; 2 листа миллиметровой бумаги; шпонка

в 1/4 дюйма или карандаш; линейка; секундомер или часы с секундной стрелкой.

II 1.6. Закон равных площадей

Во всех случаях, когда действует центральная сила, тело будет двигаться

по орбите таким образом, что его радиус-вектор заметает равные площади за

равные промежутки времени, независимо от того, каким образом эта сила изме-

изменяется с расстоянием до центральной точки. Закон равных площадей объясняется

законом сохранения момента количества движения, однако поскольку понятие

момента количества движения не рассматривается в данном курсе, было бы,

по-видимому, неразумно обсуждать его в связи с этим экспериментом. Этот опыт

служит всего лишь иллюстрацией закона равных площадей и не входит в число

самых важных экспериментов. Он наиболее подходит для того, чтобы его провести

при изучении гл. 21.

Как для маятника, так и для планет действующая сила является центральной
и направлена все время к одной точке, независимо от положения тела. Сила,

действующая на планету, изменяется обратно пропорционально квадрату рас-
расстояния между ней и Солнцем. Сила, действующая на маятник, прямо пропор-

пропорциональна расстоянию грузика от центра эллипса, пока угол отклонения нити

подвеса от вертикали мал. Обратно пропорциональная квадрату расстояния
сила заставляет планету двигаться по эллипсу, в одном из фокусов которого
лежит силовой центр, в то время как линейная сила,*действующая на маятник,

заставляет его двигаться по эллипсу с силовым центром, лежащим в центре эллипса.

Ответы на вопросы

Аккуратное выполнение работы показывает, что равенство заметаемых

площадей имеет место с точностью от 5 до 10%, даже для случая вытянутых
эллиптических орбит, когда изменения скорости значительны.

Рис. III. 13 был получен по методу, описанному в разделе ЛР Учебника (см,
также предложения в конце лабораторной работы II 1.7 на стр. 401). Плоскость
пленки была параллельна плоскости эллипса.

Приборы и принадлежности: фотокамера; стробоскоп с мотором; 2 лампы
по 150 Вт, патроны, шнуры, отражатели (или софиты); белый шарик; 5 штативов

с зажимами и поперечинами; проволока или нить; 3 струбцины; большой лист

черной бумаги; линейка; лист миллиметровой кальки,
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111.7. Изменения количеств движения при взрыве

Эта работа наиболее подходит для того, чтобы провести ее сразу же вслед

за изучением импульса и количества движения по тексту Учебника, и предпо-

предпочтительно перед тем, как давать изменения количеств движения при взаимо-

взаимодействии двух тел (раздел 22.3). Эксперимент подводит к закону сохранения

количества движения. Пружинный взрыватель может быть опасен, если его необ-

необдуманно освободить. Его нельзя взводить до того, как пружина тщательно

прикреплена к тележке. Надо предупредить учащихся, чтобы они не спускали

пружину, когда тележка на кого-нибудь направлена.

Пружины могут различаться по силе их действия. Слабая пружина, дей-

действующая на тяжелую тележку, может не придать ей скорость, достаточную для

уменьшения влигичя небольших неровностей поверхности стола.

Наилучшее расстояние между двумя упорами равно примерно 1,5 м. Если

расстояние, которое должна пройти тележка, слишком велико, она может ос-

остановиться вследствие трения до того, как достигнет упора. С другой стороны,
если пройденное расстояние слишком мало, а скорости довольно высоки, метод

совпадения времени будет неточным.

Каждая из тележек должна быть нагружена по крайней мере одним кирпи-

кирпичом, поскольку некоторая часть силы взрывателя идет на создание вращающего

момента, необходимого для того, чтобы заставить колеса вращаться. Это про-

проявляется в виде потери поступательного количества движения. Пока масса колес

мала по сравнению с полной массой, этот эффект несуществен.
Начальное положение тележек можно отметить мелом на столе. Удостоверь-

Удостоверьтесь, что учащиеся ставят начальные метки для каждой тележки у того ее конца,

который ближе к упору, как показано на рис. III. 16.

Если обе тележки нагружены одинаково, трение не будет сказываться, по-

поскольку сила трения действует на каждую тележку в течение одного и того же

времени, создавая равные и противоположно направленные импульсы на обе

тележки и поровну уменьшая их количества движения. Конечно, если тележки

нагружены разными массами, на них будут действовать разные силы трения,

однако влияние трения мало и им можно пренебречь в этом опыте.

Если стол не горизонтален, одна тележка будет приобретать количество

движения по мере движения, а другая
—

терять. Если стол не удается выровнять,
может оказаться необходимым производить по два запуска при каждом варианте

нагрузки тележек, меняя их местами при втором запуске и сравнивая изменение

среднего количества движения каждой тележки.

Ответы на вопросы
Если мы спускаем пружину, когда одна тележка стоит на столе, тележка

никуда не поедет. Учащийся придет к заключению, что количество движения

тележки до и после взрыва равно нулю. Изменение нагрузки тележки не изменит

этого результата.

При различной нагрузке тележек можно качественно наблюдать, что более

легкая тележка движется быстрее в результате взаимодействия. Некоторые

учащиеся могут догадаться, что количества движения тележек имеют одну и ту

же величину, но противоположные направления.

При вычислении отношения количеств движения нет нужды в стандартных

единицах для их измерения. Количества движения могут быть выражены в кило-
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граммометрах на «лязг». («Лязг» — единица для измерения промежутков времени,

равная времени, через которое обе тележки достигают упоров при данном про-

пробеге.) Разумеется, изменение нагрузки тележек приводит к изменению их ско-

скоростей, а следовательно, к разным единицам времени и количества движения,

однако единица времени будет одной и той же для обеих тележек. Не пытаясь

определить особую единицу, учащийся может ответить, что изменение количества

движения одной тележки равно по величине и противоположно по направлению
изменению количества движения другой. (Отношение количеств движения равно
—1 с точностью около 5%.)

Полное количество движения до и после взрыва равно нулю, а следовательно,

количество движения сохраняется.

Если бы между тележками взорвалась шашка динамита, по всем направле-

направлениям разлетелись бы осколки с самыми различными скоростями, но мы должны

были бы ожидать, что векторная сумма их количеств движения равнялась бы

нулю. На этот вопрос учащимся трудно ответить до того, как они до конца не

освоятся с изменениями количеств движения в двух измерениях, изучаемыми
в гл. 22 и в лабораторной работе II 1.9.

Другой способ выполнения этой лабораторной работы исключает необходи-
необходимость слушать, когда произойдет одновременное столкновение тележек с упорами.
Он требует более сложной установки и возбуждает больше вопросов у учащихся,
но некоторые учащиеся могут выразить желание попробовать этот путь.

Поместим тележки на гладкую доску длиной около 1,5 м, имеющую по концам

упоры (рис. 76). Доска должна лежать на отрезках стержня диаметром 1/2 или

Рис. 76.

3/4 дюйма и длиной в 1 фут каждый. Используйте три отрезка стержня: два по

концам и один посередине. Сделайте отметки мелом на доске и на столе так, чтобы

они лежали друг над другом. Когда разбрасывает тележки от середины к концам

доски, одна из них ударится о свой упор первой и вызовет движение доски в

направлении, в котором сама она двигалась до удара. Через некоторое время

вторая тележка ударяется о свой упор и останавливает доску. Перемещение от-

отметки, нанесенной на доске, относительно нанесенной на столе является чувст-
чувствительным указателем того, в каком порядке происходит столкновение тележек

с упорами. Если найти правильное начальное положение тележек, они ударятся
об упоры одновременно, и доска вообще не будет двигаться.

Приборы и принадлежности: 2 тележки; 4—5 кирпичей; 4 струбцины; 2 на-
настольных упора (деревянные бруски); линейка; 1 гладкая доска длиной 1,5 м;
3 деревянных стержня от 1/2 до 1 дюйма; весы; клинья; мел.
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III.8. Опыт С тележкой и кирпичом

Поскольку этот опыт следует после того, как учащиеся уже познакомились

с сохранением количества движения при взрыве в лабораторной работе II 1.7,

неважно, проводится ли он до или после изучения закона сохранения количества

движений в Учебнике. Являясь более сложным экспериментом, чем опыт III.7,

он дает учащимся более глубокое проникновение в закон сохранения им-

импульса. Этот опыт произвести нетрудно, но надо иметь в виду некоторые приемы.

Подвешивать кирпич надо на толстой нити, так как ее гораздо легче захватить

и держать на опорной поперечине штатива, как показано на рис. III. 17. Надо

сделать несколько тренировочных запусков, перед тем как записывать движение

тележки.

Поскольку всегда присутствует некоторое трение, тележка будет замедляться

на протяжении пробега. Чтобы правильно анализировать взаимодействие, ско-

скорость тележки надо измерять непосред-

непосредственно перед и сразу же после взаи-

взаимодействия. Когда производятся изме-

измерения, на тележке должен лежать по

крайней мере один кирпич, чтобы ко-

конечная скорость не была настолько

низкой, что неровности стола мог-

могли бы вызвать слишком сильные ее из-

изменения. При определении скоростей
до и после столкновения очень важен
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правильный выбор интервала, чтобы он
был достаточно длинным для точного

измерения и в то же время достаточно

коротким, чтобы скорость была посто-

постоянна в течение этого интервала.

Чтобы предохранить поверхность стола от повреждения, если падающий

кирпич не попадет в тележку, кирпич следует завернуть в бумагу.
Другая возможность анализа полученных данных состоит в построении

графика зависимости скорости от времени. Путем экстраполяции двух прямых,
представляющих медленно изменяющиеся скорости до и после падения кирпича,

можно определить истинные скорости тележек в момент его падения (рис. 77).
На гладких столах практически не требуется никакой экстраполяции. Во всяком

случае, пользоваться этим методом анализа можно рекомендовать только лучшим

учащимся.

Ответы па вопросы

Тележка замедлится, когда кирпич упадет на нее. Если увеличить массу
тележки, ее замедление будет менее заметным.

Уменьшение количества движения тележки равно увеличению горизонталь-

горизонтального количества движения кирпича, но эти изменения имеют противоположные

направления.

Полное горизонтальное количество движения системы, состоящей из тележки

и подвешенного кирпича, до взаимодействия такое же, как у тележки. Поскольку
в результате столкновения тележка теряет такое же количество движения, какое

приобретает кирпич, полное количество движения системы тележка — кирпич
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после взаимодействия будет таким же, как и до него. Количество движения со-

сохраняется в пределах точности эксперимента (около 2%).

Горизонтальный импульс, приложенный к падающему кирпичу, равен изме-

изменению его горизонтального количества движения. Длительность взаимодействия

можно оценить, тщательно исследуя ленты и подсчитывая, сколько интервалов
показывают быстрое изменение скорости. Вообще говоря, полное взаимодействие

осуществляется в течение одного или двух интервалов отметчика времени.
Чтобы оценить горизонтальную силу (в ньютонах), приложенную к кирпичу,

надо проградуировать интервалы отметчика времени в секундах. Это лучше

всего сделать, протягивая ленту сквозь отметчик в течение известного времени

D или 5 секунд) и считая точки. Точность градуировки при этом способе не важна,

поскольку исследование ленты дает только, по порядку величины, число интер-
интервалов, в течение которых взаимодействие имело место.

С помощью так определенного импульса, приложенного к кирпичу, можно

найти среднюю силу взаимодействия по порядку величины из соотношения F==

= I/At, где / — импульс, a At — время взаимодействия. Это очень грубый способ

определения, я стоит указать, что мы получим таким образом среднюю силу;
в действительности сила, вероятно, изменяется во время взаимодействия весьма

широко каким-то неизвестным образом.
Сила, приложенная к тележке, равна, но противоположна силе, приложенной

к кирпичу.

Вертикальное количество движения падающего кирпича передается Земле

через тележку и стол. Количество движения является вектором, и никакая часть

его вертикальной составляющей не передается горизонтальному движению. Тео-

Теоретически величина вертикальной скорости имеет малое значение в этом экспе-

эксперименте.
Если вместо падения кирпича на тележку медленно сыплется песок и ос-

остается в коробочке, установленной на тележке, то тележка будет испытывать

замедление, но длительность столкновения в этом случае будет больше, чем при

падении кирпича. Однако, если бы песок высыпался из тележки, ее скорость не

изменялась бы. Нужно иметь в виду, что наша система все время состоит из те-

тележки и песка. Только сумма количеств движения обоих составляющих этой

системы остается неизменной. Когда мы роняем кирпич на тележку, между ними

действует сила трения, до тех пор пока оба тела движутся с одинаковой ско-

скоростью.

Когда мы позволяем кирпичу или песку покинуть тележку, выпасть из те-

тележки, как тележка, так и кирпич имеют одинаковую горизонтальную скорость
и будут продолжать движение с этой скоростью до тех пор, пока песок не коснется

стола, который не является частью нашей системы. Нельзя включать в систему
или исключать из нее какое бы то ни было тело во время взаимодействия, так

как это приводит к ошибкам. Падение кирпича на тележку в этом смысле может

вводить в заблуждение. Только ввиду того, что кирпич вначале не обладал го-

горизонтальным количеством движения, мы можем сказать, что масса тележки

увеличилась, и, следовательно, ее скорость должна уменьшиться.

Чтобы обратить эксперимент с падением кирпича на тележку, его надо сбро-
сбросить с задней стороны движущейся тележки таким образом, чтобы его скорость
относительно стола равнялась нулю; тогда тележка покатится быстрее (вслед*
ствие отдачи), а кирпич будет падать вертикально.
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Приборы и принадлежности: 1 тележка; 1 отметчик времени; бумажная лента;

диски из копировки; 1 сухой элемент на 1,5 В; 3—4 кирпича; 1 штатив с зажи-

зажимами и поперечиной; 3 струбцины; прочная нить (веревка); лист линолеума или

другого предохраняющего покрытия для стола; весы; клинья; целлофан или обер-
оберточная бумага.

II 1.9. Столкновение при движении в двух измерениях

Этот эксперимент преследует двойную цель. Первая состоит в том, чтобы

внушить учащемуся, что количество движения является векторной величиной

и что именно векторная сумма количеств движения, а не арифметическая, яв-

является сохраняющейся величиной. Это можно реально выяснить, только анали-

анализируя столкновение в двух измерениях. Вторая цель — подвести учащегося

к открытию, что, оказывается, сохраняется еще одна величина, /пи2, которая не

является вектором. Открытие сохранения mv2 в этом опыте служит только для

возбуждения любопытства более способных учащихся, и в это время еще не нужно

углубляться в изучение энергии. Этот эксперимент очень важен и его нельзя

пропускать. Работу лучше всего провести после изучения раздела 22.4.

Отметчики времени с лентой могут быть использованы для измерения ско-

скоростей и количеств движения только при столкновениях, происходящих вдоль

одной прямой. Столкновения в двух измерениях, происходящие на столе, можно

анализировать путем изучения стробоскопических фотографий, как это проде-
проделано в тексте Учебника. Без этих приспособлений надо использовать иной метод

измерения движений. Постоянная горизонтальная скорость брошенного тела

дает нам простой способ измерения скоростей в любом горизонтальном направ-
направлении. Когда шарик медленно скатывается с края стола, стол дает ему малый го-

горизонтальный импульс; чем быстрее движется шарик, тем меньше этот импульс,

и после достижения определенной скорости этот импульс делается равным нулю.

По этой причине ударяемый шарик помещается на винте на некотором расстоянии

от края стола так, чтобы налетающий шарик не касался стола в момент столкно-

столкновения.

Некоторые учащиеся могут обратить внимание на то, что в действительности

мы здесь имеем столкновение в трех измерениях, поскольку шарики не только

движутся в разных направлениях в горизонтальной плоскости, но и падают вер-

вертикально. Можно напомнить учащимся, что они определяют скорости непосред-

непосредственно перед и сразу же после столкновения, когда тела еще движутся в гори-

горизонтальной плоскости, и что исследование движения по вертикали используется

просто как средство для измерения скоростей в горизонтальной плоскости.

Ответы на вопросы

Когда ударяющий шарик скатывается по наклонному жолобу десять или

пятнадцать раз при убранном шарике-мишени, точки его приземления на бумаге
будут распределены по небольшой площадке, которая может уместиться внутри

окружности с диаметром, составляющим примерно 3% от пройденного им рас-
расстояния. Поэтому начальные скорости при различных запусках отклоняются от

среднего значения приблизительно на 1,5%.

Количества движения в случае шариков одинаковой массы изображаются

векторами перемещения на бумаге. Если опыт выполнен тщательно, векторная

сумма двух конечных количеств движения будет равна как по величине, так и по

направлению первоначальному количеству движения налетающего шарика с
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точностью, определяемой рассеянием точек приземления. Примерная совокуп-
совокупность данных и соответствующие векторные диаграммы представлены на рис. 78

и 79. Количество движения сохраняется в пределах ошибки эксперимента. За-

Заметим, что шарик-мишень (индекс «м») надо еще выбить из того небольшого

углубления, которое позволяет ему лежать на винте, не скатываясь. При этом

малая часть количества движения, приобретаемого ударяемым шариком-мишенью
в процессе столкновения, передается опоре. Таким образом, если налетающий

шарик (индекс «н») ударяет шарик-мишень направо, векторная сумма количеств

движения также слегка отклоняется вправо, как видно из рис. 79.

Рис. 78. Рис. 79.

Хотя векторная сумма количеств движения постоянна, арифметическая

сумма их величин не остается постоянной.

Когда опыт повторяется с неодинаковыми массами, более тяжелый шарик

надо использовать в качестве налетающего. В противном случае при лобовом

столкновении (или близком к лобовому) более легкий налетающий шарик от-

отскочит и стукнется о край стола.

При использовании неравных масс перемещения на бумаге, представляющие

скорости, уже не представляют более количеств движения. Векторная сумма
конечных скоростей не равна начальной скорости.

Чтобы превратить векторы скорости в векторы количеств движения при
использовании неравных масс, вектор скорости каждого шарика надо умножить
на его массу. Для простоты мы можем выбрать массу налетающего шарика в

качестве нашей единицы массы. Тогда вектор количества движения налетающего

шарика будет совпадать с вектором его скорости, а вектор количества движения

шарика-мишени будет короче соответствующего вектора скорости в т2/т1 раз.
Тогда мы найдем, что количество движения снова сохраняется.

Составляющие векторов конечных количеств движения шариков, перпенди-

перпендикулярные к первоначальному количеству движения, равны по величине и про-
противоположны по направлению.

Если учащийся сравнит квадраты начальной и конечной скоростей для

случая равных масс, он убедится в том, что квадрат начальной скорости нале-

налетающего шарика почти в точности равен арифметической сумме квадратов двух
конечных скоростей. Это наводит на мысль, что некоторая величина, зависящая

от квадрата скорости, сохраняется при столкновении.
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В случае неравных масс мы находим, что квадрат скорости не сохраняется,

но если квадраты скоростей умножить на соответствующие массы, сумма конечных

тФ равна начальной mv2.

Когда установка собрана, с ее помощью можно быстро получить большое
количество экспериментальных данных, однако их анализ требует много времени

и, вероятно, его надо провести в виде домашней работы. Не требуйте, чтобы было

проанализировано слишком много столкновений. (Вычисление компонент век-

векторов конечных количеств движения, перпендикулярных к начальному коли-

количеству движения, является интересной, но не существенной частью эксперимента.)
Последняя часть опыта — вычисления, показывающие сохранение кинети-

кинетической энергии
— может быть опущена как необязательная. В этих столкнове-

столкновениях имеют место очень малые потери кинетической энергии, и в этом наиболее

просто можно убедиться в случае равных масс, если исследовать угол между

направлениями движения этих двух шариков после столкновения. Если бы не

было потерь кинетической энергии, этот угол был бы прямым; чем больше потери,
тем меньше будет этот угол.

Чтобы пояснить, почему этот угол составляет 90°, когда энергия сохраняется,
а массы равны, заметим, что поскольку скорость является вектором vt сумма

скоростей va и Vb двух одинаковых масс равна

а величины этих векторов связаны соотношением

v2 = v\+ vl— ZvgPij cos a,

где a — угол между va и v^. Если энергия сохраняется и массы равны, сохра-
сохраняется квадрат скорости, т. etJ

Следовательно, —2yay^cosa = 0 и поэтому a = 90°.

Приборы и принадлежности: установка для изучения столкновений в двух
измерениях (состоящая из: основания, пластмассовой линейки с прорезью по-

посередине, дугового жолоба со струбциной и опорой для шарика-мишени, отвеса);
линейка; 2 стальных шарика; стеклянный шарик; струбцина; 4 листа копировки;
8 листов кальки; 2 груза; транспортир или большой циркуль; клейкая лента.

ШЛО. Моделирование процесса столкновения ядер

Этот аналоговый эксперимент сам подводит к различным обобщениям, таким,

как столкновения между атомными частицами различных масс (монеты) и столк-

столкновения с более сложными системами, образованными добавлением многих частиц

к «ядру» мишени. Подразумевается, что только особо интересующиеся учащиеся

продвинутся далее установления соотношения между энергией и пробегом и

определения количества движения «нейтральной» частицы при столкновении

двух частиц равной массы.

Наклонная плоскость, показанная на рис. III.21, должна быть достаточно

крутой (около 70°), чтобы оправдать пренебрежение трением при движении по

ней. Чтобы получить возможность с достаточной точностью определить начало

горизонтального пробега, радиус кривизны в основании наклонной плоскости

должен быть достаточно малым.

Утяжеленная наклонная плоскость может быть получена наклеиванием

миллиметровой бумаги не на картон, а на линолеум. На ней уже имеются линии,
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позволяющие определять начальные высоты. Пользуйтесь старыми затертыми
никелевыми монетами—они лучше скользят.

Соотношение между энергией и пробегом, полученное в реальном опыте,

представлено на рис. 80. Анализ столкновения показан на рис. 81 (где а — на-

начальное количество движения
— |^25 = 5 единиц; Ь — количество движения

налетающей частицы после столкновения = "^6= 2,45 единиц; с — количество

движения частицы-мишени, вычисленное с помощью закона сохранения импульса,

d — расчетный пробег = D,1J= у*"ч

= 16,8 см. Столкновение почти
Расчет

упругое. Сумма пробега (энергии) у
после столкновения равна 6+ ^"' ШлюЯение

+ 16,8= 22,8я* 25,1 — остаточ- J""'

¦Моне/яа-мишег»

10 15 20 ?5

Пробег, см

Рис. 80.

•за \ Далшающояжяета

Рис. 81.

ному пробегу налетающей частицы.) Зависимость пробега от энергии представляет
собой почти прямую линию. Следовательно, при правильном выборе единиц

энергии мы можем сделать ее численно равной пробегу и измерять ее в см. Более

того, E=1/4:mv2/2 = р2/2т; выбирая единицу массы равной удвоенной массе

монеты, мы получаем численное равенство Е = р2, или р
— V^E = J^R . Заметим,

что в этом эксперименте со столкновением налетающая монета теряет энергию
во время горизонтального пробега до того, как она ударит мишень. Ее энергия

непосредственно перед столкновением соответствует остаточному пробегу, т. е.

пробегу, который она прошла бы без столкновения минус расстояние от основания

наклонной плоскости до мишени. Это аналогично происходящему в камере Виль-

Вильсона, когда налетающая частица теряет часть своей первоначальной энергии,

проходя до столкновения значительное расстояние.
В камере Вильсона наблюдаемые треки дают нам непосредственно направ-

направления движения. Иное положение имеет место в нашем опыте; здесь мы должны

найти относительное расположение монет в момент их столкновения, чтобы опре-

определить их направления движения и импульсы.

Приборы и принадлежности: штатив 24 дюйма; наклонная плоскость из

линолеума или дерева 15хЮ дюймов; лист гладкого картона (папка скоросши-
скоросшивателя); несколько листов копировальной бумаги 11x14 дюймов; 3 монеты (ни-
(никелевых); лист миллиметровой бумаги; линейка; транспортир; струбцина или

кирпич; клейкая лента.

III. 11. Изменение потенциальной энергии
В этом опыте, так же как и в лабораторной работе III. 12 (Энергия матема-

математического маятника), исследуется движение, при котором энергия преобразуется
из одной формы в другую с малыми потерями. Желательно проделать оба эти
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эксперимента, но если время не позволяет — по крайней мере один из них (пред-
(предпочтительно данный) после изучения раздела 24.3. Здесь гравитационная потен-

потенциальная энергия превращается в потенциальную энергию растянутой пружины.

Это крайне ценный эксперимент, требующий некоторой тщательности.

Для подвешивания пружины и масс необходим прочный штатив около метра

высотой. Если используется более короткий штатив, необходимо укрепить его

таким образом, чтобы пружина и грузы свободно свешивались за край стола.

Если на лабораторную работу отведено мало времени, построение графика
зависимости удлинения пружины от величины приложенной силы можно отложить

до тех пор, пока не будут получены все экспериментальные данные.

Ответы на вопросы

График зависимости растяжения пружины х от силы F настолько близок

к прямой линии, проходящей через начало координат (в исследуемой области

значений), что отсюда можно сделать вывод о пря-

прямой пропорциональности между х и F в этой обла-

области. Наклон этой прямой k = Fix ^можно подставить
в выражение потенциальной энергии линейной пру-
пружины Unv = kx2/2, что даст нам потенциальную

энергию, накопленную в пружине 'при любом ее

растяжении х.

Можно представить себе ситуацию, в которой

график зависимости силы от растяжения не был

бы прямолинейным. В этом случае энергия, на-

Рис. 82. копленная в пружине, может быть найдена гра-

графическим интегрированием, т. е. с помощью оп-

определения площади под графиком зависимости силы от растяжения от нуля

до различных значений х. Затем можно составить таблицу или построить график
зависимости ?/пр от х для последующего использования в эксперименте.

Потеря гравитационной потенциальной энергии между двумя крайними
точками —A?/g-=—ingix*—xi) равна приращению потенциальной энергии сжатия

пружины между теми же точками Д?/Пр= k(x\—х\I2 с точностью до 1 или 2%.
Заметим, что из —^Ug~ А?/Пр, или

—mg (x2—xx) = k D—*i)/2= k (*2+*i) I

следует

Это означает, что вес массы равен по величине силе, действующей на нее со

стороны пружины, растянутой на величину, соответствующую середине отрезка

между х± и х2. Это как раз та точка, в которой первоначально покоилась масса

перед тем, как ее подняли, чтобы начались колебания. Она является центром

колебаний. Выбирая произвольную точку обращения в нуль гравитационной
потенциальной энергии при х=0 (т.е. у нижнего конца нерастянутой пру-

пружины), мы получим для полной потенциальной энергии выражение

Смещая начало отсчета по оси х на величину (#2 + хгI2——mglk и определяя
таким образом новую координату х' = x+mg/k, мы можем преобразовать эту
формулу к виду ?/=—m2g2/2?+fo;/2/2. Окончательно, выбирая нуль полной
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потенциальной энергии в средней точке колебаний, мы приводим U к U' = kx'V2

(рис. 82). Таким образом, пружина в гравитационном поле Земли ведет себя так

же, как пружина, свободная от гравитационного воздействия в смещенной системе

координат.

Сумма потенциальных энергий, когда масса находится на половине пути

вниз, меньше, чем потенциальная энергия в начале и в конце спуска. Эта разница

равна кинетической энергии падающей массы.

Изменение кинетической энергии можно исследовать экспериментально,

используя стробоскопические фотографии падающей массы или прикрепляя к

тяжелой массе A кг) ленту отметчика времени, которую она, спускаясь, будет
тянуть за собой.

Приборы и принадлежности: стальная спиральная пружина (диаметр от 2

до 15 см, с k примерно 4 Н/м); 2 груза @,5 кг, 1 кг); штатив с поперечиной и за-

зажимами; линейка; струбцина (для прикрепления штатива к столу); 2 листа мил-

миллиметровой бумаги; 3 бельевых зажима; весы.

III. 12. Энергия математического маятника

Этот несколько растянутый опыт показывает, как потенциальная энергия

превращается в кинетическую. Как и работу III. 11, его лучше всего провести

после изучения раздела 24.3 Учебника.

Необходим прочный маятник на трех расчалках. Если возможно подвесить

его к потолку, это было бы более устойчиво.
Пусть учащийся попрактикуется в отпускании кирпича, пока он не научится

заставлять его относительно плавно качаться. Продолжение нити, по которой
действует сила, удерживающая кирпич в начальном положении, должно проходить

через центр масс кирпича, чтобы он, качаясь, не колебался. Ленту отметчика

времени надо прикреплять к центру нижнего основания кирпича, чтобы умень-

уменьшить ошибки, вызываемые медленными поворотами кирпича во время качаний.

Учащемуся будет легче анализировать ленту, если он отметит на ленте то поло-

положение, в котором кирпич покоился перед запуском. Делая это, он должен удо-

удостовериться, что отметчик времени не был сдвинут с места после того, как на ленте

была сделана отметка. Отметчик надо прочно закрепить на то время, пока идет

запись измерений.
Скорость груза в различных положениях может быть получена из графика

зависимости положения от времени, или, если лабораторное время ограничено,
может быть непосредственно определена по ленте, а построение графика зави-

зависимости положения от времени можно опустить. Скорость груза должна быть

определена в метрах в секунду, если кинетическую энергию мы хотим вычислить

в джоулях. Отметчик времени можно проградуировать, протягивая сквозь него

ленту в течение 5—10 секунд и подсчитывая метки.

Ответы на вопросы

Сравнение графиков для потенциальной и кинетической энергии ясно пока-

показывает, что, если обе они выражены в одних и тех же единицах, одна возрастает

на ту же самую величину, на которую убывает другая (рис. 83). Их сумма по-

постоянна в пределах экспериментальных ошибок. Сюда может входить система-

систематическая ошибка, связанная с небольшой неточностью градуировки отметчика

времени. На рис. 83 это выглядит как небольшой подъем полной энергии в сред-

средней части качания.
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Полям энергия

Кинетическая энергия достигает минимума в начальной и конечной точках

качания кирпича по дуге; она имеет наибольшее значение, когда кирпич нахо-

находится непосредственно под точкой его подвеса.

Мы ограничили колебания маятника углом в 15°, чтобы иметь возможность

пользоваться приближенным соотношением h=x2/2L вместо точной формулы
hBL—h) = x2. Для более интенсивных качаний на-

надо пользоваться второй формулой. Кроме того, сле-

следует внести поправки, связанные с тем, что лента

воспроизводит только горизонтальную проекцию

движения груза, даже если отметчик находится на

полу далеко от груза. Высота h также может быть

измерена непосредственно, вместо того, чтобы поль-

пользоваться формулой hBL—h) = x2. Сумма энергий
остается постоянной и при больших колебаниях,
если сделаны указанные выше геометрические по-

поправки.

V 20 40 60 80 100 120 74U Учащиеся, проходившие тригонометрию, могут

Рис 83> также исследовать гармоническое движение, анали-

анализируя график зависимости положения от времени.

Чтобы показать, что это движение при малых углах является гармоническим,

надо изобразить его график в новом масштабе следующим образом:
Помещаем начало отсчета расстояний в положении равновесия груза, и счи-

считаем перемещения положительными и отрицательными, если они происходят в

противоположных направлениях от этой точки. Назовем максимальное горизон-
горизонтальное смещение #тах из этой точки ± I. Тогда расстояние х в этих новых едини-

единицах будет равно d—x/xmax.
Время одного качания tmax равно половине периода и эквивалентно поэтому

180°. Моменты времени, таким образом, можно превратить в угловые единицы,

пересчитывая их следующим образом: 0=(^тах) 180°. Если теперь изобразить
зависимость d от 6, график будет с большой точностью совпадать с функцией
d=cos G. Этот результат имеет место только для малых углов размаха.

Приборы и принадлежности: отметчик времени; лента; копировальный диск;

сухой элемент на 1,5 В; 3 или 4 штатива со стержнем 12 или 24 дюйма и зажимом;

линейка; 2 листа миллиметровой бумаги; 4 струбцины; проволока от 25 до 30

дюймов; кирпич.

III. 13. Лобовое столкновение

Кинетическая энергия тележки определяется по ее скорости непосредственно

перед столкновением и по ее массе. Потенциальная энергия, накопленная в пру-

пружине, определяется площадью под графиком зависимости силы от сжатия, полу-
получаемого с помощью нагружения пружины.

Если нет сантиметровой ленты, максимальное значение каждого сжатия

можно отметить в каждом случае на полоске бумаги, расположенной вдоль верх-
верхней части стержня, а потом измерить его с помощью линейки. Удостоверьтесь
в том, что начало шкалы соответствует нулевому сжатию пружины.

Когда установка расположена так, как показано на рис. II 1.25, необходимо
расстояние около 40 см, чтобы дать тележке достаточный толчок и оставить до-

достаточное расстояние для измерения скорости движения по инерции.
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Хороший метод градуировки отметчика времени состоит в протягивании

длинного отрезка ленты сквозь отметчик в течение известного времени, равного

по крайней мере десяти секундам. Это время, поделенное на число точек на ленте,

даст интервал времени между двумя метками.

Ответы на вопросы

Кинетическая энергия как функция сжатия пружины изображается верхней
кривой на рис. 84. Результаты нагружения пружины с тележкой на конце, со-

согласно рис. I II.26, представлены графически на рис. 85. Площадь под этим

графиком, соответствующая любой данной величине сжатия, равна энергии,

• Нин.эн.твлежки
к flam,жпружины
• Хинэн, сообщаемая
тележкесжатой
пржной

цг

0,3

0,01 0,02 O,OJ 0,04 0,05

Рис. 84.

0,0J W ЦОЗ 0,04 00
Сже**

Рис. 85.

запасенной в пружине. Эта энергия в зависимости от величины сжатия изобра-
изображается нижней кривой на рис. 84.

Разница между этими двумя кривыми характеризует потери энергии при
столкновении. Благодаря экспериментальным ошибкам и различному трению,
эта разность энергий будет изменяться от нуля до величины, в два-три раза пре*

вышающей указанную на рис. 84.

Спросите учащихся, как бы они проверили, связана ли большая часть энер-

энергетических потерь с трением в пружине. Это можно сделать следующим образом.

Удерживая тележку перед сжатой пружиной, а затем отпуская ее, можно изме-

измерить ее скорость в тот момент, когда она отделяется от пружины. Отметчик вре-*
мени надо при этом расположить подальше, чтобы лента протягивалась сквозь

него в направлении движения тележки. Зная скорость и массу тележки, можно

определить кинетическую энергию, которую дает ей пружина. Две такие точки

представлены на рис. 84. Они показывают потери энергии, по порядку величины

совпадающие с расстоянием между двумя кривыми. Это означает, что большая

часть потерь связана с трением.
В этом последнем эксперименте стержень обладает некоторой кинетической

энергией в тот момент, когда тележка уходит от него. За мгновение до того, как

тележка оставит стержень, оба они обладают одинаковой скоростью. Кинетиче-

Кинетическая энергия стержня составляет примерно 2% от энергии сжатой пружины.

Приборы и принадлежности: 2 тележки; отметчик времени; лента; диски из

копировальной бумаги; сухой элемент на 1,5 В; 2 струбцины; доска 3X4x3/4
дюйма; сантиметровая лента; полоски плотной бумаги; скоба; набор разновесов
от 1 г до 1 кг.
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ПРИЛОЖЕНИЯ

I. Траектория как функция угла вылета частицы

Используя 6, имеем vox=v0cos 0, vOy=vo sin G. Тогда x=v0 cos Q»tt y =
= v0 sin 0 • t—gt2/2. Чтобы найти расстояние, которое тело проходит в горизон-
горизонтальном направлении до того, как оно вернется на землю, найдем время Т, при

котором у = 0. Вынося за скобки время / в уравнении для у, получаем

y = t[v0 sin 0—^/2].

Следовательно, у —0 для /=0 и для t= Т> где Т определяется из

uosin0—gT/2 = 0, или T = 2vosm Q/g.
Расстояние X, пройденное за это время, равно

__

п -, 2vl sin 0 cos 0

Это выражение может быть представлено в более простой форме, если вспомнить,
что sin 20= 2 sin 0 cos 0. Используя это, получим

X = (vl/g) sin 2Q.

Чтобы исследовать, как изменяется X при фиксированном у0, надо исследовать
изменение sin 20, который имеет максимальное значение, равное 1, при 20 = 90°
или 0 = 45°.

Усложнение за счет учета сопротивления воздуха. Если принять во внимание

сопротивление воздуха, уравнения движения существенно усложняются; в дей-
действительности эту проблему приходится решать численным путем, поскольку не

существует решения в виде простых формул. (По этой причине вместо формул мы

пользуемся баллистическими таблицами.)
Понятие о таком усложнении можно получить, рассматривая это движение

при упрощающем предположении, что сила сопротивления воздуха пропорцио-
пропорциональна квадрату полной скорости тела. (Это довольно хорошее приближение
для шариков от пинг-понга или пуль.) При этом полная сила сопротивления воз-

воздуха может быть записана в виде Fa——/ги2, где k — постоянная. Эта сила имеет

направление —v.

Горизонтальная и вертикальная компоненты этой силы определяются вы-

выражениями:

Поскольку v =VVx-\-v%, Fx более не является независимой от vyi a Fy не

является более независимой от vx. Поэтому ускорение в направлении оси х за-

зависит от движения в направлении оси */, а ускорение в ^-направлении зависит от
движения в х-направлении.
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2. Кинематика и динамика вращательного движения
В основном тексте Руководства при прохождении разделов 20.5—20.7 пред-

предлагается изучать динамику вращательного движения путем последовательного

усвоения учащимися трех четко выраженных положений. Вкратце их можно

охарактеризовать следующим образом.
1. Если ускорение направлено перпендикулярно к скорости, то величина

скорости остается постоянной.
2. Вывод выражения для центростремительного ускорения тела, равномерно

движущегося по окружности.
3. Применение закона Ньютона к равномерному движению по окружности.
План построения курса исходит из того, что учащиеся усвоили кинематику

вращательного движения при изучении гл. 6 части I. Если они действительно
овладели этим материалом, то динамика может быть рассмотрена как проверяемое
следствие закона Ньютона.

Этот план подхода проверен на практике, и вам стоит попытаться ему сле-

следовать. Проблема только в том, что даже у тех учащихся, кто ясно понял кине-

кинематику вращательного движения в гл. 6, ос-

основные приложения и обоснования могут уже

выветриться из головы к этому времени. По-

Поэтому часто возникает необходимость потра-
потратить немного времени на повторный вывод
чисто кинематических соотношений; если

учащиеся не понимают кинематики, усвоение
ими динамики будет непрочным.

Ниже дано несколько подробных пред-
предложений по повторению векторных понятий,

используемых на первых двух стадиях усвое-
усвоения кинематики вращательного движения.

Ускорение, перпендикулярное к скоро- Рис. 88.
сти, не изменяет ее величины. Один из спо-
способов довести эту мысль до учащихся состоит в использовании последователь*
ности простых числовых примеров. Вы можете сделать это полуколичественно,
как указано в примерах, приводимых ниже. Грубые подсчеты послужат дости-
достижению цели.

Рассмотрим вектор начальной скорости zf/, равный по величине 10 м/с. При-
Прибавим к нему перпендикулярный вектор величины Аи, получив, таким образом,
результирующий вектор vlt который отличается от V( как по величине, так и по

направлению (рис. 86). Теперь снова прибавим вектор величины Av, но на этот

раз возьмем его перпендикулярным к новой скорости v± (см. рис. 95); будем про-
продолжать этот процесс. Рассмотрим конкретный пример, используя для ускорения
a=Av/At значение 10 м/с*.

I. Сначала используем интервалы времени в 1 с, так что At/= 10 м/с. Прибавим
Аи перпендикулярно к щ, чтобы построить tFlf как показано на рис. 86. Затем

прибавим Av к v± и т. д. Это последовательное сложение можно проделать на

классной доске. Нетрудно провести и точный расчет, но это заняло бы слишком

много классного времени.
Итак,

vf = v*+ (АиJ =100+100= 200,

v\ = v\+ (At;J = 200+100= 300,

и| = 400, и* = 500, и* = 600, и т. д.

Угол между Vi и vlt который мы можем обозначить через 91э находится из условия

tg9i = Av/vi =10/10;

tgO2= 10/ ]/ 00=10/14,1;
tgO3= 10// 00=10/17,3; и т. д.

Значения 0 и соответствующих полных углов поворота вектора скорости
относительно его первоначального положения приведены в табл, 22, В классе
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нужно привести только несколько значений; затем сошлитесь на то, что через
17 шагов вектор скорости поворачивается на 360° и возрастает от 10 м/с до ве-

величины, превышающей 40 м/с, т. е. до l/"l800.
2. Теперь уменьшим At от 1 с до 0,1 с. Тогда Av= 1, и v\= 101, v\= 102,

t%= 103 и т. д. tgOx= 1/10,8!= 5,7°, tg9loo=l//2OO= 1/14,1; el00=4°. При-
Принимая, что в среднем за один шаг происходит поворот на 5°, мы получим 360*75° =

=72 шага для полного поворота на 360°. о?2— 172, v12~ 13 м/с. Таким образом,

повернувшись на 360°, вектор скорости в этом случае увеличился с 10 м/с только

до 13 м/с.
3. Наконец, возьмем At= 0,01 с. Тогда при том же самом а= 10 м/с2 At>= 0,1;

(AyJ = 0,01; v\ = 100,01; vl= 100,02; i|= 100,03 и т. д. Первый угол поворота
определяется равенством tg6= Av/vi=0fi\.

Это дает 6 = 0,57°, (Напомним, что для таких малых углов tg 6 = 0 в радиа-
радианах, а 1 рад =57,3°.) Это угловое приращение существенно не меняется. Число

шагов для поворота на 360° будет при этом составлять около 630. Величина век-

вектора скорости после этих 630 шагов будет равна v6ao— Ю>3 м/с.

ТАБЛИЦА 22

Полный угол
поворота

Полный угол
поворота

45°

45°

17°

260°

А-

80°

30°

110°

16°

276°

137°

15°

291°

в*
25°

162°

Bis
15°

306°

ев
23°

185°

320°

97
21°

206°

о»
14°

334°

1§°

225°

348°

18°

243°

8i7
13°

361°

Независимо от того, изберете ли вы какую-нибудь разновидность этого ме-

метода последовательных приближений к действительному случаю перпендикуляр-
перпендикулярного ускорения, очень важно, чтобы учащиеся ясно осознали, что ускорение,

перпендикулярное к направлению движения, стремится поворачивать вектор
скорости, но не изменяет его величину.

Кинематика вращательного движения. Может потребоваться значительное
классное время,чтобы дать понять учащимся полностью вывод, приведенный
в разделе 20.5. Следующая серия упражнений служит тем фундаментом, в котором
нуждаются учащиеся, прежде чем они смогут понять рис. 20.8 и связанные с ним

формулы.
Время, которое придется потратить теперь, зависит от того, насколько хорошо

класс усвоил материал гл. 6 разделов 6.5—6.7. Возможно, вы уже использовали

упражнения, предложенные в Приложении 1 к части I Руководства, когда впер-
впервые проходили векторы в гл. 6. Их можно использовать и теперь, или повторить
часть из них.

В следующей ниже разработке прослеживается шесть четко выраженных
шагов. Каждый шаг должен быть обсужден с иллюстрациями на доске или в виде
домашних упражнений. Эти шесть шагов требуют найти ответ на следующие
вопросы. Желательно ответить на все эти вопросы графически.

1. Чему равна разность двух векторов? Как можно наиболее простым образом
построить эту разность на векторной диаграмме?

2. Каким образом можно получить среднюю скорость с помощью рассмот-
рассмотрения радиус-векторов, соответствующих положениям тела в два различных
момента времени?
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3. Какова мгновенная скорость при вращательном движении? (Вывести
о=2лД/7\)

4. Каково среднее ускорение для различных интервалов движения по ок-

окружности? Укажите его направление и величину по мере того, как интервалы

становятся меньше.

5. Как направлено мгновенное ускорение?
6. Каково это ускорение? (Вывести а= 2nv/T.)
Усвоение будет наиболее глубоким, если подвести учащихся к ответам на

эти вопросы путем самостоятельных графических построений. Ничто не заменит

того проникновения в глубь предмета, которое дает манипулирование каран-
карандашом, линейкой и транспортиром (или угломером).

1) Разность двух векторов. Задача состоит в том, чтобы построить вектор
&v = v2—Vi. Некоторые учащиеся сомневаются, какой вектор отнимать от какого;
они имеют тенденцию вычитать меньший вектор из большего.

Существует два способа запомнить, как строить Az>.

а) Чтобы найти Av=v2—vlt переписываем это равенство в виде Др = #2 +
+ (—Vi). Образуем вектор —Vi и прибавляем его к v2.

б) Чтобы найти Av=v2—vly задаем вопрос, какой вектор Av надо прибавить
к vlt чтобы получить v2.

(Второй способ, показанный ниже как решение б), более удобен при анализе

вращательного движения.)
Ниже приведено несколько примеров, которые можно размножить и раздать

учащимся для выполнения построений.
А. (Рис. 87.) Найти графически v2—vx\ найти величину этого вектора в м/с,

и определить его направление с помощью угла, который он составляет с горизон-
горизонтальным направлением (угол отсчитывать по или против часовой стрелки, считая

положительным направлением горизонтали направление направо).

20 30ф

Рис. 87. Рис. 88.

Решение, а). См. рис. 88, величина (v2—Vi): 37 м/с, направление: 8° против
часовой стрелки от горизонтали, б) См. рис. 89.

Рис. 89.

Горизонталь

Рис. 90.

Б. (Рис. 90.) Найти то же самое, что и в примере А. (Здесь, поскольку t>2
короче, чем vlf учащиеся могут испытать соблазн произвести вычитание неверно.)

Решение, а) См. рис. 91. б) См. рис. 92.
В. (Рис. 93.) Найти то же самое, что и в примерах А или Б, при условии, что

теперь оба вектора имеют одну и ту же длину, величина v2—Vi= 22 м/с, направ-
направление составляет 51° по часовой стрелке от горизонтального направления слева

направо.
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Решение, а) См. рис. 94.

б) См. рис. 95.

2) Нахождение средней скорости. Положение тела можно определять с по-

помощью вектора R, проведенного из некоторой произвольной фиксированной

Рис. 91. Рис. 92.

точки пространства в точку, где находится тело. Если тело движется, его поло-

положение в момент времени tt может быть задано вектором Rlf а его положение

О Ю 20 30м[с

Рис. 94. Рис. 95.

в более поздний момент t2 — вектором R2. Тогда по определению вектор средней
скорости в течение этого интервала времени будет равен

(Заметим, к примеру, что при вращательном движении величина zrcp будет меньше,
чем значение скорости в любой момент рассматриваемого интервала. Это несу-
несущественно. Данное определение по-прежнему весьма полезно.)

3) Нахождение мгновенной скорости равномерного движения по окружности.

Рассмотрим движение кончика вращающейся стрелки. Если в момент tt стрелка

ч
Рис. 96.

P,-i

Рис. 97.

!гА

направлена вверх, а в момент t2 — вниз, то мы получим картину, изображенную
на рис. 96. Таким образом, vcp= (R2—R{)l{t2—h) имеет величину 2R/(t2—tx) =
= 2R/(T/2) = 4R[T м/мин, где Т—время, необходимое для одного полного

оборота.
Если вместо того чтобы исследовать вектор средней скорости за полоборота,

как это сделано выше, мы теперь исследуем только первую четверть оборота (ин-
(интервал времени Г/4), то мы получим картину, изображенную на рис. 97. Таким

образом, vcp=(R2—R1)/(t2—t1) имеет теперь величину V~2Rl{t2— tL) =
= У~2 R/(Tl4) = 4}r2 R/T м/мин, что превышает значение, полученное ранее.

Если мы теперь сократим интервал времени, пока Rt и R2 разделены очень

малым углом А9, то в пределе при очень малых А0 вектор AR=R2—Rt будет
иметь величину RAQ. Тогда величина иср= /?Д0/Д/= #A9/A/= R2n/T =
= 2nRIT м/мин. Это равенство просто означает, что кончик вращающейся стрелки
действительно проходит расстояние 2nR (длину одной окружности) за время 7\
равное периоду вращения.
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4) Нахождение среднего ускорения. Эта задача полностью аналогична рас-
рассмотренной выше. Новое заключается в использовании векторов скорости вместо
векторов положения. Среднее ускорение определяется в виде

с) б)
Рис. 98.

Рассмотрим кончик стрелки, которой мы уже пользовались выше. Когда
кончик направлен «вверх», для движения по часовой стрелке вектор скорости
направлен направо. Таким образом, для четырех радиус-векторов, изображенных
на рис. 98, а, мы имеем четыре соответст-

соответствующих вектора скорости, изображенных
на рис. 98, б.

Векторы скорости имеют размерность
длины, деленной на время, и поэтому пред-
ставлены в «пространстве скоростей», а

не в «конфигурационном пространстве»
радиус-векторов. Ввиду того, что ве-

величина каждого радиус-вектора R есть

просто длина вращающейся стрелки, каж-

каждый вектор скорости есть постоянная

мгновенная скорость v конца стрелки.

5) Направление мгновенного ускорения. Как видно из векторной диаграммы
в пространстве скоростей, вектор скорости сам вращается в направлении часовой

стрелки вместе с радиус-вектором. Таким образом, за исчезающе малый интервал

времени At, следующий за моментом tlf к вектору скорости Vi прибавляется век-

векторное приращение Av, направленное вниз. Однако направление Av дае1 нам

направление ускорения, так что когда стрелка занимает положение Rt и направ-
направлена вверх, ускорение ее конца направлено вниз. Таким образом, равномерно

вращающееся тело испытывает постоянное радиальное ускорение, направленное

внутрь к центру окружности вращения. Оно называется центростремительным

(«ищущим» в центр) ускорением.
6) Величина мгновенного ускорения. Рассуждения, в точности аналогичные

использованным в п. 3), приводят теперь к заключению, что величина мгновен-

мгновенного ускорения дается выражением a=2nv'T. Это связано с тем, что конец век-

вектора скорости проходит расстояние 2nv в пространстве скоростей за время одного

оборота Т.

Используя V— 2nR/T, мы можем также получить

2л 2я

или, обращая равенство, поскольку T=2itRlv,

Применение закона Ньютона к вращательному движению. Довольно подроб-
подробный вывод выражения для центростремительного ускорения, приведенный выше,
делает ясным тот факт, что оно имеет чисто кинематическое происхождение. Мы
провели тщательное обоснование, нигде не опираясь на факт, что «центростре-
«центростремительная сила, необходимая для поддержания движения по окружности, должна
создавать центростремительное ускорение».

Закон Ньютона поэтому предсказывает, что для удержания тела в состоянии

равномерного движения по окружности на него должна действовать сила. Эта

сила должна равняться по величине F=ma= mtP/R. Она должна быть направ-
направлена в направлении ускорения, радиально внутрь. Тот факт, что такая предска-
предсказываемая сила действительно необходима для осуществления равномерного дви-
движения по окружности, может быть проверен экспериментально в лаборатории.

Повторите основные положения раздела 20.5 Учебника. Используя пример,
приведенный в конце этого раздела, спросите учащихся, какие силы следовало
бы ожидать (вместо 2,4 Н), если: 1) #=0,88 м D,8 Н); 2) Т= 10,4 с @,6 Н); 3)
Т= 2,6 с (9,6 Н); 4) т= 7,8 кг D,8 Н).
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3. Последовательное рассмотрение движения под действием упругой
силы F = —kx.

Общий подход к описанию движения в случае, когда сила равна —kx, со-

состоит в численном расчете этого движения шаг за шагом с помощью разбиения
его на большое число участков. Для каждого участка а полагается постоянным.

Если интервалы времени выбраны достаточно малыми, может быть получена
очень точная картина движения. Конечно, мы не будем использовать столь боль-

большое число шагов в этом примере.

Рассмотрим F=—kx при k—\ Н/м. Пусть т=5 кг. Возьмем начальное
смещение х0 равным 10 м, а начальную скорость равной нулю. Теперь попробуем
определить движение, разыскивая х как

функцию времени (рис. 99).
1. Выбор шага во времени. Первона-

Первоначально (при jco= 10 м) Fo=—10 Н. По-
Поскольку т=Б кг, ao=F/m——2 м/с2.

Выберем первый интервал времени
таким образом, чтобы в течение него

Равнодесие
I

5кг ~%l

Рис. Рис. 100.

смещение составило некоторую небольшую часть от полного расстояния до по-

положения равновесия. Обозначим смещение за первый интервал времени через dt;
выберем его равным Xq/10, или dx=—1 м. С помощью соотношения d=at2/2,
—1 = (—2)t2/2, получаем ^=1 с. Теперь мы будем производить расчет таким

образом, как если бы ускорение оставалось постоянным в течение интервалов
времени в 1 с.

2. Дальнейшие вычисления. Дальнейшие вычисления очевидны, но несколько

утомительны. Например, для первого интервала %н=—2 м/с2, vlK—Q, Д?= 1 с.

Поэтому vlK=—2 м/с. Средняя скорость равна уср
= 1 м/с, так что смещение за

первый интервал dt составит d1=i>cpAf=(—1 м/с)«1 с =—1 м. Примерное по-

положение после 1 секунды равно xlK = xln-{- d = 10—1 = 9 м. Это соответствует
силе F = 9 Н, или alK=—9/5=—1,8 м/с2, что не так уж сильно отличается от

первоначального значения —2 м/с2.
3. Результаты можно суммировать в виде табл. 23.
4. График первого приближения см. на рис. 100.
5. Лучшие приближения. Такой способ вычислений приводит к искаженным

результатам, так как а недостаточно хорошо соответствует действительному
ускорению. Уменьшение интервалов времени дало бы нам лучшее приближение,
но оно не стоит тех усилий, которые пришлось бы при этом затратить.

В действительности тело совершает колебания от х— 10 до х——10. Его

максимальная скорость будет всего лишь около 4,5 м/с, в то время как ее при-
приближенные значения для последовательности временных интервалов, исполь-
использованной выше, составляли 5,3 м/с для первой половины колебания и 7,4 м/с
для второй половины колебания. Строгое решение проблемы требует использо-

использования дифференциального исчисления:

а = dv/dt = d?x/dt* = F/m =— kx/m.

Таким образом, мы имеем простое дифференциальное уравнение для х и его второй
производной:

Знакомство с решениями дифференциальных уравнений наводит нас на мысль
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№

инвервала

Хн, М

а„, м/с2
1>н, М/С

Ум*

а, м

*к, м

aKt м/с2

интервала

Хн, м

я„, м/с2

ин, м/с
V

d, м

хк, м

ак> м/с2

1

10
о

0

—2
\
j

9

-1,

8

—13

+2
—0

2
1
1

— 12
2

8

,6
,7
,3
,4
,0
,0
,6
,5

2

9

11
—2

-3,

-2,
6,

—1,

9

— 12
2
2
4
3
3

—9
1

8

8
9
9
1
2

,6
,5
,4
,9
,5
,5
,1
,8

3

6,
-1,
—3,
—5,
—4,
—4,

1,
—3,

10

—9
1
4
6
5
5

—3
0

1
2
8
0
4
4
7
34

1
8
9
7

,8
,8
,3
,7

4

1,
—3,
—5
—5
-5
—5
—3

0

и

—3
0
6
7
7
7
3

—0

7
34

3
2
2
5
7

,3
,7
,7
,4
,0
,0
,7
,7

5

—3,5
0,7

—5,3
-4,6
—5,0
—5,0
—8,5

1,9

12

3,7
-0,7

7,4
6,7
7,0
7,0
10,7

—2,1

Т АБЛ

б

—8,5
1,9

—4,6
—2,7
—3,6
—3,6
-12,1

2,4

13

10,7
—2,1

6,7
4,6
5,6
5,6
16,3

-3,3

ИЦА

7

—12,
2,

—2,
—0,
— 1,

j
K,
2,

14

16
—3,

4
1
3
3
19
—3

23

1
4
7
3
5
5
6
7

3
3
6
3
0
0
3
,8

искать решение в виде x—acosbt. Тогда

dx/dt = ab sin btt d2xjdt2 = ab2 cos Ы =— &x.

Отсюда видно, что b = ^k[m— У^ 1/5. Чтобы найти а, замечаем, что при /=

х= а\ таким образом, а= 10 м. Тогда решение имеет вид

*=10cos

4. Решение дифференциального уравнения, описывающего гармонические
колебания

(Для тех преподавателей, которые не имеюг достаточного навыка в диффе-
дифференциальном исчислении и для которых повторение решения дифференциального
уравнения будет полезным.)

Действие возвращающей силы описывается уравнением

F=~kx=ma= m d2x/dtK
Тогда

md2x/dt2+kx=0. A)
Решение этого уравнения ищем в виде

x=AcBt
Тогда

dx/dt =— BлА/Т) sin BntjT+ ф), d2x/dt2 =— Dя2Л/Г2) cos Bл//Г+ $)•
Подставляя эти значения производных в уравнение A):

—т DяМ/Г2) cos Bл//Г+ф) =— kA cos BntjT+ ф),

мы видим, что должно выполняться следующее равенство:
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Амплитуду колебаний Л и их фазу ф можно определить, только если заданы
начальные условия. Например, если в момент *—О х имеет максимальное сме-

смещение в 5 см, мы можем положить <р=0 (cos @+ ф) имеет максимум при ф = 0)
и А — 5 см. При этом

*=5cos (Y^k/mt) см.

Решение задачи о движении математического маятника несколько сложнее,

но оно приведено ниже для полноты.

На не имеющей массы нити длиной L висит точечная масса т. Ее отклоняют

от вертикали на малый угол 9, как показано на рис. 101. Смещение массы из ее

положения равновесия равно D = L9.

Благодаря весу груза, на массу действует сила mg по направлению вниз.

Эту силу можно разложить на компоненту mg cos 9 в направлении нити и компо-

компоненту mg sin 9, перпендикулярную нити. Сила, направленная вдоль нити, является

просто силой связи и не входит в решение. Перпендикулярная компонента являет-

ся возвращающей силой.
Мы можем записать

F=—mg sin Q = ma= md2D/dt\
или

ml d?Q /dt2 + mg sin 9 = 0.

Это уравнение не описывает гармонических колеба-
колебаний, если угол 9 не является малым. Однако если 9 очень

мал, мы можем положить sin 9я^9, и уравнение прини-
принимает вид

Сокращая т, получаем

0. B)

Уравнение B) имеет тот же вид, что и уже рассмотренное уравнение A), за
исключением обозначения переменных, и имеет такое же решение. Очевидно,
на основании вышесказанного,

9 =

где

Т =

5. Общая теория относительности
В соответствии с основными идеями динамики Галилея и Ньютона, законы

движения справедливы только в «инерциальной системе отсчета», т. е. в системе,
которая покоится или движется с постоянной скоростью. Эти два возможных
состояния неразличимы, поскольку силы определяются только по ускорению
тела. Ньютоновская динамика становится неприменимой для тел, движущихся
со скоростями, близкими к скорости света, но специальная теория относитель-
относительности Эйнштейна дает удовлетворительное обобщение основных положений
классической динамики на область всех возможных скоростей.

Существование силы тяжести, однако, значительно усложняет положение

вещей. Мы знаем, что поверхность Земли не является инерциальной системой
в ньютоновском смысле. Если мы подбрасываем тело вверх, оно не продолжает
свое движение, а изменяет его направление и падает обратно на пол. Обычно
мы описываем это, говоря, что мы находимся в инерциальной системе, но что

есть сила — «сила тяжести» — также действующая на тело. Действительно,
невозможно изолировать никакое тело от гравитационных сил, действующих со

стороны остальной массы Вселенной. Таким образом, определение инерциальной
системы как находящейся в состоянии «покоя» или «равномерного движения»
является всего лишь приближенным во Вселенной (содержащей массы), поскольку
все тела во Вселенной взаимодействуют друг с другом в некоюрой степени *).

*) А следовательно, и обладают ускорениями. (Прим, перев.)
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Эйнштейн в своей общей теории относительности попытался переформули-
переформулировать законы физики с учетом эквивалентности гравитации и ускорения. Эта
теория, как хорошо известно, математически крайне сложна, и ее вряд ли следует
рекомендовать для изучения учащимся средней школы. Однако основные поло-

положения этой теории достаточно просты, так что их можно проиллюстрировать на

нескольких примерах.

Предположим, мы летим в космическом пространстве на межпланетном ре-
реактивном корабле в состоянии «невесомости», которое понятно каждому совре-

современному учащемуся. В этом состоянии мы могли бы произвести ряд динамических

экспериментов над своим телом и окружающими предметами, парящими в кабине

корабля, и вскоре убедились бы, что мы находимся в настоящей инерциальной
системе, поскольку законы движения здесь выполнялись бы вполне строго. Если

бы мы подпрыгнули, оттолкнувшись от пола, мы бы наверняка ударились о по-

потолок, как бы осторожно мы ни прыгали. Теперь представим себе, что во время

этих экспериментов наше «невесомое» пребывание внезапно закончилось. Мы бы

обнаружили себя стоящими на полу и ощущающими свой собственный вес. Все

окружающие предметы, которые за мгновение до этого парили по комнате, вдруг

упали бы на пол. Какие заключения мы могли бы сделать о том, что произошло?
Не выглядывая в окно корабля-ракеты (в данном случае это все равно не

помогло бы), мы могли бы прийти к выводу, что произошло одно из авух. Либо
наш космический корабль внезапно начал ускоряться врерх, либо мы остано-
остановились (полом «вниз») на поверхности какой-нибудь планеты. В обоих случаях
законы физики мгновенно изменились бы, и мы больше уже не находились бы

в «инерциальной системе». Нам было бы весьма трудно придумать эксперимент,
позволяющий выяснить, испытали ли мы в действительности ускорение или всту-
вступили в гравитационное поле, поскольку любая из этих возможностей оказала
бы одно и то же действие на наши наблюдения. Именно это мы и имеем в виду,

когда говорим, что «инертная масса» тела и его «гравитационная масса» неразрывно
взаимосвязаны. Этот «принцип эквивалентности» лежит в основе общей теории
относительности — принцип, согласно которому вдияние ускорения в принципе
неотличимо от влияния гравитационного поля. Но как обстоит дело с нашей

инерциальной системой? У нас уже был абсолютно хороший способ ее обнару-
обнаружения просто путем наблюдения применимости законов движения. Очевидно,
в течение того промежутка времени, когда наш космический корабль представлял
собой «инерциальную систему», мы должны были бы двигаться равномерно в от-

отсутствие гравитационного поля (что невозможно в нашей Вселенной) или «.сво-

«.свободно падать» в гравитационном поле. Таким образом, истинная инерциальная
система не та, которая движется равномерно в нашем пространстве, а та, которая
находится в свободном падении.

Общая теория относительности является, таким образом, просто описанием

природы с точки зрения наблюдателя, находящегося в истинно инерциальной
системе — настойчиво производящего эксперименты в свободно падающей лабо-

лаборатории. Для такого наблюдателя законы динамики были бы справедливы внутри
его падающей лаборатории, но вскоре он пришел бы к выводу, что за стенами его

лаборатории пространство обладает некоторыми весьма специфическими свой-
свойствами. Чтобы это проиллюстрировать, представим себе, что мы свободно падаем
в такой лаборатории, движущейся с очень высокой скоростью в космическом

пространстве. Сквозь окно нашей лаборатории мы наблюдаем другого человека,
движущегося параллельным курсом с той же скоростью и также проделывающего
динамические эксперименты. Мы могли бы сравнивать результаты экспериментов,
обмениваясь сигналами, и при этом убедились бы, что наши результаты иден-
идентичны и что каждый из нас находится в инерциальной системе отсчета. Если мы
затем попадаем в окрестности большой планеты (таким образом, что мы не произ-
производим экспериментов, требующих контакта с планетой), то обе лаборатории будут
отклоняться гравитационным полем, как показано на рис. 102.

Наша лаборатория, помеченная на рисунке буквой В, испытала бы некоторое
отклонение, а другая лаборатория, помеченная буквой С, отклонилась бы не-
несколько сильнее, поскольку она проходит ближе к планете. Поскольку как мы,
так и наблюдатель в С, свободно падаем, то будучи ограничены каждый пределамисвоей собственной лаборатории, ни один из нас не почувствовал бы и не смог бы
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непосредственно измерить какие-либо эффекты, вызванные ускорением. Ведь

каждый из нас по-прежнему находится в инерциальной системе, насколько мы

можем судить об этом по результатам наших внутренних измерений. Однако
поскольку теперь наши лаборатории, очевидно, расходятся, мы пришли бы к

выводу, что расстояние между нами неожиданно стало увеличиваться, причем
никто из нас не заметил никакого ускорения. Вместо того чтобы описывать про-

происшедшее с помощью некоторой «силы», которой мы не можем обнаружить, мы

можем лучше описать это явление, предположив искривление пространства и

времени, которое мы можем наблюдать.
В этом суть общей теории относи-

относительности. Гравитационное поле, сог-

согласно этой точки зрения, вызывает

«вспучивание» пространства и времени
в окрестности массы. Тяготение высту-
выступает при этом не как «сила», а как

Рис. юг. свойство пространства и времени.
Вся эта процедура была бы довольно

бесплодной, если бы она не позволяла

обобщить законы физики и предсказать некоторые наблюдаемые события. Дей-
Действительно, общая теория относительности предсказывает некоторые факты,
которые не находят правильного объяснения ни в рамках ньютоновской дина-
динамики, ни в специальной теории относительности. Одно из этих предсказаний
касается искривления луча света в гравитационном поле. В общей теории отно-

относительности «кратчайшим расстоянием между двумя точками» является отрезок
не прямой линии, а «геодезической» — пути/ по которому проходил бы световой

луч между этими двумя точками, изгибаемый гравитационным полем. Согласно
специальной теории относительности свет обладает энергией, а поскольку масса

и энергия эквивалентны, свет будет отклоняться в гравитационном поле. Однако
величина этого отклонения не может быть найдена правильно путем таких про-
простых рассуждений, потому что сила тяжести, действующая на движущееся тело,
зависит от его скорости. Мы можем в действительности наблюдать изгибание
светового луча, который идет от удаленных звезд и проходит очень близко от

Солнца, во время солнечного затмения. Этот эффект очень мал (около двух уг-
угловых секунд), но его можно измерить с высокой точностью, и результаты этих

измерений хорошо согласуются с предсказаниями общей теории относительности.
Общая теория относительности очень важна для физики, но в основном она

используется в космологии как рабочий инструмент для изучения Вселенной.

Космологов интересуют такие вопросы, как «Конечна ли Вселенная?», т. е. будет
ли геодезическая, направленная наружу из известной части Вселенной, продол-
продолжаться бесконечно, или, все время распространяясь вперед, вернется к своей

исходной точке? Много усилий современных астрономов направлено к выяснению

ответа на этот вопрос. В настоящее время мы не знаем, является ли известное

нам пространство конечным или бесконечным, но оно определенно «искривлено»
в релятивистском смысле.

6. Вывод уравнения, связывающего /п, т0, v и ve для ракет

Это уравнение легко вывести с помощью интегрального исчисления. Рас-

Рассмотрим ракету массы т, летящую со скоростью у. Ракета постепенно испускает

массу в обратном направлении. Пусть dm обозначает малую испущенную массу,
а ие пусть будет скорость испускания этой dm. Эта малая масса будет испущена
с количеством движения р= (dm)ve Тогда, поскольку количество движения
должно сохраняться, изменение количества движения ракеты будет равно —(dm)ve.
Оставшаяся у ракеты масса т должна увеличить свою скорость на величину dv>

откуда мы и получаем соотношение

или

—dvjve — dm/m.

Заметим, что ve
— постоянная (относительно ракеты) скорость, с которой

испускаются газы, а переменными являются т и v.
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Это уравнение можно проинтегрировать, что дает (с учетом постоянства v )

где логарифм берется по основанию е. Потенцируя это равенство, получаем

Чтобы определить постоянную интегрирования, надо ввести начальные условия.
В момент запуска масса ракеты равнялась т= т0, а ее скорость была равна нулю:
а=0. Это дает для сг значение с1=^\п m0, или c2 = m0.

Таким образом, окончательно мы получаем искомое соотношение в виде

v/ve — \n (mo/m), или m = moe"'v/Ve.
7. Произведение двух векторов
Работа определяется произведением силы на перемещение. Обе эти вели-

величины — векторные, но сама работа — скаляр. Этот частный случай произве-
произведения двух векторов называется скалярным произведением и записывается с

помощью «точки»:

W = F-d.

Скалярное произведение равно произведению абсолютных величин (модулей)
двух векторов, умноженному на косинус угла между ними. Это может быть вы-

выражено еще как произведение абсолютной величины одного вектора на проекцию
второго вектора вдоль направления первого.

Из рис. 103, а видно, что в общем случае проекция F на направление d равна
по величине Fcos Э, где 6 — угол между F и d. Поэтому W=F*d— (F cos 0)d.
Заметим также, что мы можем перегруппировать сомножители, записав

Из рис. 103, б мы видим, что d*cosQ представляет собой не что иное, как проекцию
смещения на направление силы. Таким образом, мы можем с равным правом

говорить:

(Работа) =(полное перемещение)* (компонента силы в направлении пере-
перемещения),

или

(Работа) = (полная действующая сила)* (проекция перемещения на направ-
направление этой силы).

W=(Foo$0)d
а) б)

Рис. 103. Рис. 104.

8. Доказательство разлета под прямым углом после упругого столкновения

При упругом столкновении равных масс, одна из которых первоначально

покоилась, окончательные траектории перпендикулярны друг к другу.

Если р± обозначает количество движения движущегося шара перед столк-

столкновением, a/?i и/?2
— количества движения после столкновения, закон сохранения

количества движения дает Pi=p'i +рг- Таким образом, в самом общем случае

три вектора количества движения должны составлять треугольник, как показано

на рис. 104, а. Энергия перед столкновением равна

mv\/2=: pl/2m,
и если кинетическая энергия сохраняется во время столкновения, то
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Но это сразу же дает
2__ '2 , *2

а это не что иное, как теорема Пифагора для треугольника, показанного на рис.

104, а. Следовательно, данный треугольник должен быть прямоугольным, как

показано на рис. 104, б, и шары разлетаются под прямым углом.
На рис. 22.9 и 22.10 угол между р\ и р'2 равен примерно 85,5°, а не 90°. Эю

вызвано тем, чго реальное столкновение не является идеально упругим. Коли-
Количество движения должно полностью сохраняться при соударении, и тот факт,
что А/?! и Д/?2 на рис. 22.10, б не лежат на одной прямой (угол между ними состав-

составляет около 1°), является ошибкой эксперимента, вызванной- трением в системе

(внешней силой).
Угол между окончательными траекториями должен быть меньше 90°, если

энергия теряется при столкновении. Это можно видеть, рассматривая случай
сцепления шаров. В этом случае рассматриваемый угол равен 0°, что определенно
меньше, чем 90°.

При центральном соударении налетающий шар останавливается, а ударя-

ударяемый движется по прямой вперед со скоростью, которой обладал до удара на-

налетающий шар. В этом случае, поскольку Pi
= 0, угол между р[ и рг является

неопределенным.

9. Соотношение между потенциальной энергией и силой

Когда масса движется под действием линейной возвращающей силы F——kx9
мы знаем, что ее потенциальная энергия равна U= kx2f2, и поскольку изменение

кинетической энергии равно изменению потенциальной, взятому со знаком минус,
и измеряется работой, производимой при превращении энергии из одной формы
в другую, мы получаем

Предположим теперь, что кто-то дал нам выражение для потенциальной

энергии, а мы хотим узнать, правильно ли оно, например, если нам дали выра-

выражение для изменения потенциальной или кинетической энергии при гравитацион-

гравитационном взаимодействии. Для того чтобы проверить правильность нашего выражения
для изменения потенциальной энергии, его надо представить в виде произведения
некоторого выражения на малое изменение расстояния от х до х'. Поскольку
мы имеем дело с работой, это выражение должно представлять собой произве-

произведение силы на малое изменение расстояния, и мы можем проверить, совпадает
ли полученный нами первый сомножитель с той силой, которая должна действо-
действовать в рассматриваемом случае. Например, для потенциальной энергии в случае
линейной возвращающей силы мы поступаем, в соответствии с вышесказанным,

следующим образом.
Переписываем приведенное выше равенство в виде

Очевидно, изменение расстояния Ля—я'—х. Поэтому

W = k (—Ax) Bx—x+x')/2=—k [B*+Д*)/2] Ах.

Для малых изменений расстояния Ах слагаемым А* в скобках можно пренебречь
по сравнению с расстоянием 2х> в результате чего получаем

W=—kxAx.

Этот результат согласуется с нашим ожиданием, поскольку мы знаем, что сила
должна выражаться в виде F~—kx.

Предположим, с другой стороны, что нам дали неверное выражение для
потенциальной энергии, принадлежащее в действительности другой силе. Тогда,
повторяя те же действия, мы бы нашли ту силу, которой принадлежит данное нам

выражение. Например, предположим, что кто-нибудь утверждает, что потенци-
потенциальная энергия, связанная с линейной возвращающей силой, на самом деле вы-

выражается в виде U=kx. Отсюда мы пришли бы к заключению, что работа W,
изменяющая кинетическую энергию на малую величину при переходе тела из

424



точки х в х\ равна
№ = Д? = fc (x—xf) =— kAx.

Мы сразу же видим, что сила, соответствующая этой потенциальной энергии, как

раз постоянна: F ——к. Мы должны понимать, что мы пришли к постоянной силе

ввиду того, что наше выражение U = kx имеет такой же вид, как и потенциальная

энергия в постоянном гравитационном поле.

Иными словами, любое выражение для потенциальной энергии или работы

при перемещении из одного места в другое подразумевает определенный тип сил,
и потенциальная энергия принадлежит именно данному типу сил, и никакому

другому. Один из возможных методов нахождения потенциальной энергии, свя-

связанной с силой любого вида, состоит в исследовании всех возможных выражений,

которые могут быть взяты в качестве потенциальной энергии, и в последующем
выборе того из них, которое приводит к фактически действующей силе.

10. Вычисление космических скоростей и энергий связи

1. В Учебнике выведено следующее выражение для второй космической ско-

скорости:

V

(R3— радиус Земли). v3 можно вычислять, подставляя в это выражение число-

числовые значения входящих туда величин, но эти расчеты можно упростить, если

заметить, что GM/r2 представляет собой силу тяжести у поверхности Земли. По-

Поэтому GM/r= gr,

v3
= y2gR^= l/ -9,8м/с2-F,4-106) м= 11,2-103 м/с.

2. Чтобы вычислить энергию связи Земли с Солнцем, нам понадобятся не-

некоторые характеристические константы Солнечной системы:

6 = 6,670* Ю-11 Нм2/кг2 (гравитационная постоянная),
М = 2,0-1030 кг (масса Солнца),
т= 6,0-1024 кг (масса Земли),
г3 — 1,5-1011 м (радиус земной орбиты),

1 год = 3,2«107 с (число секунд в году),
v = 2nr3/l год= 3,0-104 м/с (скорость Земли на орбите).

Тогда кинетическая энергия Земли относительно Солнца равна

тФ F.0.10м кгНЗ.0-10* м/ср 2? 1(JM Дж

Потенциальная энергия Земли относительно Солнца равна

GMm_ F>67»10-11Нм2/кг2)»B.1030кг).F.1024кг)

Т^~~ 1,5.10й м
—-5,<М0* Дж.

Таким образом, энергия связи Земли с Солнцем равна
?св = 2,6.1033 Дж.

3. При вычислении вашей энергии связи с Землей мы сначала пренебрежем
вашим движением, вызванным вращением Земли. При этом

0

/?3=6,4-106 м (радиус Земли),
т = 50—90 кг (ваша масса),
М—масса Земли,

g= 9,8 м/с (ускорение силы тяжести).
Поскольку

GMm/R3 —mg=вaш вес,
имеем

?св= GMm/R3 = mgR3 = C,1—5,6). 10* Дж,
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что соответствует границам, указанным в Учебнике для вашей энергии связи
с Землей, а точное значение зависит от того, кто вы — стройная девушка или

тучный мужчина.
Влияние вращения Земли на вашу энергию связи можно оценить следующим

образом:

(^^^1JЦ.Ж.
Это составляет поправку всего в 0,1% к энергии связи, вычисленной выше.

4. Мы можем найти количественный ответ на вопрос, поставленный в начале

раздела 24.4 относительно гравитационной потенциальной энергии спутника. Рас-

Рассмотрим спутник в 1 тонну, имеющий период обращения вокруг Земли 2 часа,
и предположим, что его орбита — круговая (как это было предположено при
рассмотрении вращения Земли вокруг Солнца во втором примере, приведенном
выше). Исключая из уравнений

mxfilr — GMmlr* (закон Ньютона)
и

T= 2nr/v (период вращения)

(поскольку Земля теперь является центром движения, мы считаем М массой

Земли, am — массой спутника), получаем

r3 = GMT2/4n'2 (третий закон Кеплера).

Подставляя числовые значения

Т = 2-60-60 с (период обращения спутника),
Af = 6,(Ы084 кг (масса Земли),
G = 6,67-10-n Н-м2/кг2,

получаем
гс = 8,1 • 106 м (радиус орбиты спутника вокруг Земли).

Подставляя это значение гс в выражение для Т и разрешая его относительно v,
имеем

ис
= 2ягс/Т = 7,Ы03 м/с (скорость спутника на его орбите).

Беря тс = 9*102 кг для массы спутника, получим значения его кинетической

и потенциальной энергии:

ma^/2 = 2,3-1010 Дж (кинетическая энергия спутника на его орбите относитель-

относительно Земли),
—GMm/rc=— 4,4-Ю10 Дж (потенциальная энергия спутника на его орбите

относительно Земли).
Следовательно,

Есв — 2,\-\010Д,ж (энергия связи спутника на орбите).
Именно такая энергия потребовалась бы для удаления спутника из области зем-

земного притяжения.

Найдем теперь энергию, необходимую для вывода спутника на его орбиту,
двумя способами, сначала косвенным, а затем более прямым.

Заметим, что энергия связи спутника с Землей, когда он находится в покое

перед запуском, находится тем же способом, что и энергия вашей связи с Землей.
Она равна (снова пренебрегаем очень малой начальной кинетической энергией
вращения вместе с Землей)

(?св)з = GMm/r3 = 5,6-1010 Дж.

Разность между этой энергией связи и ее значением на орбите должна равняться
полной энергии ?св, необходимой для вывода спутника на орбиту с земной по-

поверхности:

?«= (?«)з - (?»)о=3,5 • ш" дж.
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(Она равна GMm(l/r3-l/r0)= 1,2-1010 Дж плюс кинетическая энергия, которой
должен обладать спутник на этой орбите, чтобы не упасть на Землю. Мы уже
видели ранее, что эта кинетическая энергия равна 2,3» 1010 Дж, и поэтому полная

энергия, необходимая для вывода спутника на орбиту, равна A,2+ 2,3)• 1010 Дж,
как и получено выше.)

11. Энергия движения молекул многоатомного газа

Обобщение теории на случай многоатомных газов достаточно просто. Рас-

Рассматривая

мы замечаем, что с каждой из трех степеней свободы движения центра масс мо-

молекулы связана тепловая энергия х/%кТ. Если мы рассматриваем случай произ-
произвольной молекулы, более сложной, чем отдельный атом, то ей доступно большее

число степеней свободы. Например, двухатомная молекула имеет вид физкуль-
физкультурной гантели. Рассмотрим два атома, лежащих на оси х. Их центр масс может

двигаться независимо в х-> у- и г-направлении. В дополнение к этим движениям
гантель может вращаться независимо относительно осей, параллельных направ-
направлениям у и г и проходящих через ее центр масс. Она может также вращаться и

относительно оси х, как настоящая гантель может веретенообразно вращаться
относительно своей собственной оси. Однако динамика этого вида вращения,

очевидно, сильно отличается от двух других. При точечных атомах в этом враща-
вращательном движении не может содержаться никакой энергии. У двухатомной моле-

молекулы есть еще один независимый вид движения. Он заключается в колебаниях

двух атомов, приближающихся и удаляющихся друг от друга. Это движение,
в противоположность остальным, включает как кинетическую, так и потенци-

потенциальную энергию, и это обстоятельство вынуждает нас приписать колебаниям две

(эффективных) степени свободы вместо одной.
Согласно классической физике энергия такой системы будет, в среднем, по-

поровну распределена между всеми степенями свободы. Таким образом, если 8 Дж
тепловой энергии передать одноатомному газу, то вся эта энергия пойдет на три
поступательных степени свободы. Если то же самое количество энергии передано
двухатомному газу, закон равнораспределения утверждает, что она поровну
разделится между семью степенями свободы, перечисленными выше (пренебрегая
веретенообразным вращением). Таким образом, только 3/7 энергии идет на по-

поступательные движения, определяющие температуру. Удельная теплоемкость

такого газа составляла бы 7/з от удельной теплоемкости одноатомного газа, рас-

рассмотренного перед этим.

В действительности квантовая механика изменяет эту картину в том отно-

отношении, что она приписывает минимальную энергию возбуждения, которая может

быть присуща любой из степеней свободы. Вообще говоря, она наименьшая у

поступательных, несколько выше у вращательных и наивысшая у колебательных

степеней свободы. В результате при низких температурах возбуждаются только

поступательные движения. При более высоких температурах могут возбуждаться
вращения. При еще более высоких температурах начинаются колебания.

При комнатной температуре у большинства двухатомных газов молекуляр-
молекулярные вращения уже начинаются, а колебания еще нет. Поэтому они обладают
только пятью эффективными степенями свободы, и их удельная теплоемкость
составляет 5/3 от теплоемкости одноатомного газа. Таким образом, в общем случае
удельные теплоемкости зависят как от строения молекул, так и от температуры.

12. Краткий обзор истории учения о теплоте

Попытки человека понять природу теплоты имеют захватывающую историю.
Конечно, люди знали о теплоте задолго до того, как были выработаны представ-
представления об энергии. Первые умозрительные построения, касавшиеся природы
тепла, опирались на две конкурирующие гипотезы: согласно первой, теплота

представлялась как нечто, связанное с движением (добывание огня трением
и т. д), а согласно второй — как материальная субстанция.

В 1620 г. Френсис Бэкон утверждал в своем «Новом органоне», что «сама

теплота...— это движение и больше ничего». Позднее, в XVII в. Роберт Бойль
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и Роберт Гук оба выражали аналогичные мысли, но эта теория не получила до-

достаточного признания у большинства ученых следующего столетия, в основном

из-за того, что никто не мог объяснить, почему теплота, будучи движением, со-

сохраняется в тех опытах, в которых два тела, находившиеся первоначально при
разных температурах и приведенные в контакт друг с другом, достигают тепло-
теплового равновесия.

В XVIII в. вошла в употребление теория теплоты, согласно которой тепло

представляет собой тончайшую упругую жидкость, присутствующую внутри
всякого «горячего» тела. Частички этой «жидкости» предположительно оттал-
отталкивают друг друга, но притягиваются к частицам обычного вещества. Эта теп-
тепловая «жидкость» стала известна как «теплород», и представление о теплоте как
о материальной субстанции соответственно называется «теорией теплорода».

В основе теории теплорода лежало понятие о том, что теплота сохраняется.
Большинство наблюдений и экспериментов сторонников этой теории проводились
в условиях изоляции, оставлявших полное количество теплоты неизменным,
и это подтверждало, что теплота представляет собой сохраняющуюся величину.
Таким образом, о теплоте было удобно думать как о веществе, которое не может
быть ни создано, ни уничтожено, но может перетекать от одного тела к другому.

Интересно рассмотреть объяснения тепловых явлений, предлагавшиеся
сторонниками теории теплорода. Они считали, как было принято в то время,
основные частицы вещества непроницаемыми. Несмотря на взаимное притяжение
частиц вещества, утверждали они, эти частицы не могут находиться в плотном

соприкосновении; в противном случае при сжатии тел не могло бы происходить

сокращение их размеров. Поэтому должна существовать сила отталкивания,
уравновешивающая взаимное притяжение частиц, и эта сила приписывалась
теплороду, присутствующему между частицами вещесгва. Ввиду взаимного от-

отталкивания частиц теплорода теплота будет перетекать от горячего тела к холод-

холодному. Существует ли вещество в твердом, жидком или газообразном состоянии,
зависит от количества теплорода, которое входит в его состав. Если оно содержит

большое количество теплорода, оно будет принимать форму газа; твердое и жид-

жидкое состояния содержат меньше теплорода и потому занимают меньший объем.

Считалось, что при охлаждении вещество теряет теплород; этой потерей теплорода
(который обеспечивает силу отталкивания) объяснялось сокращение размеров
большинства веществ при охлаждении.

Хотя теорией теплорода больше не пользуются, некоторые термины из нее

были перенесены в современное описание тепловых явлений. Это особенно удобно
при обсуждении теплового «потока» и «передачи» тепла. Мы все еще говорим, что

тело «впитывает» теплоту. И наконец, наша единица теплоты — калория — пер-
первоначально использовалась для измерения количества теплорода.

Эксперименты Румфорда A753—1814), начатые около 1787 г., были пред-
предназначены для опровержения самых основ теории теплорода. Румфорд начал
с того, что показал, что нагревание тела не приводит к увеличению его массы.

Можно было бы рассуждать, что если бы теплород был веществом, он должен был

бы обладать фундаментальным свойством всякой материи — массой. С помощью

серии в высшей степени тщательных опытов он показал, что вес тела не зависит

от его температуры. Однако это не было серьезным вызовом сторонникам теории

теплорода. Они просто ответили, что теплород
— не обычное вещество, и поэтому

он не обязательно подвержен действию силы тяжести.

Тогда Румфорд обратился к экспериментам, в которых теплота получается

путем трения. Наблюдая за процессом сверления орудийных стволов в мюнхен-

мюнхенском арсенале, он заметил очень сильное повышение температуры ствола при

сверлении. На основе теории теплорода сила притяжения, которая предполага-
предполагалась существующей между теплородом и молекулами металла, должна умень-
уменьшаться при разрушении металла, превращающегося в стружку, высвобождая

теплород, который проявляется в виде тепла. Однако теплота, высвобождаемая
в этих экспериментах, оказывается неистощимой, неисчерпаемой. Отсюда Румфорд

пришел к заключению: «Мне кажется, крайне трудно, если вообще возможно,

сформировать любое четкое представление о чем-либо, что возникало и переда-
передавалось бы таким же путем, каким возбуждается и передается теплота в этих

опытах, за исключением движения».
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Физической основой, на которой строилась теория теплорода, было понятие

о том, что теплота — сохраняющаяся величина. И как раз это место оказалось

предметом атаки со стороны ее критиков. Они показали, что в экспериментах

с трением, вроде сверления стволов Румфорда, тепло может производиться,
по-видимому, в неограниченном количестве.

По-видимому, Юлиус Роберт Майер A814—1878) был первым, кто осознал
важность отождествления теплоты с энергией. Майер пришел к мысли, что энергия

не может быть уничтожена и что одна форма энергии в некотором смысле экви-

эквивалентна другой. Он указывал:
«В неисчислимом множестве случаев мы видим, как движение прекращается ,

не вызывая другого движения и не поднимая никакого груза; но энергия, если

она существует, уже не может быть уничтожена, она может лишь изменить свою

форму; а отсюда возникает вопрос, какие другие формы мыслимы у энергии?»
Он утверждал, что поскольку работа может превращаться в тепло, то теплота

должна быть формой энергии:
«Если потенциальная и кинетическая энергии эквивалентны теплоте, то

теплота, естественно, должна быть также эквивалентна кинетической и потен-

потенциальной энергии».
Здесь Майер сделал свое наиболее проницательное наблюдение. Если теплота

является просто преобразованной формой кинетической или потенциальной

энергии и если энергия как целое сохраняется, то данное количество теплоты

должно быть результатом пропорционального количества механической энергии.
Произведенная над телом работа должна создавать пропорциональное количество
теплоты в этом теле, если его кинегическая и потенциальная энергии не меняются.
На основании уже проделанных экспериментов с газами Майер смог вывести
количественное соотношение между механической работой и теплотой, которое
находится в достаточно хорошем согласии с лучшими значениями, полученными
с тех пор. Исследования Джеймса Прескотта Джоуля A818—1898) были про-
проведены немного позднее и положили конец теории теплорода.

13. О трех началах термодинамики
В Учебнике кратко говорится о первом и втором из трех законов термоди-

термодинамики, называемых «началами». Первое начало выводится из кинетической

теории и относится к энергии молекул, из которых состоит любое вещество. Этот
закон обычно выражается в форме

которая говорит о том, что бесконечно малое количество теплоты 6Q, втекающее

в тело, равно сумме приращения внутренней (тепловой) энергии тела dU и бес-

бесконечно малой работы dW, совершаемой телом против внешних сил. Если работа
производится над телом какой-либо внешней силой (например, при сжатии газа

с помощью поршня), то 6W отрицательна. Аналогично, 6Q отрицательно для
теплоты, вытекающей из тела. Первое начало представляет собой просто формаль-
формальное выражение закона сохранения энергии, в котором теплота явно определена
как одна из форм энергии.

Первое начало очень много говорит нам о тепловом поведении материи. На-

Например, из него следует, что если мы теплоизолируем систему так, чтобы никакое
тепло не могло втекать или вытекать из нее, т. е. если 6Q = 0, то работа, произ-
производимая над системой (например, при сжатии газа), будет увеличивать тепловую
энергию системы, и наоборот, если система производит работу (например, при
расширении газа под поршнем, когда он преодолевает внешнее давление), ее теп-

тепловая энергия будет убывать. Мы можем без труда убедиться в том, что для уве-
увеличения тепловой энергии системы при постоянном давлении потребуется большее
количество теплоты (поскольку система может расширяться и производить ра-

работу), чем при постоянном объеме системы (когда перемещение равно нулю, 6 №
также равно нулю).

Первое начало, однако, не охватывает всех известных нам свойств тепла.

Рассмотрим следующую ситуацию. Предположим, что мы смогли бы ввести боль-

большую группу молекул в абсолютно пустой сосуд так, чтобы все молекулы двига-

двигались в одном и том же направлении и с одной и той же скоростью. Если бы мы
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заглянули в этот сосуд через день (или даже через секунду в данном случае), мы

должны были бы ожидать, что хаотические столкновения, происходящие между

молекулами, полностью дезорганизовали бы их движения. Молекулы двигались

бы по всевозможным направлениям с максвелловским распределением скоростей.
С течением времени мы никак не можем рассчитывать на то, что заглянув од-

однажды в сосуд, мы смогли бы обнаружить там все молекулы движущимися в одном

и том же направлении и с одной и той же скоростью. Ожидание тенденции порядка
переходить в беспорядок диктуется опытом. Именно таким путем происходит

развитие всех систем. Это направление эволюции не указывается первым началом

термодинамики. Энергия могла бы сохраняться и при переходе от беспорядка
к порядку с тем же успехом, как и при обратной тенденции развития.

Если мы опускаем раскаленный кусок металла в ведро с холодной водой, мы

ожидаем, что металл остынет, а вода нагреется. Мы бы удивились, обнаружив,
что металл стал еще горячее, а вода замерзла. И все же вторая возможность не

нарушала бы закона сохранения энергии.

Направление, в котором процессы, подобные рассмотренным выше, имеют

тенденцию протекать, определяется вторым началом термодинамики. Параметр,
который вводится для того, чтобы служить мерой этой тенденции, называется

энтропией.
Второе начало термодинамики может быть сформулировано в различных

формах. Все они имеют фактически один и тот же смысл. Одна из таких формули-
формулировок гласит: «В состоянии теплового равновесия энтропия системы максимальна».

Другими словами, в природе существует «направление» от порядка к беспорядку.
Если мы имеем вначале комнату, заполненную воздухом, и в одном углу ее бу-
бутылку, содержащую один моль газа (высокоупорядоченное состояние), и если

мы вынем пробку из бутылки, то «направление процессов в природе» таково, что
в конце концов мы получим хаотическое распределение молекул по всей комнате

(высоконеупорядоченное состояние). Но если вначале у нас есть неупорядоченное

состояние, при котором моль газовых молекул хаотически распределен по ком-

комнате, то у этих молекул весьма мало шансов собраться в конце концов всем вместе

и опять заполнить ту бутылку, из которой они вылетели.

Аналогично, если вначале у нас есть два отдельных тела, одно горячее, а

другое холодное, и если мы приводим их затем в тепловой контакт друг с другом,
то энтропия получившейся системы будет возрастать, если тепло перетекает от

горячего тела к холодному, так что оба они достигают одной и той же конечной

температуры. Если бы теплота перетекала от холодного тела к горячему, так что

холодное охлаждалось бы, а горячее становилось еще горячее, то энтропия этой
системы убывала бы. Согласно второму началу «направление процессов в природе»
таково, что мы можем исключить эту вторую возможность для тел средних раз-
размеров. Действительно, мы должны совершать работу, чтобы заставить тепло

перетекать от холодного тела к горячему (например, в холодильнике).
Второе начало имеет далеко идущие следствия и говорит нам гораздо больше,

нежели просто о том, что теплота перетекает от нагретых тел к холодным. Оно

объясняет нам, почему в радиосопротивлениях наблюдаются «шумы», почему
все измерения подвержены случайным ошибкам и многое другое.

Третье начало термодинамики относится к абсолютному нулю температуры.
В сущности оно говорит нам о том, что мы можем как угодно приблизить темпе-

температуру тела к этому абсолютному нулю, но что мы никогда не сможем достигнуть

этого предела.

14. Механизмы и машины

Простые механизмы, такие, как рычаги, блоки, вороты, клин, винты и ше-

шестерни, или их почти бесконечные модификации и комбинации, нередко обсуж-
обсуждаются в той или иной степени в элементарных курсах физики. Из настоящего
курса они опущены частично из-за ограниченности места, а также ввиду того,

что они стоят в стороне от основных идей физики. Все механизмы могут быть

легко поняты на основе законов термодинамики. Мы часто пренебрегаем тепло-

тепловыми эффектами, и тогда мы должны считаться только с первым началом. Когда
мы совершаем определенное количество работы FiSg на входе механизма, мы
можем ожидать получения, самое большее, такого же количества работы на
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выходе. Если мы обозначим через Foso произведение полученного усилия на

перемещение, которое равно работе на выходе, то для всех простых механизмов

F/S/^/vo. Знак равенства имеет место только для «идеальных» механизмов,
в которых нет потерь на трение. Это «уравнение механизма» представляет собой
просто утверждение сохранения энергии. Обычно определяемый «выигрыш в силе»
для данного механизма Fo/F/, хотя и является часто весьма полезной величиной,
едва ли представляет собой фундаментальное понятие. Очевидно, что для идеаль-
идеального механизма /у/7 = Si/s0, и мы можем определить выигрыш в силе для любого
механизма с помощью отношения расстояний, на которых действуют прилага-
прилагаемая и получающаяся силы (проигрыша в расстоянии).

На протяжении столетий многие пытались изобрести «вечный двигатель» —

устройство, которое производило бы полезную работу, потребляя меньшее, чем
эквивалентное этой работе, количество энергии. Обычно такие устройства 'слу-
'служили только для перекачивания денег из карманов доверчивых людей в карманы
изобретателя. Вечные двигатели, основанные на нарушении закона сохранения
энергии, обычно называются вечными двигателями первого рода, поскольку они
несовместимы с первым началом термодинамики. Некоторые вечные двигатели

спланированы более тонко. Они «работают» без нарушения закона сохранения
энергии, обычно за счет неправильного перетекания тепла. Эти устройства,
нарушающие второе начало, называются вечными двигателями второго рода!
Все вечные двигатели, как бы остроумно они ни были задуманы и искусно
сделаны, обладают одним общим недостатком: они не работают!
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